The largest database of trusted experimental protocols
> Anatomy > Body Location or Region > Arm, Upper

Arm, Upper

The upper arm, also known as the brachium, is the part of the upper limb between the shoulder and the elbow.
It contains the humerus bone and is surrounded by various muscles and connective tissues.
The upper arm plays a crucial role in arm movements and function, allowing for a wide range of motion and the ability to perform tasks requiring strength and dexterity.
Studyinng the upper arm is important for understanding limb anatomy, biomechanics, and disorders affecting this region, such as injuries, deformities, and neuromuscular conditions.
Reseachers can leverge PubCompare.ai's advanced AI platform to effortlessly locate and optimize upper arm research protocols from literature, preprints, and patents, enhancing reproducibility and accuracy of their studies.

Most cited protocols related to «Arm, Upper»

Thirty-four neuroblastoma cell lines were grown to subconfluency according to standard culture conditions. RNA was isolated using the RNeasy Midi Kit (Qiagen) according to the manufacturer's instructions. Nine RNA samples from pooled normal human tissues (heart, brain, fetal brain, lung, trachea, kidney, mammary gland, small intestine and uterus) were obtained from Clontech. Blood and fibroblast biopsies were obtained from different normal healthy individuals. Thirteen leukocyte samples were isolated from 5 ml fresh blood using Qiagen's erythrocyte lysis buffer. Fibroblast cells from 20 upper-arm skin biopsies were cultured for a short time (3-4 passages) and harvested at subconfluency as described [22 (link)]. Bone marrow samples were obtained from nine patients with no hematological malignancy. Total RNA of leukocyte, fibroblast and bone marrow samples was extracted using Trizol (Invitrogen), according to the manufacturer's instructions.
Publication 2002
Arm, Upper Biopsy BLOOD Bone Marrow Brain Buffers Cell Lines Erythrocytes Fetus Fibroblasts Heart Hematologic Neoplasms Homo sapiens Intestines, Small Kidney Leukocytes Lung Mammary Gland Neuroblastoma Patients Skin Tissues Trachea trizol Uterus
DNA extracted from cancer specimens and normal tissue was labeled and hybridized to the Affymetrix 250K Sty I array to obtain signal intensities and genotype calls. Signal intensities were normalized against data from 1480 normal samples. Copy-number profiles were inferred using GLAD48 (link) and changes of > 0.1 copies in either direction were called SCNAs. The significance of focal SCNAs (covering < 0.5 chromosome arms) was determined using GISTIC18 (link), with modifications to score SCNAs directly proportional to amplitude and to allow summation of non-overlapping deletions affecting the same gene. Peak region boundaries were determined so that the change in the GISTIC score from peak to boundary had < 5% likelihood of occurring by random fluctuation. P-values for Figures 2b and 4 were determined by comparing the gene densities of SCNAs and fraction overlap of peak regions respectively to the same quantities calculated from random permutations of the locations of these SCNAs and peak regions. RNAi was performed by inducible and stable expression of shRNA lentiviral vectors and by siRNA transfection. Proliferation in inducible shRNA experiments was measured in triplicate every half-hour on 96-well plates by a real time electric sensing system (ACEA Bioscience) and in stable shRNA expression and siRNA transfection experiments by CellTiterGlo (Promega). Apoptosis was measured by immunoblot against cleaved PARP and FACS analysis of cells stained with antibody to annexin V and propidium iodide. Tumor growth in nude mice was measured by caliper twice weekly. Expression of MYC, MCL1, and BCL2L1 was performed with retroviral vectors in lung epithelial cells immortalized by introduction of SV40 and hTERT49 (link).
Full methods are described in Supplementary Methods.
Publication 2010
Annexin A5 Apoptosis Arm, Upper bcl-X Protein Cells Chromosomes Cloning Vectors Electricity Epithelial Cells Gene Deletion Genes Genotype Immunoblotting Immunoglobulins Lung Malignant Neoplasms MCL1 protein, human Mice, Nude Neoplasms Promega Propidium Iodide Retroviridae RNA, Small Interfering RNA Interference Short Hairpin RNA Simian virus 40 Tissues Transfection
DNA extracted from cancer specimens and normal tissue was labeled and hybridized to the Affymetrix 250K Sty I array to obtain signal intensities and genotype calls. Signal intensities were normalized against data from 1480 normal samples. Copy-number profiles were inferred using GLAD48 (link) and changes of > 0.1 copies in either direction were called SCNAs. The significance of focal SCNAs (covering < 0.5 chromosome arms) was determined using GISTIC18 (link), with modifications to score SCNAs directly proportional to amplitude and to allow summation of non-overlapping deletions affecting the same gene. Peak region boundaries were determined so that the change in the GISTIC score from peak to boundary had < 5% likelihood of occurring by random fluctuation. P-values for Figures 2b and 4 were determined by comparing the gene densities of SCNAs and fraction overlap of peak regions respectively to the same quantities calculated from random permutations of the locations of these SCNAs and peak regions. RNAi was performed by inducible and stable expression of shRNA lentiviral vectors and by siRNA transfection. Proliferation in inducible shRNA experiments was measured in triplicate every half-hour on 96-well plates by a real time electric sensing system (ACEA Bioscience) and in stable shRNA expression and siRNA transfection experiments by CellTiterGlo (Promega). Apoptosis was measured by immunoblot against cleaved PARP and FACS analysis of cells stained with antibody to annexin V and propidium iodide. Tumor growth in nude mice was measured by caliper twice weekly. Expression of MYC, MCL1, and BCL2L1 was performed with retroviral vectors in lung epithelial cells immortalized by introduction of SV40 and hTERT49 (link).
Full methods are described in Supplementary Methods.
Publication 2010
Annexin A5 Apoptosis Arm, Upper bcl-X Protein Cells Chromosomes Cloning Vectors Electricity Epithelial Cells Gene Deletion Genes Genotype Immunoblotting Immunoglobulins Lung Malignant Neoplasms MCL1 protein, human Mice, Nude Neoplasms Promega Propidium Iodide Retroviridae RNA, Small Interfering RNA Interference Short Hairpin RNA Simian virus 40 Tissues Transfection
Isl1 genomic DNA had been previously isolated from a mouse 129/Sv genomic library (Stratagene) as described by Pfaff et al. [25 (link)]. A PacI site had been introduced into an EcoRI site in the exon encoding the second LIM domain of Isl1. A cassette coating IRES Cre SV40 pA and pgk-neomycin was cloned into this PacI site to create a targeting construct with flanking 5' and 3' genomic DNA arms of 5 kb and 2 kb, respectively. ES cells were targeted and screened as described in Pfaff et al.[25 (link)].
Publication 2001
Arm, Upper Deoxyribonuclease EcoRI Embryonic Stem Cells Exons Genome Genomic Library Internal Ribosome Entry Sites Mice, 129 Strain Neomycin Simian virus 40

Protocol full text hidden due to copyright restrictions

Open the protocol to access the free full text link

Publication 2014
antibiotic G 418 Arm, Upper Blastocyst Chimera Cloning Vectors Codon DNA, A-Form Embryonic Stem Cells Females Genotype Germ Line Homologous Recombination Males Mus Oligonucleotide Primers Tail

Most recents protocols related to «Arm, Upper»

Example 3

A 20 year-old overweight male subject with poor blood circulation, excess lactic acid, weak arms, weak joint and muscle mobility, and—is positioned in a 360-degree full body light therapy device. The 360-degree light therapy device is configured as follows: (a) a first type of light emitting diode (LED) emits a wavelength of 650 nm, (b) a second type of LED emits a wavelength of 800 nm, (c) a third type of LED emits a wavelength of about 835 nm, and (d) a fourth type of LED emits a wavelength of about 1000 nm.

The light therapy device has: 11520 first LED types (about 25.6% of the total LEDs), 5760 second LED types (about 12.8% of the total LEDs), 21960 third LED types (about 48.8% of the total LEDs), and 11520 fourth LED types (about 25.6% of the total LEDs). The LEDs emit with a power density of about 80 mW/cm2. The LEDs emit power at about 50 Joules/cm2 in a time period of about 10 minutes. The light therapy device is configured to pulse at a rate of about 5 kHz with an 85% duty cycle.

The subject undergoes a 30-minute session of irradiation once per week 8 straight weeks. After the 8 weeks of treatment, the subject loses 3% of previous body weight, increases weight-lifting ability by about 10% in the arms, and increases mobility by about 5%.

Full text: Click here
Patent 2024
Aftercare Arm, Upper Blood Circulation Body Weight Debility Enzyme Multiplied Immunoassay Technique Joints Lactic Acid Light Males Medical Devices Muscle Tissue Phototherapy Pulse Rate Radiotherapy Range of Motion, Articular Upper Extremity Paresis
Not available on PMC !

Example 1

To create MXene antennas, Ti3C2, Ti2C, Mo2TiC2 MXene films of were first cut into strips, 3 mm in width and 30 mm in length. Two strips were arranged with a 2.5 mm gap between them and attached to polyethylene terephthalate (PET transparency sheet) using a double-sided Scotch tape as an adhesive to form the arms of the dipole structure with an initial total length of 62.5 mm (FIGS. 1(A-C)). As a control, a copper film diploe was made following the same pattern (width and length). A gold-plated SubMiniature version A (SMA) connector was fixed to the PET substrate using conductive epoxy glue. The thicknesses of the all MXene films were about 5 μm and the copper film thickness was about 60 μm.

Four similar Ti3C2 antennas (similar length and width) with different thicknesses were fabricated by spray coating Ti3C2 ink (Ti3C2 flakes colloidal solution in water). To do so, Ti3C2 antenna dipole pattern with arms of 3 mm wide×30 mm length were spray coated on a PET sheet, with four different thicknesses of ˜70 nm, 150 nm, 250 nm and 500 nm. A gold-plated SubMiniature version A (SMA) connector was fixed to the PET substrate using conductive epoxy glue.

Full text: Click here
Patent 2024
Arm, Upper Copper Electric Conductivity Epoxy Resins Figs Gold Polyethylene Terephthalates

Example 94

After testing the gRNAs for both on-target activity and off-target activity, the mutation correction and knock-in strategies will be tested for HDR gene editing.

For the mutation correction approach, the donor DNA template will be provided as a short single-stranded oligonucleotide, a short double-stranded oligonucleotide (PAM sequence intact/PAM sequence mutated), a long single-stranded DNA molecule (PAM sequence intact/PAM sequence mutated) or a long double-stranded DNA molecule (PAM sequence intact/PAM sequence mutated). In addition, the donor DNA template will be delivered by AAV.

For the cDNA knock-in approach, a single-stranded or double-stranded DNA having homologous arms to the 17q21 region may include more than 40 nt of the first exon (the first coding exon) of the G6PC gene, the complete CDS of the G6PC gene and 3′UTR of the G6PC gene, and at least 40 nt of the following intron. The single-stranded or double-stranded DNA having homologous arms to the 17q21 region, which includes more than 80 nt of the first exon of the G6PC gene, the complete CDS of the G6PC gene and 3′UTR of the G6PC gene, and at least 80 nt of the following intron. The single-stranded or double-stranded DNA having homologous arms to the 17q21 region may include more than 100 nt of the first exon of the G6PC gene, the complete CDS of the G6PC gene and 3′UTR of the G6PC gene, and at least 100 nt of the following intron. The single-stranded or double-stranded DNA having homologous arms to the 17q21 region may include more than 150 nt of the first exon of the G6PC gene, the complete CDS of the G6PC gene and 3′UTR of the G6PC gene, and at least 150 nt of the following intron. The single-stranded or double-stranded DNA having homologous arms to the 17q21 region may include more than 300 nt of the first exon of the G6PC gene, the complete CDS of the G6PC gene and 3′UTR of the G6PC gene, and at least 300 nt of the following intron. The single-stranded or double-stranded DNA having homologous arms to the 17q21 region may include more than 400 nt of the first exon of the G6PC gene, the complete CDS of the G6PC gene and 3′UTR of the G6PC gene, and at least 400 nt of the following the first intron. Alternatively, the DNA template will be delivered by AAV.

Next, the efficiency of HDR mediated correction of the common mutation of G6PC R83 and knock-in of cDNA into the 1st exon will be assessed.

Full text: Click here
Patent 2024
3' Untranslated Regions Arm, Upper DNA, Complementary DNA, Double-Stranded Exons Genes Introns Mutation Oligonucleotides Tissue Donors

Example 2

To further test CN2097, we used the Chronic Mild Stress (CMS) model which has been shown to evoke anxiety and lower sucrose consumption (postulated to reflect anhedonia), symptoms associated with MDD. As described in Marshall (2018),44 mice subjected to repeated daily stress for 3 weeks, then received a single injection of CN2097 (10 mg/kg) or vehicle.

The acute effects of CN2097 on anxiety were evaluated by the elevated plus-maze (EPM) and novelty-suppressed feeding (NSF) tests. As shown in FIG. 4 (left panel), CN2097 increased the time spent in open arms in the EPM.

In the NSF test, anxiety-induced hypophagia was assessed by measuring the latency of mice to eat a familiar food in an aversive environment. As shown in FIG. 4 (right panel), the administration of CN2097 1 hour prior to testing significantly shortened the latency period until feeding. These data suggest that CN2097 effectively reverses behavioral alterations induced in the CMS Model.

The CMS model responds to chronic, but not acute, administration of established antidepressant drugs.45 Based on the predictive value of the CMS model,46 the above-described data showing that CN2097 caused a reversal of anhedonic and other behavioral effects within 2 hours (FIGS. 3-4) suggests that it provides rapid ketamine-like antidepressant actions.

Full text: Click here
Patent 2024
Anhedonia Antidepressive Agents Anxiety Arm, Upper CN2097 Elevated Plus Maze Test Figs Food Ketamine Mus Sucrose

Example 8

GuideSeq was performed to test whether end-modifications prevent double stranded DNA from directly ligating into the off-target cut sites of the guide RNA (Tsai et al., Nature Biotechnology. 33″ 187-197 (2015)). SpyCas9 protein and synthetic guide RNA targeting ARHGEF9 locus were used in HEK293 cells. The ARHGEF9 locus was chosen because it has been shown to have multiple off-target sites (Amrani et al., Genome Biology. 19: 214 (2018)). Three different types of DNA donors were used, each one being 34 bp in length and lacking homology arms. The three types were 1) a 5′ phosphorothioate modified DNA donor, 2) a 5′ phosphorothioate and phosphate modified DNA donor, and 3) a 5′ TEG and phosphate DNA donor. Over-all integration of this non-homology based direct ligation is much lower when TEG is used as the end-modification (FIGS. 24A and 24B). This result indicates that end-modifications suppress direct ligation of DNA at the random off-target cut sites in the genome. It was also found that end-modifications suppress integration of double stranded DNA at the top off-target (OT) sites of the guide RNA targeting the ARHGEF9 locus. (FIG. 25).

Full text: Click here
Patent 2024
Arm, Upper DNA, Double-Stranded DNA Fingerprinting Donors Genome HEK293 Cells Ligation Phosphates Proteins Tissue Donors

Top products related to «Arm, Upper»

Sourced in United States, Austria, Japan, Cameroon, Germany, United Kingdom, Canada, Belgium, Israel, Denmark, Australia, New Caledonia, France, Argentina, Sweden, Ireland, India
SAS version 9.4 is a statistical software package. It provides tools for data management, analysis, and reporting. The software is designed to help users extract insights from data and make informed decisions.
Sourced in United States, Austria, Japan, Belgium, United Kingdom, Cameroon, China, Denmark, Canada, Israel, New Caledonia, Germany, Poland, India, France, Ireland, Australia
SAS 9.4 is an integrated software suite for advanced analytics, data management, and business intelligence. It provides a comprehensive platform for data analysis, modeling, and reporting. SAS 9.4 offers a wide range of capabilities, including data manipulation, statistical analysis, predictive modeling, and visual data exploration.
Sourced in Netherlands, United States, China, Japan, United Kingdom
EthoVision XT is a video tracking system that automatically tracks and analyzes the movement and behavior of animals in real-time. It provides an objective and reliable way to measure various parameters, such as distance traveled, velocity, and time spent in different zones of the experimental setup.
Sourced in United States, United Kingdom, Japan, Germany, Belgium, Denmark
The Lunar iDXA is a dual-energy X-ray absorptiometry (DXA) system used for the measurement of bone mineral density and body composition. It provides accurate and precise assessments of bone, lean, and fat mass.
Sourced in United States, United Kingdom, Germany, Canada, Japan, Sweden, Austria, Morocco, Switzerland, Australia, Belgium, Italy, Netherlands, China, France, Denmark, Norway, Hungary, Malaysia, Israel, Finland, Spain
MATLAB is a high-performance programming language and numerical computing environment used for scientific and engineering calculations, data analysis, and visualization. It provides a comprehensive set of tools for solving complex mathematical and computational problems.
Sourced in United States, United Kingdom, Denmark, Austria, Belgium, Spain, Australia, Israel
Stata is a general-purpose statistical software package that provides a comprehensive set of tools for data analysis, management, and visualization. It offers a wide range of statistical methods, including regression analysis, time series analysis, and multilevel modeling, among others. Stata is designed to facilitate the analysis of complex data sets and support the entire research process, from data import to report generation.
Sourced in United States, Austria, United Kingdom, Cameroon, Belgium, Israel, Japan, Australia, France, Germany
SAS v9.4 is a software product developed by SAS Institute. It is a comprehensive data analysis and statistical software suite. The core function of SAS v9.4 is to provide users with tools for data management, analysis, and reporting.
Sourced in Netherlands, United States
EthoVision XT is a video tracking software that can automatically track and analyze the behavior of animals in real-time or from recorded videos. It provides detailed data on various parameters such as distance moved, velocity, and position of the tracked animal within the experimental arena.
Sourced in United States, China, Germany, Japan, United Kingdom, France, Canada, Italy, Australia, Switzerland, Denmark, Spain, Singapore, Belgium, Lithuania, Israel, Sweden, Austria, Moldova, Republic of, Greece, Azerbaijan, Finland
Lipofectamine 3000 is a transfection reagent used for the efficient delivery of nucleic acids, such as plasmid DNA, siRNA, and mRNA, into a variety of mammalian cell types. It facilitates the entry of these molecules into the cells, enabling their expression or silencing.
Sourced in United States, Denmark, United Kingdom, Belgium, Japan, Austria, China
Stata 14 is a comprehensive statistical software package that provides a wide range of data analysis and management tools. It is designed to help users organize, analyze, and visualize data effectively. Stata 14 offers a user-friendly interface, advanced statistical methods, and powerful programming capabilities.

More about "Arm, Upper"

The upper arm, also known as the brachium, is the crucial part of the upper limb between the shoulder and the elbow.
It contains the humerus bone and is surrounded by various muscles and connective tissues.
The brachium plays a vital role in arm movements and functions, allowing for a wide range of motion and the ability to perform tasks requiring strength and dexterity.
Studying the upper arm is essential for understanding limb anatomy, biomechanics, and disorders affecting this region, such as injuries, deformities, and neuromuscular conditions.
Researchers can leverage advanced AI platforms like PubCompare.ai to effortlessly locate and optimize upper arm research protocols from literature, preprints, and patents, enhancing the reproducibility and accuracy of their studies.
Researchers can utilize tools like SAS version 9.4, SAS 9.4, EthoVision XT, Lunar iDXA, MATLAB, Stata, SAS v9.4, Ethovision, and Lipofectamine 3000 to analyze and understand the upper arm in their research.
These tools can provide valuable insights into the structure, function, and biomechanics of the brachium, as well as help identify and address any issues or disorders affecting this important part of the upper limb.
By leveraging the power of AI-driven platforms and state-of-the-art research tools, researchers can unlock new discoveries and advance our understanding of the upper arm, ultimately leading to improved treatments and better outcomes for patients with conditions affecting this crucial region of the body.