The largest database of trusted experimental protocols

Chest

Chest: The upper body region between the neck and abdomen, containing the thoracic cavity and its contents.
It includes the bony thoracic cage and soft tissues.
The chest is an important anatomical area that houses vital organs like the heart and lungs, and is a key focus for medical research and clinical examinations.
Optimal chest research protocols are crucial for reproducible, high-quality studies that advance our understanding of chest-related conditions and inform better patient care.

Most cited protocols related to «Chest»

A schematic overview of the myocyte isolation procedure is shown in Figure 2. An expanded description of the procedure, accompanied with images and videos, and complete materials list is available in the Online Data Supplement, alongside full details of additional methods applied in this study (Appendix A-ix). All animal work was undertaken in accordance with Singapore National Advisory Committee for Laboratory Animal Research guidelines. Relevant national and institutional guidelines and regulations must be consulted before commencement of all animal work.
Buffers and media were prepared as detailed in Appendix D. EDTA, perfusion, and collagenase buffers were apportioned into sterile 10 mL syringes, and sterile 27 G hypodermic needles were attached (Online Figure IA).
C57/BL6J mice aged 8 to 12 weeks were anesthetized, and the chest was opened to expose the heart. Descending aorta was cut, and the heart was immediately flushed by injection of 7 mL EDTA buffer into the right ventricle. Ascending aorta was clamped using Reynolds forceps, and the heart was transferred to a 60-mm dish containing fresh EDTA buffer. Digestion was achieved by sequential injection of 10 mL EDTA buffer, 3 mL perfusion buffer, and 30 to 50 mL collagenase buffer into the left ventricle (LV). Constituent chambers (atria, LV, and right ventricle) were then separated and gently pulled into 1-mm pieces using forceps. Cellular dissociation was completed by gentle trituration, and enzyme activity was inhibited by addition of 5 mL stop buffer.
Cell suspension was passed through a 100-μm filter, and cells underwent 4 sequential rounds of gravity settling, using 3 intermediate calcium reintroduction buffers to gradually restore calcium concentration to physiological levels. The cell pellet in each round was enriched with myocytes and ultimately formed a highly pure myocyte fraction, whereas the supernatant from each round was combined to produce a fraction containing nonmyocyte cardiac populations.
CM yields and percentage of viable rod-shaped cells were quantified using a hemocytometer. Where required, the CMs were resuspended in prewarmed plating media and plated at an applicationdependent density, onto laminin (5 μg/mL) precoated tissue culture plastic or glass coverslips, in a humidified tissue culture incubator (37°C, 5% CO2). After 1 hour, and every 48 hours thereafter, media was changed to fresh, prewarmed culture media.
The cardiac nonmyocyte fraction was collected by centrifugation (300g, 5 minutes), resuspended in fibroblast growth media, and plated on tissue-culture treated plastic, area ≈ 23 cm2 (0.5× 12-well plate) per LV, in a humidified tissue culture incubator. Media was changed after 24 hours and every 48 hours thereafter.
Publication 2016
Animals Animals, Laboratory Ascending Aorta Buffers Calcium Centrifugation Chest Collagenase Culture Media Descending Aorta Dietary Supplements Digestion Edetic Acid enzyme activity Fibroblasts Forceps Gravity Heart Heart Atrium Hyperostosis, Diffuse Idiopathic Skeletal Hypodermic Needles isolation Laminin Left Ventricles Mus Muscle Cells Perfusion physiology Population Group Retreatments Rod Photoreceptors Sterility, Reproductive Syringes Tissues Ventricles, Right
An observer study was performed on a set of 105 randomly selected chest CT scans obtained in a group of consecutive patients presenting to the emergency ward between March 14th 2020 and March 25th 2020 with suspected SARS-CoV-2 infection, in whom RT-PCR was performed. Patient inclusion, CT protocol, and radiation parameters are described in Supplement 2. Medical ethics committee approval was obtained prior to the study. Informed consent was waived, and data collection and storage were carried out in accordance with local guidelines.
Patient characteristics (age, gender, comorbidities), clinical follow up, including a multidisciplinary clinical diagnosis, if applicable, and RT-PCR results were extracted from electronic patient records. These data allowed stratification of all patients into one of the following three groups: patients with at least one positive RT-PCR result for SARS-CoV-2 within five days after CT (PCR+), patients with one or multiple negative RT-PCR results but a clinical diagnosis of COVID-19 according to clinical records (PCR-/Clinical+), and patients with one or multiple negative RT-PCR results and a clinical course not consistent with COVID-19, or consistent with an alternative diagnosis (PCR-/Clinical-).
Publication 2020
Chest COVID 19 CT protocol Diagnosis Dietary Supplements Ethics Committees Gender Patients Radiotherapy Reverse Transcriptase Polymerase Chain Reaction SARS-CoV-2 X-Ray Computed Tomography
We enrolled participants from August 2002 through April 2004; screening took place from August 2002 through September 2007. Participants were followed for events that occurred through December 31, 2009 (Fig. 1 in the Supplementary Appendix, available at NEJM.org).
Eligible participants were between 55 and 74 years of age at the time of randomization, had a history of cigarette smoking of at least 30 pack-years, and, if former smokers, had quit within the previous 15 years. Persons who had previously received a diagnosis of lung cancer, had undergone chest CT within 18 months before enrollment, had hemoptysis, or had an unexplained weight loss of more than 6.8 kg (15 lb) in the preceding year were excluded. A total of 53,454 persons were enrolled; 26,722 were randomly assigned to screening with low-dose CT and 26,732 to screening with chest radiography. Previously published articles describing the NLST10 (link),12 (link) reported an enrollment of 53,456 participants (26,723 in the low-dose CT group and 26,733 in the radiography group). The number of enrolled persons is now reduced by 2 owing to the discovery of the duplicate randomization of 2 participants.
Participants were enrolled at 1 of the 10 LSS or 23 ACRIN centers. Before randomization, each participant provided written informed consent. After the participants underwent randomization, they completed a questionnaire that covered many topics, including demographic characteristics and smoking behavior. The ACRIN centers collected additional data for planned analyses of cost-effectiveness, quality of life, and smoking cessation. Participants at 15 ACRIN centers were also asked to provide serial blood, sputum, and urine specimens. Lung-cancer and other tissue specimens were obtained at both the ACRIN and LSS centers and were used to construct tissue microarrays. All biospecimens are available to researchers through a peer-review process.
Publication 2011
BLOOD Chest Diagnosis Hemoptysis Lung Cancer Microarray Analysis Peer Review Radiography, Thoracic Sputum Tissues Urine X-Rays, Diagnostic
10,000 subjects are planned to be enrolled with 2/3 non-Hispanic White and 1/3 African American, distributed across the full spectrum of disease severity and both genders. The cohort is specifically being recruited for a genome-wide association study (GWAS) analysis and is large enough to provide adequate statistical power to detect genetic variants exerting modest effects on risk. COPD subtypes will be defined based on the presence and severity of parenchymal and airway disease on inspiratory and expiratory high-resolution chest CT scans. The Genome-Wide Association Study (GWAS) was designed to involve four phases. There will be an initial GWAS on a balanced group of 4000 subjects of current or former smoker case and control subjects (2600 White and 1400 African American) in Phase 1. Statistical signals (SNPs in or between genes) identified in Phase I will be confirmed in Phase II with a custom SNP array using the remaining 2000 cases and 2000 controls in the cohort. In Phase III SNPs in genes/regions identified and confirmed in Phases I and II will be investigated with regional fine mapping and tests of associations to identify causal genes. The final group of candidate genes will be replicated in other COPD cohorts as Phase IV. With continued improvements in SNP genotyping technology additional phases (beyond Phase 1) may be analyzed at the genome-wide level.
The COPDGene cohort is also established for longitudinal follow-up with regular contacts made to determine mortality, comorbid disease events and disease status. Renewed funding will be sought to re-assess the subjects with spirometry, clinical evaluation and repeat chest CT to accumulate information about progression of the disease.
Publication 2010
African American Chest Chronic Obstructive Airway Disease Disease Progression Exhaling Genes Genetic Diversity Genome Genome-Wide Association Study Hispanics Inhalation Spirometry X-Ray Computed Tomography
Our institutional review board waived the requirement to obtain written informed consent for this retrospective case series, which evaluated de-identified data and involved no potential risk to patients. To avert any potential breach of confidentiality, no link between the patients and the researchers was made available.
From January 18, 2020, until January 27, 2020, 21 patients admitted to three hospitals in three provinces in China with confirmed 2019-nCoV underwent chest CT. Ten patients were from Zhuhai (Guangdong Province) and were imaged with 1-mm-thick slices with a UCT 760 scanner (United Imaging, Shanghai, China). Nine patients were from Nanchang (Jiangxi Province) and were imaged with 8-mm-thick slices with an Emotion 16 scanner (Siemens Healthineers, Erlangen, Germany). Two patients were from Qingdao (Shandong Province) and were imaged with 5-mm-thick slices, one with a BrightSpeed scanner (GE Medical Systems, Milwaukee, Wis) and one with an Aquilion ONE scanner (Toshiba Medical Systems, Tokyo, Japan). All scans were obtained with the patient in the supine position during end-inspiration without intravenous contrast material. All patients were positive for 2019-nCov at laboratory testing of respiratory secretions obtained by means of bronchoalveolar lavage, endotracheal aspirate, nasopharyngeal swab, or oropharyngeal swab.
Patient selection for this study was consecutive in each of the three institutions, and no exclusion criteria were applied (Table 1). In addition to age and sex, clinical information collected included severity and time course of symptoms as well as travel and exposure history.
Publication 2020
Bronchoalveolar Lavage Chest Contrast Media Emotions Ethics Committees, Research Inhalation Nasopharynx Oropharynxs Patients Radionuclide Imaging Respiratory Rate SARS-CoV-2 Secretions, Bodily

Most recents protocols related to «Chest»

Not available on PMC !

Example 6

Increasing the Rate of Muscle Hypertrophy: Using the standard protocol, described above, subjects are instructed to follow a diet and exercise regimen for 4 weeks, including resistance training three days per week. At the completion of the study, the circumference of subjects' biceps, quadriceps, and chest are measured. The test group shows an average increase in circumference of about 5% relative to the control group.

Full text: Click here
Patent 2024
Chest Chromium Diet Hypertrophy Muscle Tissue Quadriceps Femoris Treatment Protocols

Example 10

30 mg of 6-phenoxyacetacetamidopenicillanic acid 2-dimethylaminoethyl ester hydrochloride, 30 mg of diethylaminoethyl acetylsalicylate hydrochloride, 30 mg of (RS)—N-[1-(1-benzothien-2-yl)ethyl]-N-(2-diethylaminoacetyloxyl)urea hydrochloride (an example of a HPP of zileuton), 15 mg of sildenafil citrate (an example of a compound having structure PDE5-I-1, wherein HA is citric acid), and 30 mg of isopropyl(±)-4-[1-hydroxy-4-[4-(hydroxydiphenylmethyl)-1-piperidinyl]-butyl]-α,α-dimethyl benzeneacetate hydrochloride (an example of a HPP of fexofenadine) in 0.5 ml of 25% ethanol was applied to the skin on the thorax of a subject every morning and evening (twice per day) until the condition was alleviated. Then 30 mg of diethylaminoethyl acetylsalicylate hydrochloride in 0.5 ml of water was applied to the skin on the thorax of a subject every morning and evening (twice per day) to prevent the recurrence of the condition.

Full text: Click here
Patent 2024
Acids Asthma Chest Citric Acid Edan Esters Ethanol fexofenadine Lung Diseases magnesium citrate Recurrence Sildenafil Sildenafil Citrate Skin Urea zileuton
Not available on PMC !

Example 7

20 mg of diethylaminoethyl 5-(2,4-difluorophenyl)salicylate hydrochloride, 3 mg of diethylaminoethyl [R-(E)]-1-[[[1-[3-[2-(7-chloro-2-quinolinyl)ethenyl]phenyl]-3-[2-(1-hydroxy-1-methylethyl)phenyl]propyl]thio]methyl]cyclopropaneacetate hydrochloride, and 5 mg of isopropyl (E)-3-{6-[(E)-1-(4-methylphenyl)-3-pyrrolidine-1-yl-prop-1-enyl]pyridin-2-yl}prop-2-enoate in 0.5 ml of water was applied to the skin on the thorax of a subject every morning and evening (twice per day) until the condition was alleviated. Then 30 mg of diethylaminoethyl acetylsalicylate hydrochloride in 0.5 ml of water was applied to the skin on the thorax of a subject every morning and evening (twice per day) to prevent the recurrence of the condition.

Full text: Click here
Patent 2024
Allergic Conjunctivitis Chest Edan Pruritus pyrrolidine Recurrence Rhinitis, Allergic Rhinorrhea Salicylate Skin

Example 15

30 mg of 6-phenoxyacetacetamidopenicillanic acid 2-diethylaminoethyl ester hydrochloride, 15 mg of diethylaminoethyl 2-(p-isobutylphenyl) propionate hydrochloride, 30 mg of (RS)—N-[1-(1-benzothien-2-yl)ethyl]-N-(2-diethylaminoacetyloxyl)urea hydrochloride, 10 mg of vardenafil HCl (an example of a compound of structure PDE5-I-2, wherein HA is HCl), and 30 mg of isopropyl(±)-4-[1-hydroxy-4-[4-(hydroxydiphenylmethyl)-1-piperidinyl]-butyl]-α,α-dimethyl benzeneacetate hydrochloride in 0.5 ml of 25% ethanol was applied to the skin on the thorax of a subject every morning and evening (twice per day) for until the condition was alleviated. Then 30 mg of diethylaminoethyl acetylsalicylate hydrochloride in 0.5 ml of water was applied to the skin on the thorax of a subject every morning and evening (twice per day) to prevent the recurrence of the condition.

Full text: Click here
Patent 2024
Acids An-2 compound Asthma Chest Edan Esters Ethanol Lung Diseases Propionate Recurrence Skin Urea Vardenafil

Example 2

30 mg of 6-phenoxyacetacetamidopenicillanic acid 2-diethylaminoethyl ester hydrochloride, 50 mg of diethylaminoethyl acetylsalicylate hydrochloride, 30 mg of (RS)—N-[1-(1-benzothien-2-yl)ethyl]-N-(2-diethylaminoacetyloxyl)urea hydrochloride (an example of a HPP of zileuton), 3 mg of (RS)-5-[1-acetyloxy-2-(isopropylamino)ethyl]benzene-1,3-diol diacetate hydrochloride (or metaproterenol triacetate hydrochloride, an example of a HPP of metaproterenol), and 30 mg of isopropyl(±)-4-[1-hydroxy-4-[4-(hydroxydiphenylmethyl)-1-piperidinyl]-butyl]-α,α-dimethyl benzeneacetate hydrochloride (an example of a HPP of fexofenadine) in 0.5 mL of water was applied to the skin on the thorax of a subject every morning and evening (twice per day) until the condition was alleviated. Then 50 mg of diethylaminoethyl acetylsalicylate hydrochloride in 0.5 ml of water was applied to the skin on the thorax of the subject every morning and evening (twice per day) to prevent the recurrence of the condition.

Full text: Click here
Patent 2024
Acids Asthma Chest Edan Esters ethylbenzene fexofenadine Lung Diseases Metaproterenol Recurrence Skin Urea zileuton

Top products related to «Chest»

Sourced in Canada, United States, Japan
The Vevo 2100 is a high-resolution, real-time in vivo imaging system designed for preclinical research. It utilizes advanced ultrasound technology to capture detailed images and data of small animal subjects.
Sourced in Germany, United States, Japan, Netherlands, United Kingdom
The SOMATOM Definition Flash is a computed tomography (CT) scanner developed by Siemens. It is designed to provide high-quality imaging for a wide range of medical applications. The SOMATOM Definition Flash utilizes advanced technology to capture detailed images of the body, enabling medical professionals to make accurate diagnoses and inform treatment decisions.
Sourced in Germany, United States, Japan, Netherlands, United Kingdom, China
The SOMATOM Definition AS is a computed tomography (CT) imaging system manufactured by Siemens. It is designed to provide high-quality medical imaging for diagnostic purposes. The core function of the SOMATOM Definition AS is to generate detailed cross-sectional images of the human body using X-ray technology.
Sourced in United States, China, Japan, Germany, United Kingdom, Canada, France, Italy, Australia, Spain, Switzerland, Netherlands, Belgium, Lithuania, Denmark, Singapore, New Zealand, India, Brazil, Argentina, Sweden, Norway, Austria, Poland, Finland, Israel, Hong Kong, Cameroon, Sao Tome and Principe, Macao, Taiwan, Province of China, Thailand
TRIzol reagent is a monophasic solution of phenol, guanidine isothiocyanate, and other proprietary components designed for the isolation of total RNA, DNA, and proteins from a variety of biological samples. The reagent maintains the integrity of the RNA while disrupting cells and dissolving cell components.
Sourced in United States, Germany, Japan, United Kingdom, Netherlands
The LightSpeed VCT is a computed tomography (CT) imaging system produced by GE Healthcare. It is designed to provide high-quality, high-speed imaging for a variety of medical applications. The LightSpeed VCT features a multi-slice detector array that enables rapid data acquisition and reconstruction, allowing for efficient patient scanning.
Sourced in United States, Germany, Japan, China, United Kingdom
The Discovery CT750 HD is a computed tomography (CT) scanner developed by GE Healthcare. It is designed to provide high-quality medical imaging for a variety of clinical applications. The core function of this product is to generate detailed cross-sectional images of the body using advanced X-ray technology.
Sourced in Germany, United States, Japan
The SOMATOM Force is a high-performance computed tomography (CT) system developed by Siemens. It is designed to deliver fast, precise, and efficient imaging capabilities for a wide range of clinical applications. The SOMATOM Force features advanced technologies that enable high-quality imaging while minimizing radiation exposure.
Sourced in United States, United Kingdom, Germany, Canada, Japan, Sweden, Austria, Morocco, Switzerland, Australia, Belgium, Italy, Netherlands, China, France, Denmark, Norway, Hungary, Malaysia, Israel, Finland, Spain
MATLAB is a high-performance programming language and numerical computing environment used for scientific and engineering calculations, data analysis, and visualization. It provides a comprehensive set of tools for solving complex mathematical and computational problems.
Sourced in Canada, United States, Japan
The Vevo 770 is a high-resolution, real-time, in vivo micro-imaging system designed for small animal research. It employs high-frequency ultrasound technology to produce detailed anatomical and functional images.
Sourced in Germany, United States
The Somatom Sensation 64 is a computed tomography (CT) scanner manufactured by Siemens. It is a 64-slice CT system capable of capturing high-resolution images of the body's internal structures.

More about "Chest"

The chest is a crucial anatomical region that encompasses the thoracic cavity, housing vital organs such as the heart and lungs.
It is the focus of extensive medical research and clinical examinations, with optimal research protocols being essential for reproducible, high-quality studies that advance our understanding of chest-related conditions and inform better patient care.
Synonyms for the chest include thorax, torso, and upper body.
Related terms include the bony thoracic cage, soft tissues, and the respiratory and cardiovascular systems.
Abbreviations commonly used in chest research include CT (computed tomography), MRI (magnetic resonance imaging), and PET (positron emission tomography).
Key subtopics in chest research include cardiovascular health, pulmonary function, thoracic injuries and diseases, and chest imaging techniques.
Cutting-edge technologies such as the Vevo 2100 ultrasound system, SOMATOM Definition Flash CT scanner, and LightSpeed VCT can be used to capture high-quality images and data for chest studies.
The TRIzol reagent is a common tool used in molecular biology experiments to extract and purify RNA, DNA, and proteins from chest tissue samples.
MATLAB, a powerful mathematical computing software, is often utilized in the analysis of chest-related data.
The Vevo 770 ultrasound system and SOMATOM Sensation 64 CT scanner are additional imaging technologies that have been instrumental in advancing chest research, while the SOMATOM Definition AS and SOMATOM Force CT scanners offer enhanced capabilities for chest imaging and analysis.
By leveraging the insights and technologies available, researchers can optimize their chest research protocols, ensuring reproducibility and driving forward our understanding of this vital anatomical region.