The largest database of trusted experimental protocols
> Anatomy > Body Location or Region > Lumbar Region

Lumbar Region

The Lumbar Region is the lower back area of the human body, encompassing the vertebrae, muscles, and other structures between the thoracic and sacral regions.
This area plays a crucial role in supporting the upper body, facilitating movement, and protecting the spinal cord.
Researchers studying conditions and treatments related to the Lumbar Region can utilize the PubCompare.ai platform to easily locate, compare, and optimize research protocols from literature, preprints, and patents.
Experiance the power of this AI-driven tool to advance your Lumbar Region studies and identify the best approaches to improve patient outcomes.

Most cited protocols related to «Lumbar Region»

Postnatal day 30 (P30) TWI mice and their WT littermates (5 for each experimental group processed in 5 different experimental sessions, every TWI with its WT littermate) and one P15 TWI mouse versus its WT littermate were perfused with a fixative solution (4% paraformaldehyde and 0.1%–1%–2.5% glutaraldehyde in phosphate buffer, pH 7.4). Sciatic nerves, spinal cords and gastrocnemius muscles were dissected and post-fixed for 4 hours at room temperature in the same fixative solution.
Spinal cords were dissected in the lumbar region, isolating four 1-mm-thick sections in the lumbar enlargement region and the gastrocnemius muscles were cut in small portions, approximately 1 mm3 in volume. Sciatic nerves were processed without further sectioning.
The selected tissues were further treated for epoxy resin embedding as previously described43 . Briefly, the samples were deeper fixed in 2–2.5% glutaraldehyde in cacodylate buffer (0.1 M, pH 7.4). After rinsing, specimens were post-fixed with osmium tetroxide (1%)-potassium ferricyanide (1%) in cacodylate buffer, rinsed again, en bloc stained with 3% uranyl acetate in ethanol, dehydrated and embedded in epoxy resin, that was baked for 48 h at 60 °C. Thin sections were obtained with an ultramicrotome (UC7, Leica Microsystems, Vienna, Austria) and collected on G300Cu grids (EMS). Finally, sections were examined with a Zeiss LIBRA 120 plus transmission electron microscope equipped with an in-column omega filter.
Full text: Click here
Publication 2016
Buffers Cacodylate Epoxy Resins Ethanol Fixatives Glutaral Hypertrophy Lumbar Region Mice, House Microtomy Muscle, Gastrocnemius Osmium Tetroxide paraform Phosphates potassium ferricyanide Sciatic Nerve Spinal Cord Tissues Transmission Electron Microscopy Ultramicrotomy uranyl acetate
For in situ hybridization analysis, cryostat sections were hybridized using digoxigenin-labeled probes [45 (link)] directed against mouse TrkA or TrkB, or rat TrkC (gift from L. F. Parada). Antibodies used in this study were as follows: rabbit anti-Er81 [14 (link)], rabbit anti-Pea3 [14 (link)], rabbit anti-PV [14 (link)], rabbit anti-eGFP (Molecular Probes, Eugene, Oregon, United States), rabbit anti-Calbindin, rabbit anti-Calretinin (Swant, Bellinzona, Switzerland), rabbit anti-CGRP (Chemicon, Temecula, California, United States), rabbit anti-vGlut1 (Synaptic Systems, Goettingen, Germany), rabbit anti-Brn3a (gift from E. Turner), rabbit anti-TrkA and -p75 (gift from L. F. Reichardt), rabbit anti-Runx3 (Kramer and Arber, unpublished reagent), rabbit anti-Rhodamine (Molecular Probes), mouse anti-neurofilament (American Type Culture Collection, Manassas, Virginia, United States), sheep anti-eGFP (Biogenesis, Poole, United Kingdom), goat anti-LacZ [14 (link)], goat anti-TrkC (gift from L. F. Reichardt), and guinea pig anti-Isl1 [14 (link)]. Terminal deoxynucleotidyl transferase-mediated biotinylated UTP nick end labeling (TUNEL) to detect apoptotic cells in E13.5 DRG on cryostat sections was performed as described by the manufacturer (Roche, Basel, Switzerland). Quantitative analysis of TUNEL+ DRG cells was performed essentially as described [27 (link)]. BrdU pulse-chase experiments and LacZ wholemount stainings were performed as previously described [46 (link)]. For anterograde tracing experiments to visualize projections of sensory neurons, rhodamine-conjugated dextran (Molecular Probes) was injected into single lumbar (L3) DRG at E13.5 or applied to whole lumbar dorsal roots (L3) at postnatal day (P) 5 using glass capillaries. After injection, animals were incubated for 2–3 h (E13.5) or overnight (P5). Cryostat sections were processed for immunohistochemistry as described [14 (link)] using fluorophore-conjugated secondary antibodies (1:1,000, Molecular Probes). Images were collected on an Olympus (Tokyo, Japan) confocal microscope. Images from in situ hybridization experiments were collected with an RT-SPOT camera (Diagnostic Instruments, Sterling Heights, Michigan, United States), and Corel (Eden Prairie, Minnesota, United States) Photo Paint 10.0 was used for digital processing of images.
Full text: Click here
Publication 2005
Anabolism Animals Antibodies Apoptosis Bromodeoxyuridine Calbindins Calretinin Capillaries Cavia Cells Diagnosis Digoxigenin DNA Nucleotidylexotransferase Domestic Sheep Goat Immunohistochemistry In Situ Hybridization In Situ Nick-End Labeling LacZ Genes Lumbar Region Mice, House Microscopy, Confocal Molecular Probes Neurofilaments Neuron, Afferent Pulse Rate Rabbits Rhodamine rhodamine dextran Root, Dorsal Staining transcription factor PEA3 tropomyosin-related kinase-B, human

Protocol full text hidden due to copyright restrictions

Open the protocol to access the free full text link

Publication 2013
Animals Central Nervous System Ethanol Hypersensitivity Injections, Intraperitoneal Intrathecal Injection Lumbar Region Mice, House Needles Nitroglycerin Normal Saline Pharmaceutical Preparations Propylene Glycol Sumatriptan Topiramate
We included 76 patients with a clinical diagnosis of ALS (Table 1) in accordance with modified El Escorial Criteria15 and a confirmed neuropathological diagnosis of ALS, who underwent autopsy in the Center for Neurodegenerative Disease Research (CNDR) at the University of Pennsylvania between 1985 and 2012. Informed written consent was obtained previously from all patients or for autopsy cases from their next of kin. Detailed clinical characteristics (age at onset, age at death, site of onset, disease duration, ALS global disease severity as measured by a functional rating score [ALSFRS-R],16 (link) the Mini Mental Status Examination,17 (link) and gender), were ascertained from an integrated clinical and autopsy database, as described previously,18 and by retrospective chart review of clinical visits within the University of Pennsylvania Health System (Table 1).
The majority of the ALS patients were seen by two neurologists (LE, LM). We excluded all ALS cases in the CNDR Brain Bank (N=35) for which clinical data relating to site of onset or disease duration was incomplete or equivocal. Also excluded were 6 cases, for which ≥ 3/22 CNS regions examined (see below) were unavailable, and 2 cases lacking pTDP-43 pathology, leaving a cohort of N=76 (N=30 females, N=46 males; age range 42-87 years; mean age ± SD: 63.0 ± 10.6 years from a total of 119 autopsy cases (Tables 1-2). For the subjects with missing data, their gender, disease duration, and age of death were compared to the other cases and no differences were found (data not shown). Different ALS syndromes were defined according to clinical onset of disease: cervical lower motor neuron (CLMN) ALS, lumbar lower motor neuron (LLMN) ALS, lumbar upper motor neuron (LUMN) ALS, bulbar lower motor neuron (BLMN) ALS, and bulbar upper motor neuron (BUMN) ALS.19 None of the cases in the cohort had cervical UMN onset of disease (Table 1). Unless otherwise specified, results of clinical testing used in this study were from the visits at initial presentation or disease onset (first occurrence of paresis or bulbar symptoms, e.g., dysarthria, dysphagia) as well as the visit most proximate to death, i.e., occurring within 3 months of death. Of the ALS cases included here, 5 (6.6%) had a clinical history of dementia (ALS-D) (Table 2), and met criteria for FTLD.20 (link)-22 (link)
Publication 2013
Autopsy Brain Diseases Cervix Diseases Deglutition Disorders Dementia Diagnosis Dysarthria Females Frontotemporal Lobar Degeneration Lumbar Region Males Medulla Oblongata Mini Mental State Examination Motor Neurons Neck Neurodegenerative Disorders Neurologists Paresis Patients Syndrome
The procedure and analysis of the CSF followed the Alzheimer's Association Flow Chart for CSF biomarkers.7 Lumbar CSF samples were collected at the three centers and analyzed according to a standardized protocol.7, 20 CSF Aβ42, Aβ40, and Aβ38 were analyzed by Euroimmun (EI) (EUROIMMUN AG, Lübeck, Germany) and Meso Scale Discovery (MSD) (Rockville, MD) immunoassays. CSF Aβ40 and Aβ42 were also analyzed using Quanterix (Quanterix, Lexington, MA) immunoassay. The EI assays were used to measure CSF Aβ (1–42, 1–40, and 1–38) in all three cohorts. In addition, in cohort‐1, all the CSF samples were analyzed with MSD kit (specific for AβN‐42, AβN‐40 and AβN‐38) and 70 CSF samples were analyzed using Quanterix kit (specific for AβN‐42 and AβN‐40).
Publication 2016
Biological Assay Biological Markers Immunoassay Lumbar Region

Most recents protocols related to «Lumbar Region»

Radiographic data consisted of full-length coronal and sagittal radiographs were obtained in free- standing posture with the upper limbs resting on a support, the shoulders at 30° forward flexion, and the elbows slightly flexed [19 (link)]. All of the radiographic parameters were measured with Surgimap Software (version: 2.3.2.1; Spine Software, New York, NY).
All of the radiographic parameters concerned in this current study were shown in the Fig. 1A-B, which included thoracic kyphosis (TK), lumbar lordosis (LL), sagittal vertical axis (SVA), sacral slope (SS), pelvic tilt (PT) and pelvic incidence (PI). All of those radiographic measurements were performed by a dedicated team independent from the operating surgeons.

A Sagittal radiologic parameters: Thoracic Kyphosis (TK) measured from the superior endplate of T4 to the inferior endplate of T12 by Cobb method; Lumbar Lordosis (LL) measured from the superior endplate of L1 to the inferior endplate of S1 by Cobb method. Sagittal vertical axis (SVA) defined as the horizontal offset from the posterosuperior corner of S1 to the plumb line going through the vertebral body of C7. B Pelvic parameters: Sacral slope (SS): the angle between the horizontal line and the sacarl endplate; Pelvic tilt (PT): the angle between the vertical and the line through the midpoint of the sacral endplate to the femoral heads axis; Pelvic Incidence (PI): the angle between the perpendicular to the sacral plate at its midpoint and the line connecting this point to the femoral heads axis

Kyphosis was recorded as positive value ( +), and lordosis as negative value (-). The spinopelvic index (SPI) was calculated by the equation: SPI = SS/PT.
Full text: Click here
Publication 2023
Elbow Epistropheus Femur Heads Kyphosis Lordosis Lumbar Region Pelvis Sacrum Shoulder Surgeons Upper Extremity Vertebral Body Vertebral Column X-Rays, Diagnostic
Thoracolumbar spinal MRI examinations were performed at the Department of Radiology, Carlanderska Hospital using a 1.5 T scanner (Signa, GE Healthcare, Chicago, IL, USA). The MRI protocol included sagittal T1-and T2-weighted sequences (Th1-S1). In the thoracic spine, a field of view of 360 × 360mm2 and slice thickness of 3 mm was used. In the lumbar spine a field of view of 320 × 320mm2 and slice thickness of 3.5 mm was utilized.
The MRI images were classified by a senior radiologist (> 15 years of experience) according to a predetermined standardized protocol. Disc degeneration was classified according to the Pfirrmann classification [23 (link)]. In the thoracic spine, no distinction between Pfirrmann grade 1 and grade 2 was made since the resolution of the images was not considered adequate for reliable differentiation between these grades. Vertebral and endplate changes were classified according to the Modic classification [24 (link)] and a modified Endplate defect score, adapted to our MRI protocol. The Endplate defect score [25 (link)] was modified where Type I-III (representing no degeneration) were pooled (Table 1). Schmorl’s nodes were classified as present or not present and defined as a vertebral endplate irregularity associated with intraspongious disc herniation, irrespective of the size, at either the cranial or caudal endplate, or at both endplates relative to the lumbar disc level. Spondylolisthesis was assessed as either present or not [26 , 27 (link)]. Similarly, vertebral apophyseal injury, defined as any irregularity or signal changes in the apophyseal region, was categorized as either present or not.

Modified endplate score, based on the original endplate defect score [25 (link)]

Modified endplate defect scoreOriginal endplate defect score
1Type I—Normal endplate with no interruption
Type II—Thinning of the endplate, no obvious break
Type III—Focal endplate defect with established disc marrow contact but with maintained endplate contour
2Type IV—Endplate defects < 25% of the endplate area
3Type V—Endplate defects up to 50% of the endplate area
4Type VI—Extensive damaged endplates up to total destruction
Intra-observer and inter-observer reliability measures were carried out on a set of 15 individuals (5 of the climbers and 10 back pain patients not included in the current study) by the senior radiologist and an additional radiologist (5 years of experience). The latter repeated the evaluation after one month, blinded to previous result.
Full text: Click here
Publication 2023
Back Pain Cranium Focal Adhesions Intervertebral Disc Degeneration Intervertebral Disk Displacement Lumbar Region Marrow Patients Physical Examination Radiologist Spinal Injuries Spondylolisthesis Vertebra Vertebrae, Lumbar Vertebral Column X-Rays, Diagnostic
The study design and protocol have been approved by the ethics committees for human research at our institute (IRB number: R2019-227). This study followed a prospective and observational design. The study was performed in accordance with the approved guidelines of the Declaration of Helsinki. From November 2020 to February 2022, 133 healthy volunteers aged ≥ 20 years underwent MRI after providing written informed consent explaining the potential for detection of brain disease. Volunteers were recruited from medical staff and students, and their families by open recruitment. Inclusion criteria for this study were those who had no history of brain injury, brain tumor or cerebrovascular disease on previous brain MRI, or those who had never undergone brain MRI and no neurological symptoms including cognitive function. One volunteer aged 84 years old was excluded from this study because of a history of head surgery due to a head injury over 30 years ago. In addition, three volunteers were incidentally found small unruptured intracranial aneurysms with a maximum diameter of < 2 mm on this MRI. They were included in this study, because small unruptured aneurysms might not affect CSF motion.
Patients’ MRI data was used in an opt-out method, after their personal information was anonymized in a linkable manner. Among 44 patients suspected with NPH, 5 patients diagnosed with secondary NPH [29 (link)] that developed after subarachnoid hemorrhage [3 (link)], intracerebral hemorrhage [1 (link)], and severe meningitis [1 (link)], and 3 patients diagnosed with congenital/developmental etiology NPH [30 (link)] were excluded from this study. Finally, 36 patients diagnosed with iNPH who had radiological findings of disproportionately enlarged subarachnoid space hydrocephalus (DESH) [31 (link)], specifically ventricular dilatation, enlarged Sylvian fissure, and narrow sulci at the high convexity, and triad symptoms of gait disturbance, cognitive impairment, and/or urinary incontinence were included in this study, according to the Japanese guidelines for management of iNPH [32 (link)]. Of them, 18 patients (50%) underwent CSF removal in 30–35 ml via a lumbar tap and were evaluated for changes in their symptoms before, one day and two days after the CSF tap test. In addition, 21 patients (86%) underwent CSF shunt surgery and their symptoms improved by ≥ 1 point on the modified Rankin Scale and/or the Japanese iNPH grading scale [32 (link)].
Full text: Click here
Publication 2023
Aneurysm Brain Brain Diseases Brain Injuries Brain Neoplasms Cerebral Hemorrhage Cognition Craniocerebral Trauma Dilatation Disorders, Cognitive Ethics Committees Head Healthy Volunteers Heart Ventricle Homo sapiens Hydrocephalus Intracranial Aneurysm Japanese Lumbar Region Medical Staff Meningitis Neurologic Symptoms Operative Surgical Procedures Patients Shunt, Cerebrospinal Fluid Student Subarachnoid Hemorrhage Subarachnoid Space Triad resin Urinary Incontinence Voluntary Workers X-Rays, Diagnostic
The mRNA expression profile microarray data were obtained from the GEO dataset: GSE7158 series included 12 OP (low bone density) samples and 14 NC (high bone density) samples; GSE56814 series included 31 pre-treatment samples (15 OP and 16 NC) and 43 prognostic samples, and GSE56815 series included 40 pre-treatment samples (20 OP and 20 NC) and 40 post-treatment samples. For GSE56814 and GSE56815, sample data before treatment were used for difference analysis. As this study involves only a bioinformatics analysis of the GEO data set, no ethical approval was required. The inclusion criteria included age >18 years, osteoporosis fractures grades 1–4 according to OF classification, pathological fractures: osteoporotic fractures, fracture of at least 1 vertebral body, fractures of thoracic or lumbar vertebral body. The exclusion criteria included pathological neoplastic fractures, osteoporosis fractures (OF) grade 5 according to OF classification and AO type B and C fractures.
Full text: Click here
Publication 2023
Bone Density Fracture, Bone Human Body Lumbar Region Microarray Analysis Neoplasms Osteopenia Osteoporotic Fractures Pathological Fracture RNA, Messenger Specimen Handling Spinal Fractures Vertebrae, Lumbar Vertebral Body
MRI images of 604 patients with spinal diseases were collected in routine clinical diagnosis from patients who visited the Department of Spine and Osteopathy Surgery of Guilin People's Hospital between July 2016 and July 2021, the main diseases included lumbar disc herniation (IVD bulges) and Spondylolisthesis. Each spinal MRI image had a resolution of 812 × 662 pixels. To protect the patient's privacy, the patient's MRI image data sets must be desensitized, which removes the patient's name, age, gender, and other privacy-related information. Patients' MRI image datasets were also collected for artificial intelligence training and auxiliary diagnosis only, and were approved by the Guilin People's Hospital Ethics Committee.
Full text: Click here
Publication 2023
Diagnosis Ethics Committees, Clinical Gender Intervertebral Disk Displacement Lumbar Region Operative Surgical Procedures Patients Spinal Diseases Spondylolisthesis Vertebral Column

Top products related to «Lumbar Region»

Sourced in United States, China, United Kingdom, Germany, Australia, Japan, Canada, Italy, France, Switzerland, New Zealand, Brazil, Belgium, India, Spain, Israel, Austria, Poland, Ireland, Sweden, Macao, Netherlands, Denmark, Cameroon, Singapore, Portugal, Argentina, Holy See (Vatican City State), Morocco, Uruguay, Mexico, Thailand, Sao Tome and Principe, Hungary, Panama, Hong Kong, Norway, United Arab Emirates, Czechia, Russian Federation, Chile, Moldova, Republic of, Gabon, Palestine, State of, Saudi Arabia, Senegal
Fetal Bovine Serum (FBS) is a cell culture supplement derived from the blood of bovine fetuses. FBS provides a source of proteins, growth factors, and other components that support the growth and maintenance of various cell types in in vitro cell culture applications.
Sourced in United States, China, Japan, Germany, United Kingdom, Canada, France, Italy, Australia, Spain, Switzerland, Netherlands, Belgium, Lithuania, Denmark, Singapore, New Zealand, India, Brazil, Argentina, Sweden, Norway, Austria, Poland, Finland, Israel, Hong Kong, Cameroon, Sao Tome and Principe, Macao, Taiwan, Province of China, Thailand
TRIzol reagent is a monophasic solution of phenol, guanidine isothiocyanate, and other proprietary components designed for the isolation of total RNA, DNA, and proteins from a variety of biological samples. The reagent maintains the integrity of the RNA while disrupting cells and dissolving cell components.
Sourced in United States, Germany, United Kingdom, China, Canada, France, Japan, Australia, Switzerland, Israel, Italy, Belgium, Austria, Spain, Gabon, Ireland, New Zealand, Sweden, Netherlands, Denmark, Brazil, Macao, India, Singapore, Poland, Argentina, Cameroon, Uruguay, Morocco, Panama, Colombia, Holy See (Vatican City State), Hungary, Norway, Portugal, Mexico, Thailand, Palestine, State of, Finland, Moldova, Republic of, Jamaica, Czechia
Penicillin/streptomycin is a commonly used antibiotic solution for cell culture applications. It contains a combination of penicillin and streptomycin, which are broad-spectrum antibiotics that inhibit the growth of both Gram-positive and Gram-negative bacteria.
Sourced in Germany, United States, United Kingdom, Netherlands, Spain, Japan, Canada, France, China, Australia, Italy, Switzerland, Sweden, Belgium, Denmark, India, Jamaica, Singapore, Poland, Lithuania, Brazil, New Zealand, Austria, Hong Kong, Portugal, Romania, Cameroon, Norway
The RNeasy Mini Kit is a laboratory equipment designed for the purification of total RNA from a variety of sample types, including animal cells, tissues, and other biological materials. The kit utilizes a silica-based membrane technology to selectively bind and isolate RNA molecules, allowing for efficient extraction and recovery of high-quality RNA.
Sourced in Germany, United States, United Kingdom, Japan, France, Denmark, Switzerland, Canada, Australia, Italy, Singapore
The Cryostat is a laboratory instrument designed for cutting thin, frozen tissue samples for microscopic examination. It maintains a low-temperature environment, allowing for the precise sectioning of specimens.
Sourced in United States, Germany, Japan, Spain, China, United Kingdom, France, Italy, Canada
Fast Green is a laboratory staining dye used in various scientific applications. It is a synthetic, water-soluble dye that provides a green coloration. The core function of Fast Green is to stain and visualize specific components or structures within biological samples during microscopy and other analytical procedures.
Sourced in United States, United Kingdom, Germany, Canada, Japan, Sweden, Austria, Morocco, Switzerland, Australia, Belgium, Italy, Netherlands, China, France, Denmark, Norway, Hungary, Malaysia, Israel, Finland, Spain
MATLAB is a high-performance programming language and numerical computing environment used for scientific and engineering calculations, data analysis, and visualization. It provides a comprehensive set of tools for solving complex mathematical and computational problems.
Sourced in United States, China, United Kingdom, Germany, France, Australia, Canada, Japan, Italy, Switzerland, Belgium, Austria, Spain, Israel, New Zealand, Ireland, Denmark, India, Poland, Sweden, Argentina, Netherlands, Brazil, Macao, Singapore, Sao Tome and Principe, Cameroon, Hong Kong, Portugal, Morocco, Hungary, Finland, Puerto Rico, Holy See (Vatican City State), Gabon, Bulgaria, Norway, Jamaica
DMEM (Dulbecco's Modified Eagle's Medium) is a cell culture medium formulated to support the growth and maintenance of a variety of cell types, including mammalian cells. It provides essential nutrients, amino acids, vitamins, and other components necessary for cell proliferation and survival in an in vitro environment.
Sourced in United States, Germany, China, Japan, United Kingdom, Canada, France, Italy, Spain, Australia, Switzerland, Belgium, Denmark, Netherlands, India, Ireland, Lithuania, Singapore, Sweden, Norway, Austria, Brazil, Argentina, Hungary, Sao Tome and Principe, New Zealand, Hong Kong, Cameroon, Philippines
TRIzol is a monophasic solution of phenol and guanidine isothiocyanate that is used for the isolation of total RNA from various biological samples. It is a reagent designed to facilitate the disruption of cells and the subsequent isolation of RNA.
Sourced in United States, Germany, Italy, Canada, United Kingdom, France, Netherlands, Switzerland, Sweden, Belgium, Australia, Japan, China, India, Spain, Denmark, Austria, Norway
The IScript cDNA Synthesis Kit is a reagent kit used for the reverse transcription of RNA into complementary DNA (cDNA). The kit contains all the necessary components to perform this reaction, including a reverse transcriptase enzyme, reaction buffer, and oligo(dT) primers.

More about "Lumbar Region"

The Lumbar Region, also known as the lower back or lumbosacral region, is a crucial area of the human body that encompasses the vertebrae, muscles, and other structures between the thoracic and sacral regions.
This area plays a vital role in supporting the upper body, facilitating movement, and protecting the spinal cord.
Researchers studying conditions and treatments related to the Lumbar Region can utilize the PubCompare.ai platform, an AI-driven tool, to easily locate, compare, and optimize research protocols from literature, preprints, and patents.
Exploring the Lumbar Region: The lumbar spine consists of five vertebrae (L1-L5) and is responsible for a significant portion of the body's overall flexibility and stability.
This region is susceptible to various conditions, including lower back pain, sciatica, disc herniations, and spinal stenosis.
Understanding the anatomy and physiology of the Lumbar Region is crucial for developing effective treatment strategies.
Advancing Lumbar Region Research: Researchers in fields such as orthopedics, physical therapy, and neurology often focus on the Lumbar Region.
They may utilize techniques like FBS (Fetal Bovine Serum) and TRIzol reagent for cell culture and RNA extraction, respectively.
Additionally, tools like the RNeasy Mini Kit, Cryostat, Fast Green, and MATLAB can assist in data analysis and visualization.
The use of DMEM (Dulbecco's Modified Eagle Medium), TRIzol, and the IScript cDNA synthesis kit may also be relevant in Lumbar Region studies.
Optimizing Lumbar Region Research with PubCompare.ai: The PubCompare.ai platform offers researchers the ability to streamline their Lumbar Region studies.
By leveraging the platform's intelligent comparison tools, researchers can easily locate and compare research protocols from literature, preprints, and patents.
This allows them to identify the best approaches, products, and treatments to advance their understanding of the Lumbar Region and improve patient outcomes.
Experiance the power of this innovative tool to take your Lumbar Region research to the next level.