The largest database of trusted experimental protocols
> Anatomy > Body Part > Fingers

Fingers

Fingers are the distal portion of the human hand, consisting of five digits: the thumb, index finger, middle finger, ring finger, and little finger.
They are essential for dexterity, manipulation, and sensory perception.
Fingers enable a wide range of tasks, from delicate movements to powerful gripping.
Their flexibility, sensitivity, and coordination are critical for many activities of daily living and numerous professions.
Understanding the anatomy, function, and disorders of the fingers is crucial for healthcare providers and researchers studying the human hand and its capabilities.

Most cited protocols related to «Fingers»

The construction of KOGs followed the previously outlined strategy based on sets of consistent BeTs [9 (link),15 (link)], but included additional steps that reflected specific features of eukaryotic proteins. Briefly, the procedure was as follows. 1. Detection and masking of widespread, typically repetitive domains, which was performed by using the RPS-BLAST program and the PSSMs for the respective domains from the CDD collection [40 (link)]. These domains, namely, PPR (pfam01535), WD40 (pfam00400), IG (pfam00047), IGc1, Igv, IG_like, RRM (pfam00076), ANK (pfam00023), myosin tail (pfam01576), Fn3 (pfam00041), CA, (IG), ANK, kelch (pfam01344), OAD_kelch, SH3 (pfam00018), intermediate filaments (pfam00038), C2H2 finger (pfam00096), PDZ (pfam00595), POZ (pfam00651), PH (pfam00169), ZnF-C4 (pfam00105), spectrin (pfam00435), Sushi (pfam00084), TPR (pfam00017), BTB, LRR_CC, LY, ARM, SH2, and CH, were detected and masked prior to applying the COG construction procedure. Masking these domains was required to ensure the robust classification of the eukaryotic orthologous clusters with the KOG detection procedure because hits between these common, "promiscuous" domains resulted in spurious lumping of numerous non-orthologous proteins. 2. All-against-all comparison of protein sequences from the analyzed genomes by using the gapped BLAST program [58 (link)], with filtering for low sequence complexity regions performed using the SEG program [59 (link)]. 3. Detection of triangles of mutually consistent, genome-specific best hits (BeTs). 4. Merging triangles with a common side to form crude, preliminary KOGs. 5. Case by case analysis of each candidate KOG. This analysis serves to eliminate the false-positives that are incorporated in the KOGs during the automatic steps and included, primarily, examination of the domain composition of KOG members, which was determined using the RPS-BLAST program and the CDD collection of position-specific scoring matrices (PSSMs) for individual domains [40 (link)]. Generally, proteins were kept in the same KOG when they shared a conserved core domain architecture. However, in cases when KOGs were artificially bridged by multidomain proteins, the latter were split into individual domains (or arrays of domains) and steps (1)-(4) were repeated with these sequences; this results in the assignment of individual domains to KOGs in accordance with their distinct evolutionary affinities. 6. Assignment of proteins containing promiscuous domains. In cases when a sequence assigned to a KOG contained one or more masked promiscuous domains, these domains were restored and became part of the respective KOG. Proteins containing promiscuous domains but not assigned to any KOG were classified in Fuzzy Orthologous Groups (FOGs) named after the respective domains. 7. Examination of large KOGs, which included multiple members from all or several of the compared genomes by using phylogenetic trees, cluster analysis with the BLASTCLUST program , comparison of domain architectures, and visual inspection of alignments; as a result, some of these protein sets were split into two or more smaller ones that were included in the final set of KOGs.
The KOGs were annotated on the basis of the annotations available through GenBank and other public databases, which were critically assessed against the primary literature. For proteins that are currently annotated as "hypothetical" or "unknown", iterative sequence similarity searches with the PSI-BLAST program [58 (link)], the results of the RPS-BLAST searches, additional domain architecture analysis performed by using the SMART system [60 (link)], and comparison to the COG database by using the COGNITOR program (RLT, unpublished results) were employed to identify distant homologs with experimentally characterized functions and/or structures. The known and predicted functions of KOGs were classified into 23 categories (see legend to Fig. 4); these were modified from the functional classification previously employed for prokaryotic COGs [15 (link)] by including several specific eukaryotic categories.
Publication 2003
Amino Acid Sequence Biological Evolution Eukaryota Fingers Genome Intermediate Filaments Myosin ATPase Prokaryotic Cells Protein Domain Proteins Repetitive Region SET protein, human Spectrin Tail
We performed whole-genome sequencing of the primary tumor and matched normal skin samples from 50 patients (with data from 24 of these patients reported previously17 (link)) and exome capture and sequencing for another 150 paired samples of AML tumor and skin (see Table S3 in the Supplementary Appendix for coverage data for the 200 samples).
All 200 patients who were selected for this study were enrolled in a single-institution tissue-banking protocol approved by the human studies committee at Washington University. Written informed consent for whole-genome sequencing was obtained from all study participants.
The samples, which were banked between November 2001 and March 2010, were selected from a set of more than 400 samples to reflect a real-world distribution of subtypes. Sample inventory and quality issues also had to be considered in the selection process, since the samples were analyzed on several different platforms. We identified candidate somatic variants using several algorithms (see the Methods section in the Supplementary Appendix), and all the variants for the 200 samples were verified with the use of hybridization capture–based methods and deep digital sequencing.18 (link) We performed RNA-expression profiling on the Affymetrix U133 Plus 2 platform for 197 samples, RNA sequencing for 179 samples, microRNA (miRNA) sequencing for 194 samples, Illumina Infinium Human Methylation 450 BeadChip profiling for 192 samples, and Affymetrix SNP Array 6.0 for both tumor and normal skin samples from all 200 patients. Data sets were not completed for all samples on all platforms because of assay failures and availability and quality issues for some samples. The complete list of data sets is provided in Table S4 in the Supplementary Appendix. All data sets are available through the Cancer Genome Atlas (TCGA) data portal (https://tcga-data.nci.nih.gov/tcga).
Publication 2013
Biological Assay Crossbreeding Diploid Cell Exome Fingers Genome Homo sapiens Malignant Neoplasms Methylation MIRN194 microRNA, mouse Neoplasms Patients Skin Transcription, Genetic
Study participants spent approximately 24-h period in a whole-room indirect calorimeter (28 (link)), and followed a structured protocol for simultaneous measurements of PA and EE. The protocol included a broad range of pursuits ranging from moderate and vigorous to light and sedentary tasks, including eating meals and snacks and self-care activities. During times (30 to 120 minutes) when no activity was specifically scheduled, the participants were asked to engage in their normal daily routine as much as possible without specific suggestions. They also recorded their activities in a diary with a detailed schedule, reporting any episodes of accidental monitor nonwear intervals and other relevant comments. Sleep was defined as the period of time spent lying on a mattress at night between 9:00 pm and 6:00 am without any significant movement as determined by the floor (force platform) in the room calorimeter. The participants were instructed how to record their activities in a provided diary with a detailed schedule and a timeline. They checked off each scheduled activity and reported any episodes of accidental monitor nonwear intervals and other relevant information (e.g. treadmill speed) or comments. During the day, staff was available for assistance and the dairy was discussed with each participant after finishing the study.
Body weight was measured to the nearest 0.01 kg with a digital scale and height was measured using a wall-mounted stadiometer. The minute-to-minute EE was calculated from the rates of oxygen consumption and carbon dioxide production (33 (link)). Nonwear EE was calculated by summing EE measured by the room calorimeter during time intervals detected as nonwear by each algorithm.
The PA was measured by commercially available Actigraph GT1M accelerometer (ActiGraph, Pensacola, FL), calibrated by the manufacturer placed on the anterior axillary line of the hip on the dominant side of the body. Among commercially available accelerometers, the Actigraph used in the present study provides consistent and high quality data, supported by its feasibility, reliability and validity (9 (link)). The monitor reports counts from the summation of the measured accelerations over a specified epoch (1 ). Actigraph data were collected at a 1-second epoch and summed as counts per minute.
Publication 2011
Acceleration Accidents Actigraphy Axilla Body Weight Carbon dioxide EPOCH protocol Human Body Light Movement Oxygen Consumption Sleep Snacks TimeLine
Four 9 month old male mice (C57Bl/SJL) were used. Animals were anesthetized with choral hydrate (15% aqueous solution, i.p.) and were perfused transcardially with 4% paraformaldehyde and 0.125% glutaraldehyde in phosphate buffer saline (PBS; pH 7.4). The brains were then carefully removed from the skull and postfixed for 6 hours. All procedures were conducted in accordance with the National Institute of Health Guide for the Care and Use of Laboratory Animals and were approved by the Mount Sinai School of Medicine Institutional Animal Care and Uses Committee.
For intracellular injections, brains were coronally sectioned at 200 µm on a Vibratome (Leica, Nussloch, Germany). The sections were then incubated in 4,6-diamidino-2-phenylindole (DAPI; Sigma, St. Louis, MO, USA), a fluorescent nucleic acid stain, for 5 minutes, mounted on nitrocellulose filter paper and immersed in PBS. Using DAPI as a staining guide, individual layer II/III pyramidal neurons of the frontal cortex were loaded with 5% Lucifer Yellow (Molecular Probes, Eugene, OR, USA) in distilled water under a DC current of 3–8 nA for 10 minutes, or until the dye had filled distal processes and no further loading was observed [45] (link), [49] (link). Tissue slices were then mounted and coverslipped in Permafluor. Dendritic segment and spine imaging was performed using a Zeiss 410 confocal laser scanning microscope (Zeiss, Thornwood, NY, USA) using a 488 nm excitation wavelength, using a 1.4 N.A. Plan-Apochromat 100× objective with a working distance of 170 µm and a 5× digital zoom. After gain and offset settings were optimized, segments were digitally imaged at 0.1 µm increments, along the optical axis. The confocal stacks were then deconvolved with AutoDeblur (MediaCybernetics, Bethesda, MD, USA).
Supporting Information is available online (Box S1)
Full text: Click here
Publication 2008
Animals Animals, Laboratory Brain Buffers Cranium DAPI Dendrites Epistropheus Fingers Glutaral Lobe, Frontal lucifer yellow Males Mice, House Microscopy, Confocal Molecular Probes Nitrocellulose Nucleic Acids paraform Phosphates Protoplasm Pyramidal Cells Saline Solution Stains Tissues Vertebral Column Vision
All patients involved in this study fulfilled the ACR/EULAR classification criteria for SSc43 (link). Plasma samples from all patients and healthy individuals were prepared from the whole blood collected into commercially available EDTA-treated tubes. For the cross-sectional analysis, plasma samples were obtained from 92 Caucasian patients with systemic sclerosis (SSc) and 92 age- and sex-matched Caucasian healthy controls. For the longitudinal analysis, plasma samples were obtained prospectively at baseline, and 1, 6, and 12 months thereafter from 30 Caucasian patients with SSc-ILD with active alveolitis without pulmonary arterial hypertension who underwent a routine 6-month (n = 16) or 12-month (n = 14) treatment with i.v. cyclophosphamide (CPA, 500 mg/m2 monthly). Active alveolitis was defined as the presence of areas of ground-glass attenuation on high-resolution computed tomography (HRCT) and reduced levels of diffusing lung capacity for carbon monoxide (DLCO) and/or forced vital capacity (FVC), as described elsewhere44 (link). Other SSc-related clinical features were assessed according to generally accepted definitions and recorded, such as the presence of pulmonary arterial hypertension, renal, cardiac and gastrointestinal involvement, Raynaud's phenomenon, and digital ulcers45 (link). Skin involvement was evaluated using the modified Rodnan skin score (mRSS)46 (link). Disease activity was determined by the European Scleroderma Study Group (ESSG) SSc activity score47 (link). Pulmonary function tests (PFT) were routinely performed using standard methods, in accordance with the ATS recommendations48 (link). The DLCO was measured by a single-breath method using a gas mixture of 0.2% CO and 8% helium, with correction for hemoglobin. Peripheral oxygen saturation (SpO2) was measured by a handheld pulse oximeter (CR-100, Noramedica, Czech Republic). In the longitudinal analysis PFTs were performed at baseline, and 6 and 12 months thereafter, and the results are expressed as a percentage of the normal predicted values based on the patient’s sex, age, and height. The research was confirmed by the local ethics committee at the Institute of Rheumatology in Prague, and each patient signed an informed consent form. All methods were performed in accordance with the relevant guidelines and regulations.
Full text: Click here
Publication 2021
BLOOD Caucasoid Races Cyclophosphamide Edetic Acid Europeans Fingers Forced Vital Capacity Heart Helium Hemoglobin Idiopathic Pulmonary Arterial Hypertension Kidney Monoxide, Carbon Patients Plasma Pulse Rate Raynaud Phenomenon Regional Ethics Committees Saturation of Peripheral Oxygen Sclerosis Sexual Health Skin Systemic Scleroderma Tests, Pulmonary Function X-Ray Computed Tomography

Most recents protocols related to «Fingers»

Not available on PMC !

Example 18

A non-transitory computer readable medium storing computer readable instructions which, when executed, causes a machine to: control the operation of a plurality of illumination sources of a tissue sample wherein each illumination source is configured to emit light having a specified central wavelength; receive data from the light sensor when the tissue sample is illuminated by each of the plurality of illumination sources; calculate structural data related to a characteristic of a structure within the tissue sample based on the data received by the light sensor when the tissue sample is illuminated by each of the illumination sources; and transmit the structural data related to the characteristic of the structure to be received by a smart surgical device, wherein the characteristic of the structure is a surface characteristic or a structure composition.

While several forms have been illustrated and described, it is not the intention of the applicant to restrict or limit the scope of the appended claims to such detail. Numerous modifications, variations, changes, substitutions, combinations, and equivalents to those forms may be implemented and will occur to those skilled in the art without departing from the scope of the present disclosure. Moreover, the structure of each element associated with the described forms can be alternatively described as a means for providing the function performed by the element. Also, where materials are disclosed for certain components, other materials may be used. It is therefore to be understood that the foregoing description and the appended claims are intended to cover all such modifications, combinations, and variations as falling within the scope of the disclosed forms. The appended claims are intended to cover all such modifications, variations, changes, substitutions, modifications, and equivalents.

The foregoing detailed description has set forth various forms of the devices and/or processes via the use of block diagrams, flowcharts, and/or examples. Insofar as such block diagrams, flowcharts, and/or examples contain one or more functions and/or operations, it will be understood by those within the art that each function and/or operation within such block diagrams, flowcharts, and/or examples can be implemented, individually and/or collectively, by a wide range of hardware, software, firmware, or virtually any combination thereof. Those skilled in the art will recognize that some aspects of the forms disclosed herein, in whole or in part, can be equivalently implemented in integrated circuits, as one or more computer programs running on one or more computers (e.g., as one or more programs running on one or more computer systems), as one or more programs running on one or more processors (e.g., as one or more programs running on one or more microprocessors), as firmware, or as virtually any combination thereof, and that designing the circuitry and/or writing the code for the software and or firmware would be well within the skill of one of skill in the art in light of this disclosure. In addition, those skilled in the art will appreciate that the mechanisms of the subject matter described herein are capable of being distributed as one or more program products in a variety of forms, and that an illustrative form of the subject matter described herein applies regardless of the particular type of signal bearing medium used to actually carry out the distribution.

Instructions used to program logic to perform various disclosed aspects can be stored within a memory in the system, such as dynamic random access memory (DRAM), cache, flash memory, or other storage. Furthermore, the instructions can be distributed via a network or by way of other computer readable media. Thus a machine-readable medium may include any mechanism for storing or transmitting information in a form readable by a machine (e.g., a computer), but is not limited to, floppy diskettes, optical disks, compact disc, read-only memory (CD-ROMs), and magneto-optical disks, read-only memory (ROMs), random access memory (RAM), erasable programmable read-only memory (EPROM), electrically erasable programmable read-only memory (EEPROM), magnetic or optical cards, flash memory, or a tangible, machine-readable storage used in the transmission of information over the Internet via electrical, optical, acoustical or other forms of propagated signals (e.g., carrier waves, infrared signals, digital signals, etc.). Accordingly, the non-transitory computer-readable medium includes any type of tangible machine-readable medium suitable for storing or transmitting electronic instructions or information in a form readable by a machine (e.g., a computer).

As used in any aspect herein, the term “control circuit” may refer to, for example, hardwired circuitry, programmable circuitry (e.g., a computer processor comprising one or more individual instruction processing cores, processing unit, processor, microcontroller, microcontroller unit, controller, digital signal processor (DSP), programmable logic device (PLD), programmable logic array (PLA), or field programmable gate array (FPGA)), state machine circuitry, firmware that stores instructions executed by programmable circuitry, and any combination thereof. The control circuit may, collectively or individually, be embodied as circuitry that forms part of a larger system, for example, an integrated circuit (IC), an application-specific integrated circuit (ASIC), a system on-chip (SoC), desktop computers, laptop computers, tablet computers, servers, smart phones, etc. Accordingly, as used herein “control circuit” includes, but is not limited to, electrical circuitry having at least one discrete electrical circuit, electrical circuitry having at least one integrated circuit, electrical circuitry having at least one application specific integrated circuit, electrical circuitry forming a general purpose computing device configured by a computer program (e.g., a general purpose computer configured by a computer program which at least partially carries out processes and/or devices described herein, or a microprocessor configured by a computer program which at least partially carries out processes and/or devices described herein), electrical circuitry forming a memory device (e.g., forms of random access memory), and/or electrical circuitry forming a communications device (e.g., a modem, communications switch, or optical-electrical equipment). Those having skill in the art will recognize that the subject matter described herein may be implemented in an analog or digital fashion or some combination thereof.

As used in any aspect herein, the term “logic” may refer to an app, software, firmware and/or circuitry configured to perform any of the aforementioned operations. Software may be embodied as a software package, code, instructions, instruction sets and/or data recorded on non-transitory computer readable storage medium. Firmware may be embodied as code, instructions or instruction sets and/or data that are hard-coded (e.g., nonvolatile) in memory devices.

As used in any aspect herein, the terms “component,” “system,” “module” and the like can refer to a computer-related entity, either hardware, a combination of hardware and software, software, or software in execution.

As used in any aspect herein, an “algorithm” refers to a self-consistent sequence of steps leading to a desired result, where a “step” refers to a manipulation of physical quantities and/or logic states which may, though need not necessarily, take the form of electrical or magnetic signals capable of being stored, transferred, combined, compared, and otherwise manipulated. It is common usage to refer to these signals as bits, values, elements, symbols, characters, terms, numbers, or the like. These and similar terms may be associated with the appropriate physical quantities and are merely convenient labels applied to these quantities and/or states.

A network may include a packet switched network. The communication devices may be capable of communicating with each other using a selected packet switched network communications protocol. One example communications protocol may include an Ethernet communications protocol which may be capable permitting communication using a Transmission Control Protocol/Internet Protocol (TCP/IP). The Ethernet protocol may comply or be compatible with the Ethernet standard published by the Institute of Electrical and Electronics Engineers (IEEE) titled “IEEE 802.3 Standard”, published in December, 2008 and/or later versions of this standard. Alternatively or additionally, the communication devices may be capable of communicating with each other using an X.25 communications protocol. The X.25 communications protocol may comply or be compatible with a standard promulgated by the International Telecommunication Union-Telecommunication Standardization Sector (ITU-T). Alternatively or additionally, the communication devices may be capable of communicating with each other using a frame relay communications protocol. The frame relay communications protocol may comply or be compatible with a standard promulgated by Consultative Committee for International Telegraph and Telephone (CCITT) and/or the American National Standards Institute (ANSI). Alternatively or additionally, the transceivers may be capable of communicating with each other using an Asynchronous Transfer Mode (ATM) communications protocol. The ATM communications protocol may comply or be compatible with an ATM standard published by the ATM Forum titled “ATM-MPLS Network Interworking 2.0” published August 2001, and/or later versions of this standard. Of course, different and/or after-developed connection-oriented network communication protocols are equally contemplated herein.

Unless specifically stated otherwise as apparent from the foregoing disclosure, it is appreciated that, throughout the foregoing disclosure, discussions using terms such as “processing,” “computing,” “calculating,” “determining,” “displaying,” or the like, refer to the action and processes of a computer system, or similar electronic computing device, that manipulates and transforms data represented as physical (electronic) quantities within the computer system's registers and memories into other data similarly represented as physical quantities within the computer system memories or registers or other such information storage, transmission or display devices.

One or more components may be referred to herein as “configured to,” “configurable to,” “operable/operative to,” “adapted/adaptable,” “able to,” “conformable/conformed to,” etc. Those skilled in the art will recognize that “configured to” can generally encompass active-state components and/or inactive-state components and/or standby-state components, unless context requires otherwise.

The terms “proximal” and “distal” are used herein with reference to a clinician manipulating the handle portion of the surgical instrument. The term “proximal” refers to the portion closest to the clinician and the term “distal” refers to the portion located away from the clinician. It will be further appreciated that, for convenience and clarity, spatial terms such as “vertical”, “horizontal”, “up”, and “down” may be used herein with respect to the drawings. However, surgical instruments are used in many orientations and positions, and these terms are not intended to be limiting and/or absolute.

Those skilled in the art will recognize that, in general, terms used herein, and especially in the appended claims (e.g., bodies of the appended claims) are generally intended as “open” terms (e.g., the term “including” should be interpreted as “including but not limited to,” the term “having” should be interpreted as “having at least,” the term “includes” should be interpreted as “includes but is not limited to,” etc.). It will be further understood by those within the art that if a specific number of an introduced claim recitation is intended, such an intent will be explicitly recited in the claim, and in the absence of such recitation no such intent is present. For example, as an aid to understanding, the following appended claims may contain usage of the introductory phrases “at least one” and “one or more” to introduce claim recitations. However, the use of such phrases should not be construed to imply that the introduction of a claim recitation by the indefinite articles “a” or “an” limits any particular claim containing such introduced claim recitation to claims containing only one such recitation, even when the same claim includes the introductory phrases “one or more” or “at least one” and indefinite articles such as “a” or “an” (e.g., “a” and/or “an” should typically be interpreted to mean “at least one” or “one or more”); the same holds true for the use of definite articles used to introduce claim recitations.

In addition, even if a specific number of an introduced claim recitation is explicitly recited, those skilled in the art will recognize that such recitation should typically be interpreted to mean at least the recited number (e.g., the bare recitation of “two recitations,” without other modifiers, typically means at least two recitations, or two or more recitations). Furthermore, in those instances where a convention analogous to “at least one of A, B, and C, etc.” is used, in general such a construction is intended in the sense one having skill in the art would understand the convention (e.g., “a system having at least one of A, B, and C” would include but not be limited to systems that have A alone, B alone, C alone, A and B together, A and C together, B and C together, and/or A, B, and C together, etc.). In those instances where a convention analogous to “at least one of A, B, or C, etc.” is used, in general such a construction is intended in the sense one having skill in the art would understand the convention (e.g., “a system having at least one of A, B, or C” would include but not be limited to systems that have A alone, B alone, C alone, A and B together, A and C together, B and C together, and/or A, B, and C together, etc.). It will be further understood by those within the art that typically a disjunctive word and/or phrase presenting two or more alternative terms, whether in the description, claims, or drawings, should be understood to contemplate the possibilities of including one of the terms, either of the terms, or both terms unless context dictates otherwise. For example, the phrase “A or B” will be typically understood to include the possibilities of “A” or “B” or “A and B.”

With respect to the appended claims, those skilled in the art will appreciate that recited operations therein may generally be performed in any order. Also, although various operational flow diagrams are presented in a sequence(s), it should be understood that the various operations may be performed in other orders than those which are illustrated, or may be performed concurrently. Examples of such alternate orderings may include overlapping, interleaved, interrupted, reordered, incremental, preparatory, supplemental, simultaneous, reverse, or other variant orderings, unless context dictates otherwise. Furthermore, terms like “responsive to,” “related to,” or other past-tense adjectives are generally not intended to exclude such variants, unless context dictates otherwise.

It is worthy to note that any reference to “one aspect,” “an aspect,” “an exemplification,” “one exemplification,” and the like means that a particular feature, structure, or characteristic described in connection with the aspect is included in at least one aspect. Thus, appearances of the phrases “in one aspect,” “in an aspect,” “in an exemplification,” and “in one exemplification” in various places throughout the specification are not necessarily all referring to the same aspect. Furthermore, the particular features, structures or characteristics may be combined in any suitable manner in one or more aspects.

Any patent application, patent, non-patent publication, or other disclosure material referred to in this specification and/or listed in any Application Data Sheet is incorporated by reference herein, to the extent that the incorporated materials is not inconsistent herewith. As such, and to the extent necessary, the disclosure as explicitly set forth herein supersedes any conflicting material incorporated herein by reference. Any material, or portion thereof, that is said to be incorporated by reference herein, but which conflicts with existing definitions, statements, or other disclosure material set forth herein will only be incorporated to the extent that no conflict arises between that incorporated material and the existing disclosure material.

In summary, numerous benefits have been described which result from employing the concepts described herein. The foregoing description of the one or more forms has been presented for purposes of illustration and description. It is not intended to be exhaustive or limiting to the precise form disclosed. Modifications or variations are possible in light of the above teachings. The one or more forms were chosen and described in order to illustrate principles and practical application to thereby enable one of ordinary skill in the art to utilize the various forms and with various modifications as are suited to the particular use contemplated. It is intended that the claims submitted herewith define the overall scope.

Full text: Click here
Patent 2024
Acoustics Character Conferences DNA Chips Electricity Enzyme Multiplied Immunoassay Technique Fingers Human Body Light Medical Devices Memory Mental Orientation Ocular Refraction Physical Examination Reading Frames Surgical Instruments Teaching Tissues Transmission, Communicable Disease Vision

Example 15

In a 15th example, reference is made to FIGS. 12 and 13. FIG. 12 shows an example of the first measurement signal stream F1 and of the second measurement signal stream F2 in the situation where the subject suffers a temporary disappearance of all control of cerebral origin, which is characteristic of central hypopnoea. This disappearance is characterized by the mouth opening passively because it is no longer held up by the muscles. It is therefore seen in the streams F1 and F2 that between the peaks the signal does not indicate any activity. On the other hand at the moment of the peak there is observed a high amplitude of the movement of the mandible. Toward the end of the peaks there is seen a movement that corresponds to a non-respiratory frequency, which is the consequence of cerebral activation that will then result in a micro-arousal. The digit 1 indicates the period of hypopnoea where a reduction of the flow is clearly visible on the stream F5th from the thermistor. The digits 2 and 3 indicate the disappearance of mandibular movement in the streams F1 and F2 during the period of central hypopnoea. FIG. 13 shows an example of the first measurement signal stream F1 and of the second measurement signal stream F2 in the situation where the subject experiences a prolonged respiratory effort that will terminate in cerebral activation. It is seen that the signal from the accelerometer F1 indicates at the location indicated by H a large movement of the head and of the mandible. Thereafter the stream F2 remains virtually constant whereas in that F1 from the accelerometer the level drops, which shows that there is in any event a movement of the mandible, which is slowly lowered. There then follows a high peak I that is a consequence of a change in the position of the head during the activation that terminates the period of effort. The digit 1 indicates this long period of effort marked by snoring. It is seen, as indicated by the digit 2, that the effort is increasing with time. This effort terminates, as indicated by the digit 3, in cerebral activation that results in movements of the head and the mandible, indicated by the letter I.

The analysis unit holds in its memory models of these various signals that are the result of processing employing artificial intelligence as described hereinbefore. The analysis unit will process these streams using those results to produce a report on the analysis of those results.

It was found that the accelerometer is particularly suitable for measuring movements of the head whereas the gyroscope, which measures rotation movements, was found to be particularly suitable for measuring rotation movements of the mandible. Thus cerebral activation that leads to rotation of the mandible without the head changing position can be detected by the gyroscope. On the other hand, an IMM type movement will be detected by the accelerometer, in particular if the head moves on this occasion. An RMM type movement will be detected by the gyroscope, which is highly sensitive thereto.

Full text: Click here
Patent 2024
ARID1A protein, human Arousal Exhaling Fingers Gene Expression Regulation Head Head Movements Mandible Medical Devices Memory Movement Muscle Tissue Oral Cavity Respiratory Rate Sleep Thumb Vision

Example 1

An embodiment herein provides a computer-controlled marketplace network for facilitating seamless transactions among a plurality of marketplace network participant systems. The marketplace network includes a plurality of service provider systems associated with respective service provider participants and located remotely from one another physically in respective service settings that each includes one or more central servers, data stores, and cloud-based computing components for managing and processing delivery of one or more services in the service settings by the plurality of service provider systems. Each of the plurality of service provider systems are communicatively coupled to a respective merchant server. The marketplace network further includes a plurality of user systems associated with respective user participants located remotely from one another and remotely from the plurality of service provider systems and configured to generate a service request to one of the plurality of service provider systems in the marketplace network.

The marketplace server facilitates marketplace transactions digitally by executing a set of computer-executable tasks for securely processing transactional exchanges among the marketplace network participant systems, wherein the transactional exchanges include at least exchanges of ownership rights for digitally stored data at least in part owned originally by the user participants. The marketplace server includes a marketplace interaction component where the service provider participants can establish their one or more offerings digitally for the transactional exchanges. The one or more offerings are associated with respective transactional values that are predefined across the marketplace network by the respective service provider participants. The marketplace server includes a memory circuit configured to store transactional information associated with each transactional exchange of the transactional exchanges among the participants in the marketplace network. The marketplace server includes a processing circuit in communication with the memory circuit and configured to process a transactional exchange digitally and generate an ownership trail of a transacted offering when a user participant consents for data ownership transfer, exclusively or inclusively for the data at least in part, from the user participant, toward a digital purchase and delivery of the offering, wherein the data at least in part has a value of at least equal to a transactional value of the offering exchanged between the service provider participant and the user participant over the marketplace network.

Full text: Click here
Patent 2024
Fingers Memory Obstetric Delivery TNFSF10 protein, human
Not available on PMC !

Example 5

Sensor arrangement according to one of Examples 1 to 4, wherein the sensor housing has a housing main part having two housing fingers protruding from the housing main part, wherein the measuring space outside the housing is arranged between the two housing fingers, and wherein the first light-measuring path emerges from a first of the housing fingers into the measuring space outside the housing and, after passing through the measuring space outside the housing, enters the second of the housing fingers.

Example 6

Sensor arrangement according to Example 5, wherein the second light-measuring path does not run in one of the housing fingers at any point of its path length.

Example 7

Sensor arrangement according to Example 5 or 6, comprising a reflection face formed on the sensor housing or on a light-conducting structure inserted into the sensor housing, for the mirror reflection or total reflection of the light running along the second light-measuring path, in particular at a point in a region between the two housing fingers.

Full text: Click here
Patent 2024
Face Fingers Light Reflex Thumb Vision

Example 23

We have demonstrated that LXR agonists inhibit in vitro cancer progression phenotypes in breast cancer, pancreatic cancer, and renal cancer. To investigate if LXR agonist treatment inhibits breast cancer primary tumor growth in vivo, mice injected with MDA-468 human breast cancer cells were treated with either a control diet or a diet supplemented with LXR agonist GW3965 2 (FIG. 36).

To determine the effect of orally delivered GW3965 2 on breast cancer tumor growth, 2×106 MDA-468 human breast cancer cells were resuspended in 50 μL PBS and 50 μL matrigel and the cell suspension was injected into both lower memory fat pads of 7-week-old Nod Scid gamma female mice. The mice were assigned to a control diet treatment or a GW3965-supplemented diet treatment (75 mg/kg/day) two days prior to injection of the cancer cells. The GW3965 2 drug compound was formulated in the mouse chow by Research Diets, Inc. Tumor dimensions were measured using digital calipers, and tumor volume was calculated as (small diameter)2×(large diameter)/2.

Treatment with GW3965 resulted in significant reduction in breast cancer tumor size in vivo (FIG. 36).

Full text: Click here
Patent 2024
agonists Breast Carcinoma Breast Neoplasm Cancer of Kidney Cardiac Arrest Cells Diet Disease Progression Drug Compounding Fingers Gamma Rays GW 3965 Malignant Neoplasm of Breast Malignant Neoplasms Mammary Carcinoma, Human matrigel Memory Mice, Inbred NOD Mus Neoplasms Pad, Fat Pancreatic Cancer Phenotype SCID Mice Woman

Top products related to «Fingers»

Sourced in Japan, United States, Germany, Italy, Denmark, United Kingdom, Canada, France, China, Australia, Austria, Portugal, Belgium, Panama, Spain, Switzerland, Sweden, Poland
The BX51 microscope is an optical microscope designed for a variety of laboratory applications. It features a modular design and offers various illumination and observation methods to accommodate different sample types and research needs.
Sourced in United States, United Kingdom, Germany, Canada, Japan, Sweden, Austria, Morocco, Switzerland, Australia, Belgium, Italy, Netherlands, China, France, Denmark, Norway, Hungary, Malaysia, Israel, Finland, Spain
MATLAB is a high-performance programming language and numerical computing environment used for scientific and engineering calculations, data analysis, and visualization. It provides a comprehensive set of tools for solving complex mathematical and computational problems.
Sourced in United States, Germany, Japan, United Kingdom, China, Italy
The C-DiGit Blot Scanner is a compact, digital imaging system designed for Western blot analysis. It captures high-resolution images of chemiluminescent or fluorescent blots. The scanner features a charge-coupled device (CCD) camera and integrated software for image acquisition and analysis.
Sourced in Japan, United States, Germany, China, Macao, United Kingdom
The Digital Camera is a device that captures and records visual images in a digital format. It converts light into electrical signals, which are then processed and stored as digital data. The camera's core function is to enable the user to capture, store, and share visual content.
Sourced in Japan, United States, Germany, Italy, United Kingdom
The Digital Camera is a compact, portable device designed for capturing high-quality digital images. It utilizes an image sensor to convert optical signals into digital data, which can then be stored and processed electronically.
Sourced in United States, Japan, Germany, United Kingdom, China, Hungary, Singapore, Canada, Switzerland
Image-Pro Plus 6.0 is a comprehensive image analysis software package designed for scientific and industrial applications. It provides a wide range of tools for image capture, enhancement, measurement, analysis, and reporting.
Sourced in United States, United Kingdom, Germany, China, Canada, Japan, Italy, France, Belgium, Australia, Uruguay, Switzerland, Israel, India, Spain, Denmark, Morocco, Austria, Brazil, Ireland, Netherlands, Montenegro, Poland
Matrigel is a solubilized basement membrane preparation extracted from the Engelbreth-Holm-Swarm (EHS) mouse sarcoma, a tumor rich in extracellular matrix proteins. It is widely used as a substrate for the in vitro cultivation of cells, particularly those that require a more physiologically relevant microenvironment for growth and differentiation.
Sourced in Japan, United States, Germany, Spain
The DP70 is a digital camera designed for microscopy applications. It features a high-resolution CCD sensor and captures digital images that can be used for documentation, analysis, and sharing. The DP70 is compatible with various Olympus microscopes and provides a direct digital imaging solution for laboratory settings.
Sourced in Japan, United States, Germany, China, France, United Kingdom, Netherlands, Italy
The Eclipse 80i is a microscope designed for laboratory use. It features an infinity-corrected optical system and offers a range of illumination options. The Eclipse 80i is capable of various imaging techniques, including phase contrast and brightfield microscopy.
Sourced in United States, Germany, Japan, United Kingdom, China, Italy, Sao Tome and Principe, France, Macao, Canada, Switzerland, Spain, Australia, Denmark, India, Poland, Israel, Belgium, Sweden, Ireland, Netherlands, Panama, Brazil, Portugal, Czechia, Puerto Rico, Austria, Hong Kong, Singapore
DAPI is a fluorescent dye that binds strongly to adenine-thymine (A-T) rich regions in DNA. It is commonly used as a nuclear counterstain in fluorescence microscopy to visualize and locate cell nuclei.

More about "Fingers"

The human hand is a remarkable and essential part of the body, with the fingers playing a crucial role in dexterity, manipulation, and sensory perception.
The five digits of the hand - the thumb, index finger, middle finger, ring finger, and little finger - are the distal portion of the hand and enable a wide range of tasks, from delicate movements to powerful gripping.
The fingers' flexibility, sensitivity, and coordination are critical for many activities of daily living and numerous professions, including healthcare, research, and various skilled trades.
Understanding the anatomy, function, and disorders of the fingers is essential for healthcare providers and researchers studying the human hand and its capabilities.
Microscopes, such as the Olympus BX51, and imaging software like MATLAB and Image-Pro Plus 6.0, play a key role in visualizing and analyzing the intricate structures of the fingers.
The C-DiGit Blot Scanner and digital cameras like the Olympus DP70 can be used to capture high-quality images of the fingers for further study.
Additionally, materials like Matrigel can be used to create 3D cell culture models for investigating finger function and development.
The Eclipse 80i microscope from Nikon is another valuable tool for researchers studying the fingers, allowing them to examine the delicate tissues and structures in detail.
By leveraging these advanced technologies and techniques, researchers can gain a deeper understanding of the fingers' anatomy, physiology, and potential disorders, ultimately leading to improved healthcare and quality of life for individuals with hand-related conditions.
One common typo that can occur is the use of 'the' instead of 'teh' when referring to the fingers or hand.