Additional variables include sex, age, race/ethnicity (white, black, Hispanic, other, defined by participant), height(centimeters), weight(kilograms), body mass index (BMI), calculated as weight in kilograms divided by height in meters squared (<25, 25–30, and >30), smoking (never, past, current), use of mobility aids (none, cane, walker), systolic blood pressure, self-reports of health (excellent or very good vs good, fair, or poor), hospitalization in the past year (yes/no), and physician-diagnosed medical conditions (cancer, arthritis, diabetes, and heart disease, all yes/no). Measures of self-reported functional status were not collected in all studies and varied in content and form. We created a dichotomous variable reflecting dependence in basic activities of daily living (ADLs) based on report of being unable or needing help from another person to perform any basic activity, including eating, toileting, hygiene, transfer, bathing, and dressing. For individuals independent in ADLs, we created a dichotomous variable reflecting difficulty in instrumental ADLs based on report of difficulty or dependence with shopping, meal preparation, or heavy housework due to a health or physical problem. Participants were then classified into 1 of 3 groups; dependent in ADLs, difficulty with instrumental ADLs, or independent. Physical activity data were collected in 6 studies, but time frames and items varied widely. Two studies used the Physical Activity Scale for the Elderly (PASE).27 (link) We dichotomized the PASEs core at 100.28 (link) We created operational definitions of other covariates that were reasonably consistent across studies. Covariates were identical for height, weight, BMI, and systolic blood pressure. Hospitalization within the prior year was determined largely by self-report, and chronic conditions were by self-report of physician diagnosis, with heart disease encompassing angina, coronary artery disease, heart attack, and heart failure.
Foot
The foot functions as the principal organ of standing and ambulation, and is composed of a complex of bones, muscles, tendons, ligaments, and nerves.
Formost research applications, the foot can be studied using a variety of optimization protocols and AI-powered comparisons to ensure the best approach.
PubCompare.ai revolutionizes foot research by streamlining protocol selection and product identification through intelligent literature reviews.
Leveraging the power of AI, PubCompare.ai helps researchers locae the optimal foot study methods and tools to advance their work.
Most cited protocols related to «Foot»
The second source of data was an independent cohort of newly diagnosed RA patients ('inception' cohort), whose visits were documented in the same manner as described above but starting from their first presentation to the clinic. The referral pattern and detailed follow up of these patients were described elsewhere [9 (link),27 (link)]. Radiographs of the hands and feet were obtained every 1–2 years, and were scored using the Larsen method [28 (link)] by a team of two experienced readers; they were presented to the readers in chronological order. Reassessment of a random subgroup of 40 radiographs of hands and feet revealed good agreement (R = 0.86, 95% confidence interval [CI] 0.81–0.91). All patients in the inception cohort received disease-modifying antirheumatic drugs, such as methotrexate, as soon as the diagnosis was made, with a few exceptions in patients who refused to take such therapy immediately.
The demographic and disease activity characteristics of patients in both cohorts are summarized in Table
Protocol full text hidden due to copyright restrictions
Open the protocol to access the free full text link
Permission for these studies was granted by the US Food and Drug Administration (Investigational Device Exemption; CAUTION: Investigational Device. Limited by Federal Law to Investigational Use Only) and the Partners Healthcare/Massachusetts General Hospital Institutional Review Board. Core elements of the investigational BrainGate system have been described previously6 (link),7 (link).
During each session, participants were seated in a wheelchair with their feet located near or underneath the edge of the table supporting the target placement system. The robotic arm was positioned to the participant’s right (
Most recents protocols related to «Foot»
Example 96
In an embodiment, an exemplary foot balm formulation that may provide a footbalm product may include:
Example 12
In some experiments, larger samples having compositions similar to those described previously (i.e., containing coal powder, high fructose corn syrup, and graphite) but with a top surface area of approximately 1 square foot were prepared. Coal flux mixtures were prepared using a commercial mixer. A square sample container 1 foot on each side was constructed and a large-chamber microwave with rotating coil was obtained for these experiments. Several samples of this size were manufactured successfully using the heating protocols described previously. The container used for large-scale foam production as well as an example large piece of foam are seen in
It will be apparent to those skilled in the art that various modifications and variations can be made in the present disclosure without departing from the scope or spirit of the disclosure. Other embodiments of the disclosure will be apparent to those skilled in the art from consideration of the specification and practice of the disclosure disclosed herein. It is intended that the specification and examples be considered as exemplary only, with a true scope and spirit of the disclosure being indicated by the following claims.
Example 2
In this example also shown as Case 2 in
-
- RHz—radio horizon of a flying aircraft at altitude hA
- RE—radius of the earth (6378.14 km)
- hA—altitude of the aircraft
- Substituting hA=40,000 feet (i.e., 12.2 km), one obtains:
- RHz40k=394 km
Example 1
High-Resolution Imaging Using Microseismic Events on DAS Data.
Using the high-frequency data recorded in DAS array to form high-resolution seismic images, which are used to image hydraulic fractures. The embodiment of this example has several advantages or prior systems, including: (a) Sensors are closer to the sources thus can provide much higher frequency comparing to traditional surface seismic data; (b) microseismic data generally carries frequency around 200 Hz while the surface seismic data is usually below 30 Hz. High-frequency data will improve the spatial-resolution of seismic images; (c) microseismic data have much stronger S-wave amplitude comparing to the surface seismic data, which is dominated by P-wave. S-wave is sensitive to the highly compliant fluids. Thus, the seismic attributes derived from the S-wave seismic images can be used to identify the fluid-filled hydraulic fractures; (d) DAS array forms much larger aperture (generally much greater than 2000 feet) comparing to traditional geophones (usually less than 2000 feet), while having much smaller spatial interval between the sensors. Those properties are ideal for producing high-resolution seismic images.
A velocity model is built using known-sources, such as (perforation shots) and microseismic events. Next microseismic events using geophone or DAS arrays are located. From this a reflection traveltime table between sources/sensors to the image voxels is computed. Next events on the DAS data are identified, provided they are located by geophones. The DAS data is then migrated to form a seismic image. Computations are then performed on the seismic attributes for fracture identification.
It is noted that there is no requirement to provide or address the theory underlying the novel and groundbreaking production rates, performance or other beneficial features and properties that are the subject of, or associated with, embodiments of the present inventions. Nevertheless, various theories are provided in this specification to further advance the art in this important area, and in particular in the important area of hydrocarbon exploration and production. These theories put forth in this specification, and unless expressly stated otherwise, in no way limit, restrict or narrow the scope of protection to be afforded the claimed inventions. These theories many not be required or practiced to utilize the present inventions. It is further understood that the present inventions may lead to new, and heretofore unknown theories to explain the conductivities, fractures, drainages, resource production, and function-features of embodiments of the methods, articles, materials, devices and system of the present inventions; and such later developed theories shall not limit the scope of protection afforded the present inventions.
The various embodiments of restimulation operations set forth in this specification may be used for various oil field operations, other mineral and resource recovery fields, as well as other activities and in other fields. Additionally, these embodiments, for example, may be used with: oil field systems, operations or activities that may be developed in the future; and with existing oil field systems, operations or activities which may be modified, in-part, based on the teachings of this specification. Further, the various embodiments set forth in this specification may be used with each other in different and various combinations. Thus, for example, the configurations provided in the various embodiments of this specification may be used with each other; and the scope of protection afforded the present inventions should not be limited to a particular embodiment, configuration or arrangement that is set forth in a particular embodiment, example, or in an embodiment in a particular Figure.
The invention may be embodied in other forms than those specifically disclosed herein without departing from its spirit or essential characteristics. The described embodiments are to be considered in all respects only as illustrative and not restrictive.
Example 1
The present invention may be installed in an industrial workroom to allow users to find the location of metal parts, parts containers, and work orders, which accompany each part located in the workroom. Metal parts to track vary in size from a few inches to a few feet with smaller parts assigned in plastic bins. A work order accompanies each part or container.
In the warehouse, there may be 30 work zones to cover with each zone roughly 12 feet×12 feet in dimension. The configuration of desks or workspaces within each zone is not set as the furniture or workbenches may be set up differently depending on the project being worked on at the time.
Each asset may be tagged by an RFID UHF 18000-6C Gen2 tag specifically designed for the specific end-user. As configured and described herein, the present invention provides the user with location information of any asset within a zone in real time. The present invention may store the data information in the cloud using cloud services or on premise using a database server.
The present invention provides alerts to the customer via text or e-mail based on the customer's settings. The antennas may be located on the ceiling or on a desk. The readers may be powered using POE 24V switches or a power supply.
Top products related to «Foot»
More about "Foot"
It functions as the principal organ of standing and ambulation, composed of a complex of bones, muscles, tendons, ligaments, and nerves.
Foot research often utilizes optimization protocols and AI-powered comparisons to identify the best approaches.
PubCompare.ai revolutionizes foot research by streamlining protocol selection and product identification through intelligent literature reviews, leveraging the power of AI to help researchers locate optimal foot study methods and tools.
Foot research may involve a variety of techniques and technologies, such as MATLAB for data analysis, Visual3D for biomechanical modeling, VideoFreeze for gait analysis, and Von Frey filaments for sensory testing.
Researchers may also utilize the DNeasy Blood and Tissue Kit for genetic studies, Ingenia for magnetic resonance imaging, Stadiometer for height measurements, TRIzol reagent for RNA extraction, and SphygmoCor for vascular assessments.
The BC-418 device can be used for body composition analysis.
By incorporating these various tools and methods, researchers can advance our understanding of the foot and its functions, leading to improved clinical interventions and better outcomes for patients.
Typo: reserach