The largest database of trusted experimental protocols
> Anatomy > Body Part > Trachea

Trachea

The trachea is a cylindrical, cartilaginous and membranous tube that connects the larynx to the lungs, allowing for the passage of air during respiration.
It is located in the anterior part of the neck and chest, extending from the larynx to the carina where it divides into the right and left main bronchi.
The trachea is composed of C-shaped cartilaginous rings that provide structural support and prevent collapse of the airway.
The trachea plays a crucial role in the respiratory system, facilitating the movement of air to and from the lungs.
Disorders affecting the trachea can include tracheal stenosis, tracheomalatia, and tracheal tumors, which can impair breathing and require medical intervention.
Reserach on the trachea and its functions is vital for understanding respiratory physiology and developing effective treatments for related conditons.

Most cited protocols related to «Trachea»

Thirty-four neuroblastoma cell lines were grown to subconfluency according to standard culture conditions. RNA was isolated using the RNeasy Midi Kit (Qiagen) according to the manufacturer's instructions. Nine RNA samples from pooled normal human tissues (heart, brain, fetal brain, lung, trachea, kidney, mammary gland, small intestine and uterus) were obtained from Clontech. Blood and fibroblast biopsies were obtained from different normal healthy individuals. Thirteen leukocyte samples were isolated from 5 ml fresh blood using Qiagen's erythrocyte lysis buffer. Fibroblast cells from 20 upper-arm skin biopsies were cultured for a short time (3-4 passages) and harvested at subconfluency as described [22 (link)]. Bone marrow samples were obtained from nine patients with no hematological malignancy. Total RNA of leukocyte, fibroblast and bone marrow samples was extracted using Trizol (Invitrogen), according to the manufacturer's instructions.
Publication 2002
Arm, Upper Biopsy BLOOD Bone Marrow Brain Buffers Cell Lines Erythrocytes Fetus Fibroblasts Heart Hematologic Neoplasms Homo sapiens Intestines, Small Kidney Leukocytes Lung Mammary Gland Neuroblastoma Patients Skin Tissues Trachea trizol Uterus
The mortality data were derived from the Inserm-CépiDc database for mainland France for the period 1997–2001. Overall there were 2,650,390 deaths. The commune of residence, which is systematically included in the death record, was used as the spatial location.
The underlying causes of death were analysed and classified using the 17 categories aggregated by Eurostat. An additional category, 'avoidable' causes linked to risk behaviours targeted by primary prevention [41 (link)], was defined for 'premature' deaths occurring before age 65 years only. This category consisted in causes of death related to smoking and alcohol consumption (lung, trachea and bronchus cancers (ICD10 Code: C32–C34), aerodigestive tract cancers (C00–C14), oesophagus cancer (C15), alcohol abuse (F10), chronic liver disease (K70, K73–K74)), drug dependence (F11), AIDS (B20–B24), transport accidents (V01–V99), suicides (X60–X84) and homicides (X85–Y09).
Full text: Click here
Publication 2009
Abuse, Alcohol Accidents Acquired Immunodeficiency Syndrome Bronchogenic Carcinoma Disease, Chronic Drug Dependence Esophageal Cancer Liver Liver Diseases Lung Malignant Neoplasms Primary Prevention Trachea

Protocol full text hidden due to copyright restrictions

Open the protocol to access the free full text link

Publication 2014
Accidental Injuries Anemia, Hemolytic Anorexia Nervosa Asbestosis Asphyxia Catabolism Chronic Kidney Diseases Diarrhea Disabled Persons Foreign Bodies Genetic Heterogeneity Glomerulonephritis Infant, Newborn Lung Mesothelioma Mothers Paratyphoid Fever pathogenesis Population Group Respiratory Tract Infections Silicosis Trachea Typhoid Fever
Lungs removed from the chest cavity were fixed by injection of 4% buffered paraformaldehyde into the tracheal cannula at a pressure of 20 cm H2O and immersed in paraformaldehyde for 24 h. Lobes were sectioned sagitally, embedded in paraffin, cut into 5 μm sections, and stained with H&E for histological analysis. Additional sections were stained with alcian blue/PAS to identify mucus-containing cells. The severity of peribronchial inflammation was graded semiquantitatively for the following features: 0, normal; 1, few cells; 2, a ring of inflammatory cells 1 cell layer deep; 3, a ring of inflammatory cells 2–4 cells deep; 4, a ring of inflammatory cells of >4 cells deep. The numerical scores for the abundance of PAS-positive mucus-containing cell in each airway were determined as follows: 0, <0.5% PAS-positive cells; 1, 5–25%; 2, 25–50%; 3, 50–75%; 4, >75% (28 (link)).
Publication 2003
Alcian Blue Cannula Cells Goblet Cells Inflammation Lung Paraffin Embedding paraform Pressure Thoracic Cavity Trachea
The Difficult Airway Society commissioned a working group to update the guidelines in April 2012. An initial literature search was conducted for the period January 2002 to June 2012 using databases (Medline, PubMed, Embase, and Ovid) and a search engine (Google Scholar). The websites of the American Society of Anesthesiologists (http://www.asahq.org), Australian and New Zealand College of Anaesthetists (http://www.anzca.edu.au), European Society of Anesthesiologists' (http://www.esahq.org/euroanaesthesia), Canadian Anesthesiologists' Society (http://www.cas.ca), and the Scandinavian Society of Anesthesiology and Intensive Care Medicine (http://ssai.info/guidelines/) were also searched for airway guidelines. English language articles and abstract publications were identified using keywords and filters. The search terms were as follows: ‘Aintree intubating catheter’, ‘Airtraq’, ‘airway device’, ‘airway emergency’, ‘airway management’, ‘Ambu aScope’, ‘backward upward rightward pressure’, ‘Bonfils’, ‘Bullard’, ‘bronchoscopy’, ‘BURP manoeuvre’, ‘can't intubate can't ventilate’, ‘can't intubate can't oxygenate’, ‘C-Mac’, ‘Combitube’, ‘cricoid pressure’, ‘cricothyroidotomy’, ‘cricothyrotomy’, ‘C trach’, ‘difficult airway’, ‘difficult intubation’, ‘difficult laryngoscopy’, ‘difficult mask ventilation’, ‘difficult ventilation’, ‘endotracheal intubation’, ‘esophageal intubation’, ‘Eschmann stylet’, ‘failed intubation’, ‘Fastrach’, ‘fiber-optic scope’, ‘fibreoptic intubation’, ‘fiberoptic scope’, ‘fibreoptic stylet’, ‘fibrescope’ ‘Frova catheter', ‘Glidescope’, ‘gum elastic bougie’, ‘hypoxia’, ‘i-gel’, ‘illuminating stylet’, ‘jet ventilation catheter’, ‘laryngeal mask’, ‘laryngeal mask airway Supreme’, ‘laryngoscopy’, ‘lighted stylet’, ‘light wand’, ‘LMA Supreme’, ‘Manujet’, ‘McCoy’, ‘McGrath’, ‘nasotracheal intubation’, ‘obesity’, ‘oesophageal detector device’, ‘oesophageal intubation’, ‘Pentax airway scope’, ‘Pentax AWS’, ‘ProSeal LMA′, ‘Quicktrach’, ‘ramping’, ‘rapid sequence induction’, ‘Ravussin cannula’, ‘Sanders injector’, ‘Shikani stylet’, ‘sugammadex’, ‘supraglottic airway’, ‘suxamethonium’, ‘tracheal introducer’, ‘tracheal intubation’, ‘Trachview’, ‘Tru view’, ‘tube introducer’, ‘Venner APA’, ‘videolaryngoscope’, and ‘videolaryngoscopy’.
The initial search retrieved 16 590 abstracts. The searches (using the same terms) were repeated every 6 months. In total, 23 039 abstracts were retrieved and assessed for relevance by the working group; 971 full-text articles were reviewed. Additional articles were retrieved by cross-referencing the data and hand-searching. Each of the relevant articles was reviewed by at least two members of the working group. In areas where the evidence was insufficient to recommend particular techniques, expert opinion was sought and reviewed.8 (link) This was most notably the situation when reviewing rescue techniques for the ‘can't intubate can't oxygenate’ (CICO) situation.
Opinions of the DAS membership were sought throughout the process. Presentations were given at the 2013 and 2014 DAS Annual Scientific meetings, updates were posted on the DAS website, and members were invited to complete an online survey about which areas of the existing guidelines needed updating. Following the methodology used for the extubation guidelines,5 (link) a draft version of the guidelines was circulated to selected members of DAS and acknowledged international experts for comment. All correspondence was reviewed by the working group.
Publication 2015
Airway Management Anesthesiologist Anesthetist Bronchoscopy Cannula Catheters Dyspnea Emergencies Eructation Esophagus Europeans Frova Hypoxia Intensive Care Intubation Intubation, Intratracheal Laryngoscopy Light Medical Devices Obesity Pharmaceutical Preparations Pressure Rapid Sequence Induction Scandinavians Succinylcholine Sugammadex Trachea Tracheal Extubation

Most recents protocols related to «Trachea»

Not available on PMC !

Example 17

Mice imaging was approved by the Institutional Animal Care and Use Committee (IACUC) of the Children's Hospital of Los Angeles (permit number: 38616) and of the University of Southern California (permit number: 20685). Experimental research on vertebrates complied with institutional, national and international ethical guidelines. Animals were kept on a 13:11 hours light:dark cycle. Animals were breathing double filtered air, temperature in the room was kept at 68-73 F, and cage bedding was changed weekly. All these factors contributed to minimize intra- and inter-experiment variability. Adult 8 weeks old C57Bl mice were euthanized with euthasol. Tracheas were quickly harvested from the mouse, washed in PBS, and cut longitudinally alongside the muscolaris mucosae in order to expose the lumen. A 3 mm×3 mm piece of the trachea was excised and arranged onto a microscope slide for imaging.

Full text: Click here
Patent 2024
Adult Animals Institutional Animal Care and Use Committees Mice, Inbred C57BL Mice, Laboratory Microscopy Mucous Membrane Trachea Vertebrates

Example 4

The levels of the T cell exhaustion markers were assessed on TRAC−/β2M−/CD70−/anti-CD70 CAR+ and TRAC−/β2M−/CD70−/Reg1−/anti-CD70 CAR+ cells. CD4+ and CD8+ T cells were assessed for PD-1 expression (FIGS. 3A and 3B) and TIM3 expression (FIGS. 3C and 3D) by flow cytometry at Day 13 (FIGS. 3A and 3C) and Day 26 (FIGS. 3B and 3D) post HDR.

The data demonstrate that Reg1 KO (using Z10 guide as an example) reduces exhaustion marker expression in CAR T cells at all time points measured. The data demonstrate that knocking out Reg1 could reduce the potential exhaustion of CD8+ and CD4+ gene edited populations of CAR+ T cells leading to better therapeutics.

Full text: Click here
Patent 2024
CD8-Positive T-Lymphocytes Cells Figs Flow Cytometry Genes HAVCR2 protein, human Population Group T-Cell Exhaustion T-Lymphocyte Therapeutics Trachea

Protocol full text hidden due to copyright restrictions

Open the protocol to access the free full text link

Publication 2023
Agar Anesthesia Anesthetics Animals Bone Screws Brain Cerebrospinal Fluid Cortex, Cerebral Craniotomy Cranium Dehydration Dura Mater Eye Movements Ferrets Glucose Isoflurane Ketamine Lactated Ringer's Solution Operative Surgical Procedures Oxide, Nitrous Oxygen Pentobarbital Sodium physiology Punctures Rate, Heart Reading Frames Respiratory Rate Rocuronium Bromide Saline Solution Saturation of Peripheral Oxygen Scalp Temporal Muscle Tissues Trachea Tracheostomy Visual Cortex Xylazine

Protocol full text hidden due to copyright restrictions

Open the protocol to access the free full text link

Publication 2023
BLOOD Brain Descending Aorta Drainage Fluorescence Freezing Gravity Heart Ketamine Kidney Liver Lung Microscopy Mus Nitrogen Oropharynxs Plasma Retention (Psychology) Reverse Transcriptase Polymerase Chain Reaction Spleen Sucrose Tissues Trachea Xylazine

Protocol full text hidden due to copyright restrictions

Open the protocol to access the free full text link

Publication 2023
Animals Eosin Lung Microscopy Paraffin Tissues Trachea

Top products related to «Trachea»

Sourced in Canada
The FlexiVent is a precision lung function testing system developed by SCIREQ. It is designed to measure respiratory mechanics in small laboratory animals, providing researchers with detailed information about lung function. The FlexiVent utilizes forced oscillation techniques to assess parameters such as airway resistance, tissue elastance, and lung volumes. This advanced equipment allows for accurate and reproducible measurements, enabling researchers to gain valuable insights into respiratory physiology and disease models.
Sourced in United States, China, United Kingdom, Germany, Australia, Japan, Canada, Italy, France, Switzerland, New Zealand, Brazil, Belgium, India, Spain, Israel, Austria, Poland, Ireland, Sweden, Macao, Netherlands, Denmark, Cameroon, Singapore, Portugal, Argentina, Holy See (Vatican City State), Morocco, Uruguay, Mexico, Thailand, Sao Tome and Principe, Hungary, Panama, Hong Kong, Norway, United Arab Emirates, Czechia, Russian Federation, Chile, Moldova, Republic of, Gabon, Palestine, State of, Saudi Arabia, Senegal
Fetal Bovine Serum (FBS) is a cell culture supplement derived from the blood of bovine fetuses. FBS provides a source of proteins, growth factors, and other components that support the growth and maintenance of various cell types in in vitro cell culture applications.
Sourced in United States, China, Japan, Germany, United Kingdom, Canada, France, Italy, Australia, Spain, Switzerland, Netherlands, Belgium, Lithuania, Denmark, Singapore, New Zealand, India, Brazil, Argentina, Sweden, Norway, Austria, Poland, Finland, Israel, Hong Kong, Cameroon, Sao Tome and Principe, Macao, Taiwan, Province of China, Thailand
TRIzol reagent is a monophasic solution of phenol, guanidine isothiocyanate, and other proprietary components designed for the isolation of total RNA, DNA, and proteins from a variety of biological samples. The reagent maintains the integrity of the RNA while disrupting cells and dissolving cell components.
Sourced in Canada, Macao, United States
The FlexiVent system is a precision lung function measurement device. It is designed to assess the mechanical properties of the respiratory system in small laboratory animals. The FlexiVent system uses the forced oscillation technique to provide detailed measurements of lung function parameters.
Sourced in United States, China, United Kingdom, Germany, France, Australia, Canada, Japan, Italy, Switzerland, Belgium, Austria, Spain, Israel, New Zealand, Ireland, Denmark, India, Poland, Sweden, Argentina, Netherlands, Brazil, Macao, Singapore, Sao Tome and Principe, Cameroon, Hong Kong, Portugal, Morocco, Hungary, Finland, Puerto Rico, Holy See (Vatican City State), Gabon, Bulgaria, Norway, Jamaica
DMEM (Dulbecco's Modified Eagle's Medium) is a cell culture medium formulated to support the growth and maintenance of a variety of cell types, including mammalian cells. It provides essential nutrients, amino acids, vitamins, and other components necessary for cell proliferation and survival in an in vitro environment.
Sourced in United States, Germany, Switzerland, United Kingdom, Italy, Japan, Macao, Canada, Sao Tome and Principe, China, France, Australia, Spain, Belgium, Netherlands, Israel, Sweden, India
DNase I is a laboratory enzyme that functions to degrade DNA molecules. It catalyzes the hydrolytic cleavage of phosphodiester linkages in the DNA backbone, effectively breaking down DNA strands.
Sourced in Germany, United States, United Kingdom, Netherlands, Spain, Japan, Canada, France, China, Australia, Italy, Switzerland, Sweden, Belgium, Denmark, India, Jamaica, Singapore, Poland, Lithuania, Brazil, New Zealand, Austria, Hong Kong, Portugal, Romania, Cameroon, Norway
The RNeasy Mini Kit is a laboratory equipment designed for the purification of total RNA from a variety of sample types, including animal cells, tissues, and other biological materials. The kit utilizes a silica-based membrane technology to selectively bind and isolate RNA molecules, allowing for efficient extraction and recovery of high-quality RNA.
Sourced in United States, Germany, United Kingdom, China, Canada, France, Japan, Australia, Switzerland, Israel, Italy, Belgium, Austria, Spain, Gabon, Ireland, New Zealand, Sweden, Netherlands, Denmark, Brazil, Macao, India, Singapore, Poland, Argentina, Cameroon, Uruguay, Morocco, Panama, Colombia, Holy See (Vatican City State), Hungary, Norway, Portugal, Mexico, Thailand, Palestine, State of, Finland, Moldova, Republic of, Jamaica, Czechia
Penicillin/streptomycin is a commonly used antibiotic solution for cell culture applications. It contains a combination of penicillin and streptomycin, which are broad-spectrum antibiotics that inhibit the growth of both Gram-positive and Gram-negative bacteria.
Sourced in United States, Germany, Sao Tome and Principe, Canada, United Kingdom, China, Macao, Japan, Brazil, France
Methacholine is a laboratory reagent used in various research and diagnostic applications. It functions as a cholinergic agonist, acting on muscarinic acetylcholine receptors. The core function of methacholine is to induce a physiological response, typically used in assessing airway responsiveness.
Sourced in Germany, United States, United Kingdom, France, Spain, Japan, China, Netherlands, Italy, Australia, Canada, Switzerland, Belgium
The QIAamp Viral RNA Mini Kit is a laboratory equipment designed for the extraction and purification of viral RNA from various sample types. It utilizes a silica-based membrane technology to efficiently capture and isolate viral RNA, which can then be used for downstream applications such as RT-PCR analysis.

More about "Trachea"

The trachea, also known as the windpipe, is a crucial component of the respiratory system.
This cylindrical, cartilaginous, and membranous tube connects the larynx to the lungs, allowing for the passage of air during respiration.
Located in the anterior part of the neck and chest, the trachea extends from the larynx to the carina, where it divides into the right and left main bronchi.
The trachea's structure is composed of C-shaped cartilaginous rings that provide structural support and prevent the airway from collapsing.
This design plays a crucial role in facilitating the movement of air to and from the lungs, ensuring efficient respiratory function.
Disorders affecting the trachea, such as tracheal stenosis, tracheomalacia, and tracheal tumors, can impair breathing and require medical intervention.
Understanding the trachea's anatomy and physiology is vital for developing effective treatments for these conditions.
In research, tools like the FlexiVent system, FBS, TRIzol reagent, DMEM, DNase I, RNeasy Mini Kit, Penicillin/streptomycin, and Methacholine are often utilized to study the trachea and its functions.
These tools assist researchers in optimizing their experiments, enhancing reproducibility, and improving the accuracy of their findings.
PubCompare.ai, an AI-driven platform, can help researchers navigate the wealth of information on the trachea by providing efficient comparisons of protocols from literature, pre-prints, and patents.
This innovative tool empowers researchers to identify the most effective products and procedures, advancing our understanding of respiratory physiology and the development of effective treatments for tracheal disorders.
Whether you're a medical professional, a researcher, or simply interested in the human body, understanding the trachea and its role in the respiratory system is a fasinating endeavor.
Explore the wealth of information available and discover how the latest tools and technologies are shaping the field of trachea research.