The largest database of trusted experimental protocols
> Anatomy > Body Part > Veins

Veins

Veins are the blood vessels that carry deoxygenated blood from the body's tissues back to the heart.
They play a crucial role in the circulatory system, facilitating the return of blood to the lungs and heart for reoxygenation.
Viens can be found throughout the body, ranging from large, major veins like the vena cava to smaller, peripheral veins in the extremities.
Understanding the structure, function, and pathologies of the venous system is essential for cardiovascular research and clinical practice.
This MeSh term provides a comprehensive overview of the veins, their anatomy, and their role in human physiology and disease.

Most cited protocols related to «Veins»

In multivariate analyses such as PCA, large differences in variances between columns are corrected by standardizing each column; i.e. dividing each column by its standard deviation. Thus each column will have the same weight in the multivariate analysis. For OTU abundance tables, such a procedure is inappropriate as the disparities in column sums can be 100-fold. Methods based on chi-squared distances rather than variances deal with this by comparing weighted column profiles [62] , computed as relative abundances for each OTU within a column, with the overall column sum retained as a weighting factor. However, chi-square distances are sums of squares and can be overly sensitive to outliers and sequencing “jackpot” effects such as those occurring in pyrosequencing data [63] (link). Bray-Curtis distances can be a useful alternative, as it is based on the distance between profiles, as long as the differences in actual column sums are also accounted for in the final study. The other approach to the problem of disparities between column sums has been to subsample the over-abundant columns down to the same number as the smaller ones. However this results in a loss of information, rarely an optimal procedure in statistical contexts. This subsampling procedure is inspired by the popular idea of rarefaction in coverage studies first invented by Sanders [64] , but has yet to be proved beneficial for all microbial community structures. The parallels between gene expression microarray analyses and microbial abundance analyses was mentioned in [65] (link), which proposed several expression-inspired strategies for robustifying abundance measurements. The main points were that rankings and thresholding are important in the presence of noise and high variability in sequence depths. As in gene expression analysis filtering the OTUs is beneficial, especially in the latter multiple testing adjustments. The phyloseq package enables easy filtering and rank transformations in the same vein as robust multi-array averaging (rma) [66] (link). We provide further details in (McMurdie and Holmes, [67] ).
Full text: Click here
Publication 2013
factor A Gene Expression Microarray Analysis Gene Expression Profiling Microbial Community Structure Strains Veins
Spatial image preprocessing (distortion correction and image alignment) was carried out using the HCP’s spatial minimal preprocessing pipelines5 (link). This included steps to maximize alignment across image modalities, to minimize distortions relative to the subject’s anatomical space, and to minimize spatial smoothing (blurring) of the data. The data were projected into the 2 mm standard CIFTI grayordinates space, which includes cortical grey matter surface vertices and subcortical grey matter voxels5 (link). This offers substantial improvements in spatial localization over traditional volume-based analyses, enabling more accurate cross-subject and cross-study registrations and avoiding smoothing that mixes signals across differing tissue types or between nearby cortical folds. Additionally, we did minimal smoothing within the CIFTI grayordinates space to avoid mixing across areal borders prior to parcellation.
For cross-subject registration of the cerebral cortex, we used a two-stage process based on the multimodal surface matching (MSM) algorithm14 (link) (see Supplementary Methods 2.1–2.5). An initial ‘gentle’ stage, constrained only by cortical folding patterns (FreeSurfer’s ‘sulc’ measure), was used to obtain approximate geographic alignment without overfitting the registration to folding patterns, which are not strongly correlated with cortical areas in many regions. Previously, we found that more aggressive folding-based registration (either MSM-based or FreeSurfer-based) slightly decreased cross-subject task-fMRI statistics, suggesting that aligning cortical folds too tightly actually reduces alignment of cortical areas14 (link). A second, more aggressive stage used cortical areal features to bring areas into better alignment across subjects while avoiding neurobiologically implausible distortions or overfitting to noise in the data. The areal features used were myelin maps, resting state network maps computed with weighed regression (an improvement over dual regression34 (link) described in the Supplementary Methods 2.3) and resting state visuotopic maps (see Supplementary Methods 4.4). Areal distortion was measured by taking the log base-2 of the ratio of the registered spherical surface tile areas to the original spherical surface tile areas. The mean (across space) of the absolute value of the areal distortion averaged across subjects from both registration stages was 30% less than the standard FreeSurfer folding-based registration and the maximum (across space) of this measure was 54% less. Despite less overall distortion, the areal-feature-based registration delivers substantially more accurate registration of cortical areas than does FreeSurfer folding-based registration as judged by cross-subject task fMRI statistics, an areal feature that was not used to drive the registration14 (link). Because MSM registration preserves topology and is relatively gentle (it does not tear or distort the cortical surface in neurobiologically implausible ways), it is unable to align some cortical areas in some subjects where the areal arrangement differs from the group average (see Supplementary Results and Discussion 1.3–1.4 for more details on atypical areas). Group average registration drift away from the gentle folding-based geographic alignment was removed from the surface registration35 (link) (see Supplementary Methods 2.5) to enable comparisons of this dataset with datasets registered using different areal features (for example, post-mortem cytoarchitecture). Group average registration drift is any consistent effect of the registration during template generation on the mean size, shape, or position of areas on the sphere (as opposed to the desired reductions in cross-subject variation). An obvious example is the 37% increase in average brain volume produced by registration to MNI space4 (link). Uncorrected drifts during surface template generation can cause apparent changes in cortical areal size, shape, and position when comparing across studies.
Resting state fMRI data were denoised for spatially specific temporal artefacts (for example, subject movement, cardiac pulsation, and scanner artefacts) using the ICA+FIX approach, which includes detrending the data and aggressively regressing out 24 movement parameters36 (link),37 (link). We avoided regressing out the ‘global signal’ (mean grey-matter time course) from our data because preliminary analyses showed that this step shifted putative connectivity-based areal boundaries so that they lined up less well with other modalities, likely because of the strong areal specificity of the residual global signal after ICA+FIX clean up. Task fMRI data were temporally filtered using a high pass filter. More details on resting state and task fMRI temporal preprocessing are described in the Supplementary Methods 1.6–1.8. Substantial spatial smoothing was avoided for both datasets, and all images were intensity normalized to account for the receive coil sensitivity field. Artefact maps of large vein effects, fMRI gradient echo signal loss, and surface curvature were computed as described in Supplementary Methods 1.9.
Publication 2016
Autopsy Brain Cortex, Cerebral ECHO protocol fMRI Gray Matter Heart Histocompatibility Testing Hypersensitivity Microtubule-Associated Proteins Movement Multimodal Imaging Myelin Sheath Tears Veins
Browne et al. [1 (link)] analysed the correlation matrix for eight measures of immune system function of 72 females with breast cancer, recorded during investigation of the physiological consequences of a psychological intervention [3 (link),4 (link)]. Four 51Cr-release measures of natural killer cell lysis were obtained using effector (NK cell) to target cell (K562 human myeloid cell) ratios of 100:1, 50:1, 25:1 and 12.5:1. Following Browne et al. [1 (link)] we designate these measures by their effector to target (E:T) ratios, NK100, NK50, NK25 and NK12 respectively. Similarly, natural killer cell lysis measured in the presence of recombinant interferon gamma (rIFNγ) using E:T ratios of 50:1, 25:1, 12.5:1 and 6.25:1, are designated IFN50, IFN25, IFN12, and IFN6 respectively. Lower E:T ratios are used in the presence of rIFNγ because rIFNγ increases NK cells' ability to rupture target cells.
The correlations reported in Browne et al.'s [1 (link)] Table 1 indicate that the four NK measures correlate highly with one another (average r = 0.852), and that the four rIFNγ enhanced NK measures also correlate highly with one another (averaging 0.960). However, the low correlations between the sets of NK and rIFNγ measurements (averaging only .111) indicate that the two sets of measurements reflect relatively distinct aspects of natural killer cell functioning. Browne et al. [1 (link)] viewed this as justifying the use of an exploratory two-factor model (Figure 1) which, unfortunately, was significantly inconsistent with the data (χ2 = 103.59, degrees of freedom (df) = 13, and probability p < 10-15). The small but significant residual differences between the data correlations and the correlations implied by the two-factor model were dismissed by Browne et al.[1 (link)] as "negligible from a practical point of view". SEMNET discussion of this model prompted Hayduk to investigate whether some unrecognized measurement feature was producing the significant, even if seemingly slight, ill fit.
Andersen, Farrar, Golden-Kreutz, Kutz, MacCallum, Courtney & Glaser [3 (link)] provide a description of the reasonably standard procedures used to obtain the Browne et al. [1 (link)] data. Peripheral blood leukocytes (PBLs) were obtained from 60 mL of venous blood, counted so that a known number of PBLs could be suspended in medium and incubated with either additional medium or additional medium plus rIFNγ. K562 target cells (a human myeloid cell line sensitive to NK cell activity) were labelled with 51Cr and aliquoted with the effector cells (either the NK, or the rIFNγ activated NK cells) in the ratios reported above. The cell mixture was centrifuged to ensure cell surface contact, and incubated to provide an opportunity for the NK cells to bind and rupture the target cells, thereby releasing the radioactive target cell cytoplasm. Gamma radioactivity of the supernatant collected from a second centrifuging indicated the effectiveness of the NK or rIFNγ-activated-NK cells at lysing the target cells, with larger measurements corresponding to more effective NK cell activity.
Full text: Click here
Publication 2005
BLOOD Breast Carcinoma Cell Lines Cells Cytoplasm Females Gamma Rays Homo sapiens Interferon Type II K562 Cells Leukocytes Myeloid Cells Natural Killer Cells Radioactivity System, Immune Veins
Data were extracted from a computerised database established by the Rich Healthcare Group in China, which includes all medical records for participants who received a health check from 2010 to 2016. The present analysis initially included all study participants who were at least 20 years old with at least two visits between 2010 and 2016 (n=685 277). Participants were excluded at baseline if they had no available weight and height measurements (n=103 946), no available information on gender (n=1), extreme BMI values (<15 kg/m2 or >55 kg/m2) (n=152) or no available fasting plasma glucose value (n=31 370). We further excluded participants with visit intervals less than 2 years (n=324 233), participants diagnosed with diabetes at baseline (2997 participants diagnosed by self-report and 4115 diagnosed by a fasting plasma glucose ≥7.0 mmol/L), and participants with undefined diabetes status at follow-up (n=6630). Finally, a total of 211 833 participants (116 123 male and 95 710 female) were included in the analysis. Cohort entry was defined as the date of the initial visit. Compared with individuals excluded from the present analyses, those included in the analyses were with similar age (42.1 vs 41.9 years old) and similar BMI (23.2 vs 23.3 kg/m2), and with a relatively higher proportion of males (54.8% vs 52.1%).
In each visit to the health check centre, participants were requested to complete a detailed questionnaire assessing demographic, lifestyle, medical history and family history of chronic disease. Height, weight and blood pressure were measured by trained staff. Body weight was measured in light clothing with no shoes to the nearest 0.1 kg. Height was measured to the nearest 0.1 cm. BMI was derived from weight in kilograms divided by height in metres squared. Blood pressure was measured by standard mercury sphygmomanometers.
Fasting venous blood samples were collected after at least a 10 hours fast at each visit. Serum triglyceride (TG), total cholesterol, low-density lipoprotein cholesterol (LDL-C) and high-density lipoprotein cholesterol were measured on an autoanalyzer (Beckman 5800). Plasma glucose levels were measured by the glucose oxidase method on an autoanalyzer (Beckman 5800).
Publication 2018
Blood Pressure Cholesterol Cholesterol, beta-Lipoprotein Diabetes Mellitus Disease, Chronic Gender Glucose High Density Lipoprotein Cholesterol Light Males Mercury Oxidase, Glucose Plasma Serum Sphygmomanometers Triglycerides Veins Woman
CCR2RFP mice were created as described [25] (link) (see Figure 1 and Text S1). Founder mice were crossed with Cre-deleter mice [43] (link) to remove the neo gene and backcrossed onto the C57Bl/6 line nine times. To generate homozygous Ccr2RFP/RFPCx3cr1GFP/GFP mice, we crossed Ccr2RFP/RFP with Cx3cr1GFP/GFP C57Bl/6 mice (a gift of D.R. Littman), and the progeny were backcrossed onto C57Bl/6. Mice that had undergone chromosome recombination between the CCR2 and CX3CR1 loci were selected by being positive for both RFP and GFP by flow cytometry of tail vein blood.
Unless stated otherwise, all mice were backcrossed seven to nine times on C57Bl/6 and were 2–6 months of age at sacrifice. Some mice were crossed with C57Bl/6 Apoe−/− mice. These mice were fed a Western diet (42% of calories from fat) (Harlan Teklad, TD88137) for 8 weeks, starting at 6–8 weeks of age. All other mice were fed standard chow. Mice were bred at the Gladstone Institutes and the Biological Resources Unit, Cleveland Clinic, Lerner Research Institute. Animal experiments were performed according to the protocols approved by the Institutional Animal Care and Use Committee at the Cleveland Clinic, UCSF, and UTSA following the National Institute of Health guidelines for animal care. Mice were genotyped by PCR using tail DNA, and chemokine receptor–specific primers (Invitrogen, Carlsbad,CA) (Table S1).
Full text: Click here
Publication 2010
Animals ApoE protein, human Biopharmaceuticals BLOOD Chemokine Receptor Chromosomes Flow Cytometry Genes Homozygote Institutional Animal Care and Use Committees Mice, House Mice, Inbred C57BL Oligonucleotide Primers Recombination, Genetic Tail Veins

Most recents protocols related to «Veins»

Example 1

The sequence coding for the light chain variable region of the antibody was inserted into vector pFUSE2ss-CLIg-hK (Invivogen, Catalog Number: pfuse2ss-hclk) using EcoRI and BsiWI restriction sites to construct a light chain expression vector. The sequence coding for the heavy chain variable region of the antibody was inserted into vector pFUSEss-CHIg-hG2 (Invivogen, Catalog Number: pfusess-hchg2) or vector pFUSEss-CHIg-hG4 (Invivogen, Catalog Number: pfusess-hchg4) using EcoRI and NheI restriction sites to construct a heavy chain expression vector.

The culture and transfection of Expi293 cells were performed in accordance with the handbook of Expi293™ Expression System Kit from Invitrogen (Catalog Number: A14635). The density of the cells was adjusted to 2×106 cells/ml for transfection, and 0.6 μg of the light chain expression vector as described above and 0.4 μg of the heavy chain expression vector as described above were added to each ml of cell culture, and the supernatant of the culture was collected four days later.

The culture supernatant was subjected to non-reduced SDS-PAGE gel electrophoresis in accordance with the protocol described in Appendix 8, the Third edition of the “Molecular Cloning: A Laboratory Manual”.

Pictures were taken with a gel scanning imaging system from BEIJING JUNYI Electrophoresis Co., LTD and in-gel quantification was performed using Gel-PRO ANALYZER software to determine the expression levels of the antibodies after transient transfection. Results were expressed relative to the expression level of control antibody 1 (control antibody 1 was constructed according to U.S. Pat. No. 7,186,809, which comprises a light chain variable region as set forth in SEQ ID NO: 10 of U.S. Pat. No. 7,186,809 and a heavy chain variable region as set forth in SEQ ID NO: 12 of U.S. Pat. No. 7,186,809, the same below) (control antibody 2 was constructed according to U.S. Pat. No. 7,638,606, which comprises a light chain variable region as set forth in SEQ ID NO: 6 of U.S. Pat. No. 7,638,606 and a variable region as set forth in SEQ ID NO: 42 of U.S. Pat. No. 7,638,606, the same below). See Tables 2a-2c below for the results.

TABLE 2a
Expression levels of the antibodies of the present
invention after transient transfection (antibodies whose
expression levels are significantly higher than that of control antibody 1):
Number ofExpression level vsNumber of Expression level vs
the antibodycontrol antibody 1the antibodycontrol antibody 1
L1021H10002.08L1000H10281.27
L1020H10001.58L1000H10151.19
L1000H10271.56L1000H10321.18
L1000H10241.51L1000H10261.15
L1000H10251.48L1021H10291.12
L1001H10001.48L1000H10301.1
L1021H10161.43L1024H10311.08
L1000H10141.35L1000H10161.05

TABLE 2b
Expression levels of the antibodies of the present
invention after transient transfection (antibodies whose
expression levels are slightly lower than that of control antibody 1):
Number of Expression level vsNumber of Expression level vs
the antibodycontrol antibody 1the antibodycontrol antibody 1
L1000H10310.99L1017H10000.85
L1021H10310.99L1020H10160.84
L1020H10290.96L1000H10090.81
control anti-0.93L1000H10070.8
body 2
L1012H10000.89L1000H10230.8
L1019H10000.87L1020H10270.78
L1020H10310.87L1024H10070.77
L1021H10200.87L1000H10130.75
L1000H10290.86L1020H10070.74
L1008H10000.86L1021H10070.74
L1000H10010.85L1000H10210.71

TABLE 2c
Expression levels of the antibodies of the present
invention after transient transfection (antibodies whose
expression levels are significantly lower than that of control antibody 1):
Number ofExpression level vsNumber of Expression level vs
the antibodycontrol antibody 1the antibodycontrol antibody 1
L1000H10200.69L1024H10000.52
L1010H10000.69L1000H10080.51
L1000H10220.67L1000H10370.5
L1000H10120.64L1007H10000.49
L1022H10000.64L1016H10000.49
L1011H10000.63L1000H10170.47
L1000H10110.62L1000H10350.46
L1000H10330.62L1012H10270.46
L1020H10200.61L1018H10000.44
L1000H10360.6L1023H10000.43
L1021H10270.6L1012H10160.42
L1012H10070.59L1013H10000.41
L1009H10000.57L1000H10340.4
L1012H10200.57L1000H10180.35
L1012H10310.56L1000H10190.34
L1000H10380.54L1015H10000.27
L1012H10290.54L1014H10000.17
L1000H10100.53

Example 4

6-8 week-old SPF Balb/c mice were selected and injected subcutaneously with antibodies (the antibodies of the present invention or control antibody 2) in a dose of 5 mg/kg (weight of the mouse). Blood samples were collected at the time points before administration (0 h) and at 2, 8, 24, 48, 72, 120, 168, 216, 264, 336 h after administration. For blood sampling, the animals were anesthetized by inhaling isoflurane, blood samples were taken from the orbital venous plexus, and the sampling volume for each animal was about 0.1 ml; 336 h after administration, the animals were anesthetized by inhaling isoflurane and then euthanized after taking blood in the inferior vena cava.

No anticoagulant was added to the blood samples, and serum was isolated from each sample by centrifugation at 1500 g for 10 min at room temperature within 2 h after blood sampling. The collected supernatants were immediately transferred to new labeled centrifuge tubes and then stored at −70° C. for temporary storage. The concentrations of the antibodies in the mice were determined by ELISA:

1. Preparation of Reagents

sIL-4Rα (PEPRO TECH, Catalog Number: 200-04R) solution: sIL-4Rα was taken and 1 ml ddH2O was added therein, mixed up and down, and then a solution of 100 μg/ml was obtained. The solution was stored in a refrigerator at −20° C. after being subpacked.

Sample to be tested: 1 μl of serum collected at different time points was added to 999 μl of PBS containing 1% BSA to prepare a serum sample to be tested of 1:1000 dilution.

Standard sample: The antibody to be tested was diluted to 0.1 μg/ml with PBS containing 1% BSA and 0.1% normal animal serum (Beyotime, Catalog Number: ST023). Afterwards, 200, 400, 600, 800, 900, 950, 990 and 1000 μl of PBS containing 1% BSA and 0.1% normal animal serum were respectively added to 800, 600, 400, 200, 100, 50, 10 and 0 μl of 0.1 μg/ml antibodies to be tested, and thus standard samples of the antibodies of the present invention were prepared with a final concentration of 80, 60, 40, 20, 10, 5, 1, or 0 ng/ml respectively.

2. Detection by ELISA

250 μl of 100 μg/ml sIL-4Rα solution was added to 9.75 ml of PBS, mixed up and down, and then an antigen coating buffer of 2.5 μg/ml was obtained. The prepared antigen coating buffer was added to a 96-well ELISA plate (Corning) with a volume of 100 μl per well. The 96-well ELISA plate was incubated overnight in a refrigerator at 4° C. after being wrapped with preservative film (or covered). On the next day, the 96-well ELISA plate was taken out and the solution therein was discarded, and PBS containing 2% BSA was added thereto with a volume of 300 μl per well. The 96-well ELISA plate was incubated for 2 hours in a refrigerator at 4° C. after being wrapped with preservative film (or covered). Then the 96-well ELISA plate was taken out and the solution therein was discarded, and the plate was washed 3 times with PBST. The diluted standard antibodies and the sera to be detected were sequentially added to the corresponding wells, and three duplicate wells were made for each sample with a volume of 100 μl per well. The ELISA plate was wrapped with preservative film (or covered) and incubated for 1 h at room temperature. Subsequently, the solution in the 96-well ELISA plate was discarded and then the plate was washed with PBST for 3 times. Later, TMB solution (Solarbio, Catalog Number: PR1200) was added to the 96-well ELISA plate row by row with a volume of 100 μl per well. The 96-well ELISA plate was placed at room temperature for 5 minutes, and 2 M H2SO4 solution was added in immediately to terminate the reaction. The 96-well ELISA plate was then placed in flexstation 3 (Molecular Devices), the values of OD450 were read, the data were collected and the results were calculated with Winnonlin software. The pharmacokinetic results were shown in FIG. 1 and Table 6 below.

TABLE 6
Pharmacokinetic results of the antibodies of the present invention in mouse
Area
TimeUnder the
HalftoPeakdrug-timeVolume ofClearance
lifepeakconcentrationCurvedistributionrate
Numberhhμg/mlh*μg/mlml/kgml/h/kg
L1020H1031Mean269.347233.797679.28138.920.38
value
Standard105.730.000.42163.9122.480.09
deviation
L1012H1031Mean167.274845.59852.391.30.38
value
Standard8.520.001.86448.345.580.00
deviation
ControlMean56.67367.881132.68288.923.79
antibody 2value
Standard25.8416.970.2594.4249.451.12
deviation

Example 5

A series of pharmacokinetic experiments were carried out in Macaca fascicularises to further screen antibodies.

3-5 year-old Macaca fascicularises each weighting 2-5 Kg were selected and injected subcutaneously with antibodies (the antibodies of the present invention or control antibody 2) in a dose of 5 mg/kg (weight of the Macaca fascicularis). The antibody or control antibody 2 to be administered was accurately extracted with a disposable aseptic injector, and multi-point injections were made subcutaneously on the inner side of the thigh of the animal, and the injection volume per point was not more than 2 ml. Whole blood samples were collected from the subcutaneous vein of the hind limb of the animal at the time points before administration (0 h) and at 0.5, 2, 4, 8, 24, 48, 72, 120, 168, 240, 336 h, 432 h, 504 h, 600 h, 672 h after administration. The blood volume collected from each animal was about 0.1 ml each time.

No anticoagulant was added to the blood samples, and serum was isolated from each sample by centrifugation at 1500 g for 10 min at room temperature within 2 h after blood sampling. The collected supernatants were immediately transferred to new labeled centrifuge tubes and then stored at −70° C. for temporary storage. The concentrations of the antibodies in the Macaca fascicularises were determined according the method as described in Example 4. The pharmacokinetic results are shown in FIG. 2 and Table 7 below.

TABLE 7
Pharmacokinetic results of the antibodies of the present invention in macaca fascicularis
Area
TimeUnder the
HalftoPeakdrug-timeVolume ofClearance
lifepeakconcentrationCurvedistributionrate
Numberhhμg/mlh*μg/mlml/kgml/h/kg
L1020H1031Mean254.9548.0089.6522189.9175.940.22
value
Standard44.5733.9444.298557.1522.950.10
deviation
L1012H1031Mean185.75486516185.7373.410.28
value
Standard42.5433.944.52506.980.810.06
deviation
ControlMean37.031637.822773.2193.971.78
antibody 2value
Standard18.0311.316.75155.8442.470.07
deviation

Example 10

In vivo pharmacokinetics of the antibodies of the invention are further detected and compared in this Example, in order to investigate the possible effects of specific amino acids at specific positions on the pharmacokinetics of the antibodies in animals. The specific experimental method was the same as that described in Example 4, and the results are shown in Table 9 below.

TABLE 9
Detection results of in vivo pharmacokinetics of the antibodies of the present invention
Area
TimeUnder the
HalftoPeakdrug-timeVolume ofClearance
lifepeakconcentrationCurvedistributionrate
hhug/mlh*ug/mlml/kgml/h/kg
L1020H1031Mean185.494038.948188.8114.280.43
value
Standard18.5213.862.33510.476.50.05
deviation
L1012H1001Mean161.2648.0012.362491.19332.791.47
value
Standard54.300.002.26165.1676.910.20
deviation
L1001H1031Mean171.4156.0042.749273.7399.170.40
value
Standard6.1213.867.381868.6618.690.07
deviation
L1020H1001Mean89.0064.0020.113481.40164.141.30
value
Standard16.7013.862.14268.3922.860.20
deviation

From the specific sequence, the amino acid at position 103 in the sequence of the heavy chain H1031 (SEQ ID NO. 91) of the antibody (in CDR3) is Asp (103Asp), and the amino acid at position 104 is Tyr (104Tyr). Compared with antibodies that have no 103Asp and 104Tyr in heavy chain, the present antibodies which have 103Asp and 104Tyr have a 2- to 4-fold higher area under the drug-time curve and an about 70% reduced clearance rate.

The expression levels of the antibodies of the present invention are also detected and compared, in order to investigate the possible effects of specific amino acids at specific positions on the expression of the antibodies. Culture and transfection of Expi293 cells were conducted according to Example 1, and the collected culture supernatant was then passed through a 0.22 μm filter and then purified by GE MabSelect Sure (Catalog Number: 11003494) Protein A affinity chromatography column in the purification system GE AKTA purifier 10. The purified antibody was collected and concentrated using Amicon ultrafiltration concentrating tube (Catalog Number: UFC903096) and then quantified. The quantitative results are shown in Table 10 below.

TABLE 10
Detection results of the expression
levels of the antibodies of the present invention
Expression level
Antibody(×10−2 mg/ml culture medium)
L1020H10318.39
L1001H10311.79
L1020H10014.04
L1012H10015.00
L1023H10014.63
L1001H10011.75

From the specific sequence, the amino acid at position 31 in the sequence of the light chain L1012 (SEQ ID NO. 44), L1020 (SEQ ID NO. 55) or L1023 (SEQ ID NO. 51) of the antibody (in CDR1) is Ser (31Ser). Compared with antibodies that have no 31Ser in light chain, the present antibodies which have 31Ser have a 2- to 5-fold higher expression level.

The above description for the embodiments of the present invention is not intended to limit the present invention, and those skilled in the art can make various changes and variations according to the present invention, which are within the protection scope of the claims of the present invention without departing from the spirit of the same.

Full text: Click here
Patent 2024
Amino Acids Animals Antibodies Anticoagulants Antigens Asepsis BLOOD Blood Volume Buffers Cell Culture Techniques Cells Centrifugation Chromatography Chromatography, Affinity Cloning Vectors Culture Media Deoxyribonuclease EcoRI Drug Kinetics Electrophoresis Enzyme-Linked Immunosorbent Assay Hindlimb Human Body Immunoglobulin Heavy Chains Immunoglobulin Light Chains Immunoglobulins Interleukin-1 Isoflurane Light Macaca Macaca fascicularis Medical Devices Metabolic Clearance Rate Mice, Inbred BALB C Mus Open Reading Frames Pharmaceutical Preparations Pharmaceutical Preservatives SDS-PAGE Serum Staphylococcal Protein A Technique, Dilution Thigh Transfection Transients Ultrafiltration Veins Vena Cavas, Inferior
Not available on PMC !

Example 2

In the following experiments, a mouse model of RVO, which induces reproducible retinal edema was used. RVO is the model that was used for testing anti-VEGF therapies for DME. Brown et al., Ophthalmology 117, 1124-1133 el 121 (2010); and Campochiaro et al., Ophthalmology 117, 1102-1112 e1101 (2010). I n this model, Rose Bengal, a photoactivatable dye, is injected into the tail veins of adult C57B16 mice and photoactivated by laser of retinal veins around the optic nerve head. A clot is formed and edema or increased retinal thickness develops rapidly. Inflammation, also seen in diabetes, also develops.

Fluorescein leakage and maximal retinal edema, measured by fluorescein angiography and optical coherence tomography (OCT), respectively, using the Phoenix Micron IV, is observed 24 h after RVO. Retinal edema is maintained over the first 3 days RVO. By day 4 the edema decreases and the retina subsequently thins out. In addition to edema formation there is evidence of cell death in the photoreceptor cell layer by day 2 after RVO.

In this example, mice were anesthetized with intra-peritoneal (IP) injection of ketamine and xylazine. One drop of 0.5% alcaine was added to the eye as topical anesthetic. The retina was imaged with the Phoenix Micron IV to choose veins for laser ablation using the Phoenix Micron IV image guided laser. One to four veins around the optic nerve head were ablated by delivering a laser pulse (power 50 mW, spot size 50 μm, duration 3 seconds) to each vein.

Full text: Click here
Patent 2024
Adult Alcaine Cell Death Clotrimazole Diabetes Mellitus Edema Fluorescein Fluorescein Angiography Inflammation Injections, Intraperitoneal Ketamine Laser Ablation Mus Neoplasm Metastasis Optic Disk Photoreceptor Cells Pulse Rate Retina Retinal Edema Rose Bengal Tail Tomography, Optical Coherence Topical Anesthetics Vascular Endothelial Growth Factors Veins Veins, Central Retinal Vision Xylazine

Example 4

Through use of a lung metastasis model of mouse breast cancer 4T1 cells, the lung metastasis-suppressing effects of anti-S100A8/A9 monoclonal antibodies were investigated.

In accordance with a protocol illustrated in FIG. 9, 1×105 mouse breast cancer 4T1 cells and 50 μg of each anti-S100A8/A9 monoclonal antibody (Clone Nos.: 45, 85, 235, 258, and 260) were simultaneously injected into the tail vein of five Balb/c nu/nu mice per group, and 2 weeks later, CT scans were performed. FIG. 10 shows the results for comparing typical CT images and the areas of tumor cells calculated from the CT images to those of a negative control group. As a result, it was recognized that Clone No. 45 showed a significant lung metastasis-suppressing effect.

Full text: Click here
Patent 2024
Breast Clone Cells Lung Lung Cancer Malignant Neoplasm of Breast Mice, Inbred BALB C Mice, Nude Monoclonal Antibodies Mus Neoplasm Metastasis Neoplasms Tail Veins X-Ray Computed Tomography
Not available on PMC !

Example 11

Small molecule agonists of the Liver X Receptor (LXR) have previously been shown to increase Apo E levels. To investigate whether increasing Apo-E levels via LXR activation resulted in therapeutic benefit, assays were carried out to assess the effect of the LXR agonist GW3965 [chemical name: 3-[3-[N-(2-Chloro-3-trifluoromethylbenzyl)-(2,2-diphenylethyl)amino]propyloxy]phenylacetic acid hydrochloride) on Apo-E levels, tumor cell invasion, endothelial recruitment, and in vivo melanoma metastasis (FIG. 10). Incubation of parental MeWo cells in the presence of therapeutic concentrations of GW3965 increased expression of ApoE and DNAJA4 (FIGS. 10A and 10B). Pre-treatment of MeWO cells with GW3965 decreased tumor cell invasion (FIG. 10C) and endothelial recruitment (FIG. 10D). To test whether GW3965 could inhibit metastasis in vivo, mice were administered a grain-based chow diet containing GW3965 (20 mg/kg) or a control diet, and lung metastasis was assayed using bioluminescence after tail-vein injection of 4×104 parental MeWo cells into the mice (FIG. 10E). Oral administration of GW3965 to the mice in this fashion resulted in a significant reduction in in vivo melanoma metastasis (FIG. 10E).

Full text: Click here
Patent 2024
Administration, Oral agonists Apolipoproteins E Cardiac Arrest Cells Cereals Diet Endothelium GW 3965 Liver X Receptors Lung Malignant Neoplasms Melanoma Mus Neoplasm Invasiveness Neoplasm Metastasis Parent phenylacetic acid Tail Veins
Not available on PMC !

Example 9

In a preferred embodiment, endogenous cells are transfected with vectors such as those described herein in vivo by introduction of the therapeutic vector(s) into the host blood, tissues, nervous system, bone marrow, etc. The greatest benefit may be achieved by modifying a large number of endogenous target cells. This may be accomplished by using an appropriately-sized, catheter-like device, or needle to inject the therapeutic vector(s) into the venous or arterial circulation, into a specific tissue, such as muscle tissue, or into the nervous system. In a preferred embodiment, the virus is pseudotyped with VSV-G envelope glycoprotein and native HIV-1 env proteins.

Full text: Click here
Patent 2024
Arteries BLOOD Bone Marrow Catheters Cells Cloning Vectors Gene Products, env Genetic Vectors Glycoproteins HIV-1 Medical Devices Muscle Tissue Needles Systems, Nervous Therapeutics Tissues Veins Virus

Top products related to «Veins»

Sourced in United States, United Kingdom, Brazil, Germany, Canada, France, Spain, Switzerland, Italy, Australia, New Zealand, Sweden, Belgium, Ireland, South Sudan, Denmark, Mexico, Jersey, Austria, Japan, India
The BD Vacutainer is a blood collection system used to collect, process, and preserve blood samples. It consists of a sterile evacuated glass or plastic tube with a closure that maintains the vacuum. The Vacutainer provides a standardized method for drawing blood samples for laboratory analysis.
Sourced in United States, Germany, China, Sao Tome and Principe, United Kingdom, India, Japan, Macao, Canada, France, Italy, Switzerland, Egypt, Poland, Hungary, Denmark, Indonesia, Singapore, Sweden, Belgium, Malaysia, Israel, Spain, Czechia
STZ is a laboratory equipment product manufactured by Merck Group. It is designed for use in scientific research and experiments. The core function of STZ is to serve as a tool for carrying out specific tasks or procedures in a laboratory setting. No further details or interpretation of its intended use are provided.
Sourced in United States, United Kingdom, Canada, Australia, Germany, France, Brazil, Spain, Switzerland, Sweden, Belgium, Singapore, New Zealand, Italy, Japan, India
Vacutainer tubes are laboratory collection tubes used to obtain blood samples from patients. They are designed to maintain the integrity of the collected sample and prevent contamination. The tubes come in various sizes and contain different additives that help preserve the sample for subsequent analysis.
Sourced in Germany, Switzerland, United States, United Kingdom, Brazil, Australia, China, India, Spain, Canada, France, Hungary, Japan, Thailand, Belgium, Denmark
The Accu-Chek product line from Roche is a suite of blood glucose monitoring systems designed for use in clinical and personal settings. The core function of the Accu-Chek devices is to accurately measure and display blood glucose levels.
Sourced in Germany, United States, Spain, United Kingdom, Japan, Netherlands, France, China, Canada, Italy, Australia, Switzerland, India, Brazil, Norway
The QIAamp DNA Blood Mini Kit is a laboratory equipment designed for the extraction and purification of genomic DNA from small volumes of whole blood, buffy coat, plasma, or serum samples. It utilizes a silica-based membrane technology to efficiently capture and wash DNA, while removing contaminants and inhibitors.
Sourced in United States, China, United Kingdom, Germany, Australia, Japan, Canada, Italy, France, Switzerland, New Zealand, Brazil, Belgium, India, Spain, Israel, Austria, Poland, Ireland, Sweden, Macao, Netherlands, Denmark, Cameroon, Singapore, Portugal, Argentina, Holy See (Vatican City State), Morocco, Uruguay, Mexico, Thailand, Sao Tome and Principe, Hungary, Panama, Hong Kong, Norway, United Arab Emirates, Czechia, Russian Federation, Chile, Moldova, Republic of, Gabon, Palestine, State of, Saudi Arabia, Senegal
Fetal Bovine Serum (FBS) is a cell culture supplement derived from the blood of bovine fetuses. FBS provides a source of proteins, growth factors, and other components that support the growth and maintenance of various cell types in in vitro cell culture applications.
Sourced in United States, Germany, United Kingdom, France, China
The IVIS Spectrum is a bioluminescence and fluorescence imaging system designed for preclinical research. It enables non-invasive, real-time visualization and quantification of biological processes in living small animal models.
Sourced in United States, United Kingdom, Germany, China, France, Japan, Canada, Netherlands, Mongolia, Switzerland, Australia
ELISA kits are laboratory tools used to detect and quantify specific proteins or other molecules in a sample. The kits utilize enzyme-linked immunosorbent assay (ELISA) technology to identify the target analyte. ELISA kits provide a standardized and reliable method for sample analysis.
Sourced in United States, United Kingdom, Germany, China, Canada, Japan, Italy, France, Belgium, Australia, Uruguay, Switzerland, Israel, India, Spain, Morocco, Austria, Brazil, Ireland, Netherlands, Montenegro, Poland, Denmark
Matrigel is a solubilized basement membrane preparation extracted from the Engelbreth-Holm-Swarm (EHS) mouse sarcoma, a tumor rich in extracellular matrix proteins. It is widely used as a substrate for the in vitro cultivation of cells, particularly those that require a more physiologically relevant microenvironment for growth and differentiation.
Sourced in Sweden, United States, United Kingdom, Germany, Canada, Japan, Italy, France, China, Austria, Switzerland, Belgium, Australia, Norway, New Zealand, Denmark, Finland, Spain, Georgia
Ficoll-Paque PLUS is a sterile, ready-to-use medium for the isolation of mononuclear cells from blood or bone marrow by density gradient centrifugation. It is a polysucrose and sodium diatrizoate solution with a density of 1.077 g/mL.

More about "Veins"

Veins are a vital component of the human circulatory system, responsible for transporting deoxygenated blood from the body's tissues back to the heart.
These blood vessels, ranging from the large vena cava to the smaller peripheral veins in the extremities, play a crucial role in the reoxygenation process.
Understanding the anatomy, function, and pathologies of the venous system is essential for cardiovascular research and clinical practice.
Researchers may utilize various tools and techniques to study veins, such as BD Vacutainer blood collection tubes, STZ (streptozotocin) for inducing vascular damage, Accu-Chek glucose monitoring systems, and ELISA kits for analyzing vein-related biomarkers.
Additinally, the QIAamp DNA Blood Mini Kit can be used to extract DNA from vein samples, while Ficoll-Paque PLUS is a common density gradient medium for isolating vein-derived cells.
Matrigel, a basement membrane extract, is often used to study vein-related angiogenesis and vascular remodeling.
The IVIS Spectrum imaging system can provide valuable insights into vein function and pathologies in animal models.
By leveraging these tools and techniques, researchers can gain a deeper understanding of the veins' structure, function, and involvement in various cardiovascular conditions, ultimately advancing the field of vein research and improving patient outcomes.