The largest database of trusted experimental protocols
> Anatomy > Body Space or Junction > Cerebral Ventricles

Cerebral Ventricles

Cerebral Ventricles are a system of interconnected cavities within the brain that are filled with cerebrospinal fluid.
They play a crucial role in the production, circulation, and absorption of this fluid, which is essential for cushioning and nourishing the brain.
These ventricles include the lateral, third, and fourth ventricles, each with unique anatomical features and functions.
Researchers studying the cerebral ventricles may leverage PubCompare.ai's AI-driven platform to optimize their protocols, enhance reproducibility, and discover the most effective procedures and products for their work.
This cutting-edge tool can help streamline research by providing data-driven insights and facilitating the location of the best protocols from literature, pre-prints, and patents.

Most cited protocols related to «Cerebral Ventricles»

Thirty hearts of chicken embryos of 3 days of development were isolated and separated into the five different compartments, i.e. sinus venosus (SV), atrium (A), atrioventricular canal (AVC), ventricle (V) and outflow tract (OFT). Post-mortem cortical brain tissue of eight control persons and 10 Huntington disease patients was obtained from Prof Dr R.A.C. Roos (Leiden University, the Netherlands). Total RNA was isolated using RNAeasy columns (Qiagen) according to the manufacturer's instructions. The total RNA was treated with DNase RQ1 (Promega) and the integrity of the RNA was checked using the BioAnalyzer and the Agilent RNA 6000 Nano kit (II). A 1–0.5 µg total RNA was converted into cDNA using an anchored poly-dT primer and the Superscript II (human samples) or III (chicken samples) Reverse transcription kit (Invitrogen).
Publication 2009
Autopsy Brain Cerebral Ventricles Chickens Common atrioventricular canal Cortex, Cerebral Deoxyribonucleases DNA, Complementary Embryonic Development Heart Heart Atrium Homo sapiens Huntington Disease Oligonucleotide Primers Patients Poly T Promega Reverse Transcription Sinuses, Nasal Tissues

Protocol full text hidden due to copyright restrictions

Open the protocol to access the free full text link

Publication 2013
Brain Carps Cerebral Ventricles derivatives fMRI Gray Matter Head MRI Scans Nervousness Plant Roots Protein Biosynthesis Reading Frames Tissues White Matter
The Iso-Seq method for sequencing full-length transcripts was developed by PacBio during the same time period as the genome assembly. We therefore used this technique to improve characterization of transcript isoforms expressed in cattle tissues using a diverse set of tissues collected from L1 Dominette 0 1449 upon euthanasia. The data were collected using an early version of the Iso-Seq library protocol [26 ] as suggested by PacBio. Briefly, RNA was extracted from each tissue using Trizol reagent as directed (Thermo Fisher). Then 2 μg of RNA were selected for PolyA tails and converted into complementary DNA (cDNA) using the SMARTer PCR cDNA Synthesis Kit (Clontech). The cDNA was amplified in bulk with 12–14 rounds of PCR in 8 separate reactions, then pooled and size-selected into 1–2, 2–3, and 3–6 kb fractions using the BluePippin instrument (Sage Science). Each size fraction was separately re-amplified in 8 additional reactions of 11 PCR cycles. The products for each size fraction amplification were pooled and purified using AMPure PB beads (Pacific Biosciences) as directed, and converted to SMRTbell libraries using the Template Prep Kit v1.0 (PacBio) as directed. Iso-Seq was conducted for 22 tissues including abomasum, aorta, atrium, cerebral cortex, duodenum, hypothalamus, jejunum, liver, longissimus dorsi muscle, lung, lymph node, mammary gland, medulla oblongata, omasum, reticulum, rumen, subcutaneous fat, temporal cortex, thalamus, uterine myometrium, and ventricle from the reference cow, as well as the testis of her sire. The size fractions were sequenced in either 4 (for the smaller 2 fractions) or 5 (for the largest fraction) SMRTcells on the RS II instrument. Isoforms were identified using the Cupcake ToFU pipeline [27 ] without using a reference genome.
Short-read–based RNA-seq data derived from tissues of Dominette were available in the GenBank database because her tissues have been a freely distributed resource for the research community. To complement and extend these data and to ensure that the tissues used for Iso-Seq were also represented by RNA-seq data for quantitative analysis and confirmation of isoforms observed in Iso-Seq, we generated additional data, avoiding overlap with existing public data. Specifically, the TruSeq stranded mRNA LT kit (Illumina, Inc.) was used as directed to create RNA-seq libraries, which were sequenced to ≥30 million reads for each tissue sample. The Dominette tissues that were sequenced in this study include abomasum, anterior pituitary, aorta, atrium, bone marrow, cerebellum, duodenum, frontal cortex, hypothalamus, KPH fat (internal organ fat taken from the covering on the kidney capsule), lung, lymph node, mammary gland (lactating), medulla oblongata, nasal mucosa, omasum, reticulum, rumen, subcutaneous fat, temporal cortex, thalamus, uterine myometrium, and ventricle. RNA-seq libraries were also sequenced from the testis of her sire. All public datasets, and the newly sequenced RNA-seq and Iso-Seq datasets, were used to annotate the assembly, to improve the representation of low-abundance and tissue-specific transcripts, and to properly annotate potential tissue-specific isoforms of each gene.
Full text: Click here
Publication 2020
Abomasum Anabolism Aorta Bone Marrow Capsule Cattle cDNA Library Cerebellum Cerebral Ventricles Cortex, Cerebral Dietary Fiber DNA, Complementary Duodenum Euthanasia Genes Genome Heart Atrium Hypothalamus Jejunum Kidney Liver Lobe, Frontal Lung Mammary Gland Medulla Oblongata Muscle Tissue Myometrium Nasal Mucosa Nodes, Lymph Omasum Pituitary Hormones, Anterior Poly(A) Tail Protein Isoforms Reticulum RNA, Messenger RNA-Seq Rumen Subcutaneous Fat Temporal Lobe Testis Thalamus Tissues Tissue Specificity Tofu trizol Uterus

Protocol full text hidden due to copyright restrictions

Open the protocol to access the free full text link

Publication 2010
Blood Vessel Brain Cerebral Ventricles Cortex, Cerebral Epistropheus Gray Matter Heart Ventricle Sinuses, Nasal Tissues Vascular Fistula White Matter
Four preprocessing models were compared in the current study. All preprocessing conditions utilized the AFNI software package (Cox, 1996 (link)) and had the following series of steps in common. The first 4 EPI volumes were removed from the resting scan, and large transients in the remaining volumes were removed by constraining values to be within 4 standard deviation units of the mean (using AFNI's 3dDespike). Volumes were then slice-time corrected, co-registered to the anatomical scan, resampled to 2.0-mm isotropic voxels, smoothed with an isometric 6-mm full width half maximum Gaussian kernel, normalized by the mean signal intensity in each voxel to reflect percent signal change, and transformed into the standardized Talairach and Tournoux (1988 ) volume for the purposes of group analyses. Tissue-based nuisance regressors were created by segmenting the anatomical scan into tissue compartments using Freesurfer (Fischl et al., 2002 (link)). Ventricle and white-matter masks were created, eroding the outer voxels of the masks to prevent partial volume effects with grey matter. Eroded masks were then applied to the volume-registered EPI data (prior to smoothing) in order to yield nuisance time series with minimal contribution from gray matter signals for the ventricles, as well as a local average, at each voxel, of the EPI signal from the (eroded mask) white matter voxels within a 15 mm radius of the central voxel.
Full text: Click here
Publication 2013
Cerebral Ventricles Gray Matter Heart Ventricle Radionuclide Imaging Radius Tissues Transients White Matter

Most recents protocols related to «Cerebral Ventricles»

Not available on PMC !

Example 40

FIG. 24A illustrates a 3D reconstruction depicting a section 50 um. EGFP labeled cells, both within and beyond the germinal zone, showed increased Numb immunoreactivity (red) relative to non-transfected cells in the same section (FIG. 24B). A portion of the germinal zone is shown at higher magnification in lower right corner on FIGS. 24A, 24B. The insets again show a relatively disorganized ventricular zone following transfection. This disorganization may have been related to the emigration of cells previously lining the ventricle, but might also reflect tissue injury due to electroporation alone (scale bar=100 um on FIGS. 24A, 24B and 100 um in lower right corner on FIGS. 24A, 24B.

Full text: Click here
Patent 2024
Cells Cerebral Ventricles Electroporation Figs Heart Ventricle Injections, Intraventricular Injuries Reconstructive Surgical Procedures Tissues Transfection
TAZ-KO mice were described previously (55 (link)). Adult (9–15 months of age) male TAZ-KO mice and their male wildtype littermates were sacrificed by CO2 narcosis and cervical dislocation. Heart tissues (ventricle) were dissected, rinsed in PBS, snap frozen in liquid nitrogen, and stored in a −80 °C freezer for later use. To isolate total protein and RNA, 30 to 40 mg of tissue was homogenized by sonication in RIPA buffer on ice. After centrifugation, the supernatants containing protein were used for immunoblotting analysis, whereas tissue pellets were used to extract total RNA using the RNeasy Plus Mini Kit (QIAGEN).
Full text: Click here
Publication 2023
Adult Buffers Centrifugation Cerebral Ventricles Freezing Heart Immunoblotting Joint Dislocations Males Mice, House Narcosis Neck Nitrogen Pellets, Drug Proteins Radioimmunoprecipitation Assay Tissues
Apple and Samsung devices were used for image acquisition. Unless otherwise noted, all image acquisition was performed using an iPhone XR (Apple). For convenience, time-lapse videos of the embryonic zebrafish heart were acquired using the ProCam 8 app, which allowed the 1X lens to be locked for use, and digital zoom extended to 4.0X. Video acquisition at 1080p resolution and 60 frames per second (fps) was used because 4 k resolution or higher frame rates decreased fluorescence sensitivity and signal:noise ratio. All images and videos were transferred to a laptop using Airdrop (Apple) or a USB cable to avoid video data compression. Videos were imported into Fiji14 (link) by first converting videos to a series of TIFF images (one per frame) using Adobe Photoshop. After opening smartphone videos in Photoshop, images were cropped and then saved as an image sequence using the File Export Render Video Photoshop Image Sequence (TIFF format) command. The image sequence was then opened in Fiji through the File Import Image Sequence command. For non-fluorescent time-lapse viewing of paramecia, zebrafish swimming, and tadpole and caterpillar escape responses, we used 1080p resolution with 120 fps acquisition.
For zebrafish heart videos, detection and measurement of heart chamber movements in some videos was aided by edge detection. In these instances, Fiji was used to detect edges using the Process Find Edges command. To detect fluorescence changes associated with atrium and ventricle movements, the raw or edge-detected image sequence was used and further analyzed within Fiji. First, the Analyze Set Measurements command was used to instruct Fiji to measure minimum and maximum gray values, mean gray values, and limit to threshold. The image stack was converted to greyscale using the Image Type 8-bit command. In instances where image drift or non-biological movements occurred, the Plugins Image Stabilizer command was used in attempt to eliminate this issue. The image was scanned for potential regions of interest (ROI) where the heart chamber walls consistently moved back and forth across the x–y axis. Once a ROI was defined, it was added using the Analyze Tools ROI manager window or the “t” shortcut. Concurrently to identifying a ROI, the Image Adjust Threshold window was used to establish a threshold whereby the moving chamber walls consistently moved into and out of the ROI box. Once an ideal combination of image threshold and ROI box position was established, the image was converted to binary data using the Process Binary command selecting default, dark, and black background settings. To measure fluorescence intensity within the ROI over time, Multi Measure tool within the ROI manager (under ‘More’ tab) was used to create a set of measurements over time. Raw data were cut and pasted directly into a Microsoft Excel spreadsheet. Within the spreadsheet, formulas were used to identify the onset of each heartbeat using the maximum intensity column, and plots were made using GraphPad Prism 7.0. The onset of each beat was defined by the transition from 0 to 255.
Full text: Click here
Publication 2023
Biopharmaceuticals Cerebral Ventricles Diet, Formula Embryo Epistropheus Fingers Fluorescence Heart Heart Atrium Hypersensitivity Lens, Crystalline Medical Devices Movement Paramecium prisma Pulse Rate Reading Frames Tadpole Zebrafish
The scratch assay was applied to evaluate cell migration and repair. After reaching 90%–100% confluency in wells of culture plates, cells were exposed to serum-free medium for 6 h, and each cultured well was scraped with a pipette tip in the same specification. Cells were washed with PBS to remove fragments. Microscope images of the same positions were acquired in after 0 and 30 h. Based on the percentage of wound closure area, cell migration was determined.
Transwell migration and invasion assays were conducted to evaluate the ability of cell migration and invasion. 24-well transwell chambers (Corning, United States) were used in the assay. For the invasion assay, matrigel (Corning, United States) was applied to the upper ventricle surface of the basement membrane of the transwell chamber. The insert was filled with 30,000 cells suspended in 150 ul serum-free serum before the assay. In the lower chamber, 700 ul medium containing 12% fetal serum was added for chemotactic stimulation. Cells were cultured for 24 h for migration assays and 40 h for invasion assays. Then cotton swabs were used to remove cells from the surface of the membrane. Cultured cells were fixed with 100% methanol and stained with 0.1% crystal violet. Random visual fields of 3 different inserts were captured, and the number of cells was counted.
After inoculating 3000 cells per well, Huh7 and Hep3B cells were grown for 8 and 10 days respectively in 6 well plates in complete medium. Cultured cells were fixed with 100% methanol and stained with 0.1% crystal violet. Each well was counted for the number of colonies.
Full text: Click here
Publication 2023
Biological Assay Cell Migration Assays Cells Cerebral Ventricles Cultured Cells Fetus Gossypium matrigel Membrane, Basement Methanol Microscopy Migration, Cell Plasma Membrane Serum Violet, Gentian Wounds
Image analysis was performed in NIS Elements, FIJI (Schindelin et al., 2012 (link)), QuPath (Bankhead et al., 2017 (link)), CellProfiler (Stirling et al., 2021 (link)), or Imaris. All analysis tools have been made available on GitHub (https://github.com/IGC-Advanced-Imaging-Resource/Hall2022_Paper; Murphy, 2022 ). Cerebellum and ventricle area was measured from PAS stained sagittal brain sections in QuPath. The number of cilia in E18.5 ribs was calculated using Batch Pipeline in Imaris, segmenting DAPI and cilia as surfaces. The number of ependymal cells with multiple basal bodies was calculated by segmenting FOP staining and cells in 2D using a CellProfiler pipeline. Briefly, an IdentifyPrimaryObjects module was used to detect the nuclei, followed by an IdentifySecondaryObjects module using the tubulin stain to detect the cell boundaries. Another Identify Primary objects module was used to detect the basal bodies and a RelateObjects module was used to assign parent–child relationships between the cells and basal bodies. The percentage of ciliated ependymal cells, and the number of ependymal cells with rosette-like FOP staining, and elongated FOP-positive structures were counted by eye using NIS Elements Counts Tool. Analysis of cultured ependymal cells (beat frequency, number of cilia, coordinated beat pattern) and beat frequency determination in mTECs and trachea was assessed in FIJI by eye while blinded to genotype. The number of centrioles and cilia in cultured ependymal cells was manually calculated using Imaris. CEP131 and MIB1 intensity at satellites was calculated in FIJI using a macro which segmented basal bodies with Gamma Tubulin, then drew concentric rings, each 0.5 μm wider than the previous and calculated the intensity of MIB1 and CEP131 within these rings. CP110 intensity in MEFs was calculated by manually defining mother and daughter centrioles in FIJI, CP110 intensity in ependyma and tracheas was calculated by segmenting FOP in 3D in Imaris and calculating CP110 intensity within this volume. Image quantification in RPE1 cells were performed using CellProfiler as described previously (Kumar et al., 2021 (link)). Images were prepared for publication using FIJI, Imaris, Adobe Photoshop, Illustrator, and InDesign.
Full text: Click here
Publication 2023
Basal Bodies Brain Cell Nucleus Cells Centrioles Cerebellum Cerebral Ventricles Cilia Cultured Cells DAPI Daughter Ependyma gamma-Tubulin Genotype Mothers Ribs Satellite Viruses Stains Trachea Tubulin

Top products related to «Cerebral Ventricles»

Sourced in United States, Germany, Japan, Spain, China, United Kingdom, France, Italy, Canada
Fast Green is a laboratory staining dye used in various scientific applications. It is a synthetic, water-soluble dye that provides a green coloration. The core function of Fast Green is to stain and visualize specific components or structures within biological samples during microscopy and other analytical procedures.
Sourced in United States, Germany, Spain, China, United Kingdom, Sao Tome and Principe, France, Denmark, Italy, Canada, Japan, Macao, Belgium, Switzerland, Sweden, Australia
MS-222 is a chemical compound commonly used as a fish anesthetic in research and aquaculture settings. It is a white, crystalline powder that can be dissolved in water to create a sedative solution for fish. The primary function of MS-222 is to temporarily immobilize fish, allowing for safe handling, examination, or other procedures to be performed. This product is widely used in the scientific community to facilitate the study and care of various fish species.
Sourced in United States, United Kingdom, Germany, Canada, Japan, Sweden, Austria, Morocco, Switzerland, Australia, Belgium, Italy, Netherlands, China, France, Denmark, Norway, Hungary, Malaysia, Israel, Finland, Spain
MATLAB is a high-performance programming language and numerical computing environment used for scientific and engineering calculations, data analysis, and visualization. It provides a comprehensive set of tools for solving complex mathematical and computational problems.
Sourced in United States, China, Japan, Germany, United Kingdom, Canada, France, Italy, Australia, Spain, Switzerland, Netherlands, Belgium, Lithuania, Denmark, Singapore, New Zealand, India, Brazil, Argentina, Sweden, Norway, Austria, Poland, Finland, Israel, Hong Kong, Cameroon, Sao Tome and Principe, Macao, Taiwan, Province of China, Thailand
TRIzol reagent is a monophasic solution of phenol, guanidine isothiocyanate, and other proprietary components designed for the isolation of total RNA, DNA, and proteins from a variety of biological samples. The reagent maintains the integrity of the RNA while disrupting cells and dissolving cell components.
Sourced in United States, Germany, United Kingdom, China, France, Switzerland, Italy, Macao, Japan
Tricaine is a laboratory equipment product manufactured by Merck Group. It is a chemical compound commonly used as an anesthetic for fish and amphibians in research and aquaculture settings. Tricaine functions by inhibiting sodium ion channels, resulting in a reversible state of unconsciousness in the organism.
Sourced in United States, China, United Kingdom, Germany, France, Australia, Canada, Japan, Italy, Switzerland, Belgium, Austria, Spain, Israel, New Zealand, Ireland, Denmark, India, Poland, Sweden, Argentina, Netherlands, Brazil, Macao, Singapore, Sao Tome and Principe, Cameroon, Hong Kong, Portugal, Morocco, Hungary, Finland, Puerto Rico, Holy See (Vatican City State), Gabon, Bulgaria, Norway, Jamaica
DMEM (Dulbecco's Modified Eagle's Medium) is a cell culture medium formulated to support the growth and maintenance of a variety of cell types, including mammalian cells. It provides essential nutrients, amino acids, vitamins, and other components necessary for cell proliferation and survival in an in vitro environment.
Sourced in United States, Germany, China, Japan, United Kingdom, Canada, France, Italy, Australia, Spain, Switzerland, Belgium, Denmark, Netherlands, India, Ireland, Lithuania, Singapore, Sweden, Norway, Austria, Brazil, Argentina, Hungary, Sao Tome and Principe, New Zealand, Hong Kong, Cameroon, Philippines
TRIzol is a monophasic solution of phenol and guanidine isothiocyanate that is used for the isolation of total RNA from various biological samples. It is a reagent designed to facilitate the disruption of cells and the subsequent isolation of RNA.
Sourced in United States, Germany, Italy
The Stereotaxic frame is a laboratory instrument used to immobilize and position the head of a subject, typically an animal, during surgical or experimental procedures. It provides a secure and reproducible method for aligning the subject's head in a three-dimensional coordinate system to enable precise targeting of specific brain regions.
Sourced in United States, China, United Kingdom, Germany, Australia, Japan, Canada, Italy, France, Switzerland, New Zealand, Brazil, Belgium, India, Spain, Israel, Austria, Poland, Ireland, Sweden, Macao, Netherlands, Denmark, Cameroon, Singapore, Portugal, Argentina, Holy See (Vatican City State), Morocco, Uruguay, Mexico, Thailand, Sao Tome and Principe, Hungary, Panama, Hong Kong, Norway, United Arab Emirates, Czechia, Russian Federation, Chile, Moldova, Republic of, Gabon, Palestine, State of, Saudi Arabia, Senegal
Fetal Bovine Serum (FBS) is a cell culture supplement derived from the blood of bovine fetuses. FBS provides a source of proteins, growth factors, and other components that support the growth and maintenance of various cell types in in vitro cell culture applications.
Sourced in United States
The ECM 830 is a single-channel, computer-controlled electrophysiology stimulator designed for tissue culture and in vitro studies. It provides programmable electrical stimulation with adjustable voltage, current, and pulse duration parameters. The device is capable of delivering both monophasic and biphasic stimuli to biological samples.

More about "Cerebral Ventricles"

Cerebral ventricles, also known as ventricular system or brain ventricles, are a network of interconnected cavities within the brain that are filled with cerebrospinal fluid (CSF).
This fluid-filled system plays a crucial role in cushioning and nourishing the brain.
The main ventricles include the lateral, third, and fourth ventricles, each with distinct anatomical features and functions.
The lateral ventricles are the largest and most prominent of the cerebral ventricles, located within the cerebral hemispheres.
They are responsible for the production and circulation of CSF, which is essential for maintaining the brain's optimal environment.
The third ventricle is a midline structure located between the two cerebral hemispheres, while the fourth ventricle is situated at the base of the brain, connecting to the central canal of the spinal cord.
Researchers studying the cerebral ventricles may utilize a variety of techniques and tools, such as Fast Green, MS-222 (Tricaine), MATLAB, TRIzol reagent, and DMEM (Dulbecco's Modified Eagle Medium).
These reagents and software can be employed for tasks like staining, anesthesia, image analysis, RNA extraction, and cell culture, respectively.
Additionally, the use of a stereotaxic frame can help in precisely targeting specific regions of the ventricles during experimental procedures.
Optimizing research protocols and enhancing reproducibility are crucial aspects of cerebral ventricle studies.
PubCompare.ai's AI-driven platform can assist researchers in this endeavor by providing data-driven insights and facilitating the identification of the most effective procedures and products from literature, preprints, and patents.
This cutting-edge tool can help streamline the research process and contribute to the advancement of our understanding of the cerebral ventricles and their role in brain function and development.