Subjects’ Monofilament and Two-Point Discrimination scores for the index and thumb fingertips were compared with and without noise. Specifically, sensory scores without noise were recorded at the beginning (pre) and end (post) of the testing session. Sensory scores for the pre and post test were compared to ensure no learning effect and no residual effect of noise after the exposure during the one day testing session. In between the pre and post sensory tests without noise, sensory scores with noise were recorded while subthreshold vibrotactile noise was applied to four different locations at three noise intensities. The subthreshold vibrotactile noise was turned on immediately before each sensory test and was turned off immediately after each sensory test (lasting approximately 1 minute each). The testing session lasted for approximately two hours for each subject.
Subthreshold vibrotactile noise was white noise bandwidth filtered at 0 to 500 Hz, applied with a C-3 Tactor (Engineering Acoustics, Inc. Casselberry, Florida). Due to the characteristics of the C-3 Tactor, the vibration amplitude could have been larger for 100-300 Hz which includes the sensitive range of the Pacinian corpuscles. The noise was applied to one of four locations in the paretic upper limb (Figure
1): 1) dorsal hand approximately 2 cm proximal to the index finger knuckle; 2) dorsal hand approximately 2 cm proximal to the thumb knuckle; 3) dorsal wrist, medial to the radial styloid process; and 4) volar wrist, medial to the radial styloid process. These locations were arbitrarily chosen with the intention of developing a future wearable rehabilitation device for stroke survivors. Since the long-term goal of the research is to improve dexterity and grip control, noise locations that would interfere with gripping, such as the fingertip or palm, were avoided. Presentation of noise locations was block randomized.
Noise intensities were set to 40%, 60%, or 80% of the sensory thresholds specific for each location. The order of testing different noise intensities was randomized within each location block. To determine the sensory threshold, the noise intensity was increased and decreased until the subject was barely able to distinguish between an “off” and an “on” presentation of the vibrotactile noise (i.e., the method of ascending and descending limits [22 (
link)]). Subjects’ mean sensory threshold occurred when the Tactor was driven by current of 0.17 A peak-to-peak (Table
1). There is a linear relationship between the current and amplitude of the vibration. According to the data sheet from the manufacturer, 0.17 A peak-to-peak corresponds to a maximum amplitude of 260 μm. Subthreshold noise intensities were chosen not only so that subjects could not distinguish between trials with and without noise [21 (
link)], but also because suprathreshold noise has been shown to degrade performance [23 (
link)].
The Monofilament and Two-Point Discrimination Tests were administered using standard testing measures. For the Monofilament score, beginning with the baseline 2.83 Monofilament (indicating the threshold for “normal sensing”), the Monofilament was applied to the fingertip at least three times and the smallest Monofilament for which the subjects responded “yes” and could identify the correct finger that was touched marked the score [29 ]. The Two-Point Discrimination test was conducted so that subjects were asked to respond either “one” for a single point and “two” for two points separated by a small distance [29 ]. One and two point stimuli were alternated randomly. The smallest distance where the subjects responded correctly three consecutive times to identifying two separated points was used for their Two-Point Discrimination score. A score of 2.83 [30 ] and 5 mm [31 (
link)] was considered normal for the Monofilament test and Two-Point Discrimination tests, respectively.
Enders L.R., Hur P., Johnson M.J, & Seo N.J. (2013). Remote vibrotactile noise improves light touch sensation in stroke survivors’ fingertips via stochastic resonance. Journal of NeuroEngineering and Rehabilitation, 10, 105.