Protocol full text hidden due to copyright restrictions
Open the protocol to access the free full text link
Example 250
The structure of the compound of Example 250 is depicted in FIG. 1.
The structure of the compound of Example 250 is depicted in FIG. 1.
(+)-Sodium L-ascorbate (4.7 mg, 0.02 mmol) was added to a solution of the foregoing compound (25 mg, 0.01 mmol), N-but-3-yn-1-yl-N2,N6-dipent-4-ynoyl-L-lysinamide (2.103 mg, 5.88 μmol) and CuSO4.5H2O (5.88 mg, 0.02 mmol) in t-BuOH (5 mL)/H2O (10 mL) under N2 atmosphere. The solution turned milky. After 4 hours the reaction was quenched with aqueous Na2CO3 (10%, 0.050 mL, 0.05 mmol) and filtered. The filtrate was lyophilized and the residue was purified by preparative RP-HPLC (Column: Waters XSelect CSH C18 ODB 5 μm 150×19 mm; mobile phase: A—H2O/TFA 100/0.15 and B—MeCN with a gradient 5% B for 0.5 min, 5-36% B in 1.5 min, 36-41% B in 14 min; flow 30 mL/min at rt, detection 230 nm) to give the title compound (6.8 mg, 9%). HRMS: calculated for (C305H432F3N81O72S9+4H)4+1682.5096; found (ESI [M+4H]4+) 1682.5154, purity 97%.
Example 251
The structure of the compound of Example 251 is depicted in FIG. 5.
(+)-Sodium L-ascorbate (16 mg, 0.08 mmol) was added to a solution of the foregoing compound (105 mg, 0.05 mmol), N2,N6-dipent-4-ynoyl-L-lysine (6 mg, 0.02 mmol) and CuSO4.5H2O (20 mg, 0.08 mmol) in t-BuOH (10 mL)/H2O (20 mL) under N2 atmosphere. The solution turned milky. The reaction was stirred at rt for 6.5 h and more N2,N6-dipent-4-ynoyl-L-lysine (6 mg, 0.02 mmol) was added. After 23 h the reaction was quenched with aqueous Na2CO3 (0.166 mL, 0.16 mmol) and filtered. The filtrate was freeze dried, and the crude product purified by preparative HPLC (Column: Waters Atlantis T3 ODB 5 μm 150×19 mm; mobile phase: A—H2O/TFA 100/0.15 and B—MeCN with a gradient 5% B for 0.5 min, 5-38% B in 1.5 min, 38-43% B in 14 min; flow 30 mL/min at rt, detection 230 nm) to give the title compound obtained (5.5 mg, 3%). HRMS: calculated for (C200H280F2N34O48S6+3H)3+ 1479.6552; found (ESI [M+3H]3+) 1479.6583, purity 82%.
Example 9
Example 9 was made by combining 541.46 g (54.15% by weight) sucrose, 332.7 g (33.3% by weight) corn syrup, 105.39 (10.5% by weight) water, 5.37 g (0.54% by weight) brown food coloring, 5.00 g (0.50% by weight) liquid chocolate flavoring, and 10.07 g (1.01% by weight) stevia.
Example 9 was an amorphous solid that disintegrated in less than one minute in milk at a refrigerated temperature of about 40° F. to about 32° F. (about 4° C. to about 0° C.).
EXAMPLE 17
Yoghurt
Different glucosyl Stevia compositions (0.03%) and sucrose (4%) were dissolved in low fat milk. Glucosyl Stevia compositions were represented by Samples 1b, 2b, 3, and 5, obtained according to EXAMPLES 10, 11, 5, and 12, respectively. After pasteurizing at 82° C. for 20 minutes, the milk was cooled to 37° C. A starter culture (3%) was added and the mixture was incubated at 37° C. for 6 hours then at 5° C. for 12 hours.
The sensory properties were evaluated by 20 panelists. The best results were obtained in samples prepared by high purity short-chain glucosyl Stevia compositions (containing two or less α-1,4-glucosyl residues) derivatives (Samples 1b and 2b). The panelists noted rounded and complete flavor profile and mouthfeel in samples prepared with Samples 1b and 2b.
Example 3
Example 3 was made by combining 70 g of aquafaba (61% by weight), 40 g of sucrose (35% by weight), 1.2 g sucralose (1% by weight), 1.3 g vegetable juice liquid color (1% by weight), and 2.9 g natural mixed berry flavoring (3% by weight). The aquafaba contained about 90% water and about 2% protein, by weight. The combined ingredients were whipped to form a foam. The foam was piped onto a tray and baked to form a stable, baked solid foam.
The solid foam was added to 250-mL milk at a refrigerated temperature of about 40° F. to about 32° F. (about 4° C. to about 0° C.). The foam disintegrated quickly to form a purplish, mixed berry-flavored beverage.
Notifications