The largest database of trusted experimental protocols
> Anatomy > Body Substance > Serum

Serum

Serum is the clear, yellowish fluid that separates from the blood when it coagulates.
It contains various proteins, electrolytes, and other substances essential for cell growth and metabolism.
Serum is widely used in medical and research settings, particularly in cell culture and diagnostic procedures.
Optimizing serum protocols is crucial for ensuring reproducibility and accuracy in biological experiments.
PubCompare.ai helps researchers streamline their serum experimentation by providing intelligent protocol selection and analysis tools, leveraging AI-driven comparisons of published, pre-print, and patent-based methods.
This platform enhances researchers' workflows and promotes enhanced reproducibility in their studies.

Most cited protocols related to «Serum»

CKD-EPI collaborators provided data from research studies and clinical populations (hereafter referred to as “studies”). Briefly, we identified studies from the Medline database and through investigators' and collaborators' contacts (Appendix Figure 1). Key inclusion criteria were measurement of GFR using exogenous filtration markers and ability to calibrate serum creatinine assay. Studies for development and internal validation of equations were restricted to those using urinary clearance of iothalamate. Studies for external validation included iothalamate and other filtration markers. Ten studies (6 research studies and 4 clinical populations) with a total of 8,254 participants were divided randomly into separate datasets for development (n=5,504) and internal validation (n=2,750) (Appendix Table 1) (3 (link), 9 (link)-15 (link)). Sixteen other studies (6 research studies and 10 clinical populations) with a total of 3,896 participants were used for external validation (Appendix Table 2).(13 (link), 16 (link)-28 (link))
Publication 2009
Biological Assay Creatinine Filtration Iothalamate Population Group Serum Urine
The National Health and Nutrition Examination Survey (NHANES) is a cross-sectional, multistage, stratified, clustered probability samples of the civilian, non-institutionalized population of the U.S. conducted by the National Center of Health Statistics and appropriate for estimates of prevalence of chronic conditions in the U.S. Data were analyzed from 1999-2000, 2001-2002, 2003-2004, and 2005-2006 surveys. The study population for this analysis was limited to 16,032 participants (3,754 in 1999-2000, 4,297 in 2001-2002, 4,017 in 2003-2004, and 3,964 in 2005-2006), who were 20 years and older, had completed the examination in the mobile examination center, were not pregnant or menstruating, and were not missing serum creatinine measurements and did not have an estimated GFR below 15 ml/min/1.73 m2. Methods are similar to previous reports and are summarized briefly here (7 (link)).
GFR was not measured in NHANES. Serum creatinine was measured using a kinetic rate Jaffe method and re-calibrated to standardized creatinine measurements obtained in at the Cleveland Clinic Research Laboratory (Cleveland, OH) (33 (link)). GFR was estimated using the MDRD Study and the newly developed CKD-EPI equation. Estimates that exceeded 200 mL/min/1.73 m2 were truncated at that level. Methods for collection, analysis, and reporting for albuminuria have been described (7 (link), 34 (link)). Albuminuria was defined as albumin-to-creatinine ratio ≥30 mg/g. Repeated measurements, obtained in a subset of 1,241 NHANES 1988-1994 participants approximately 2 weeks after the original examination were used to estimate the persistence of albuminuria (34 (link)). NHANES does not have accurate diagnoses of causes of kidney disease. CKD was defined as persistent albuminuria or estimated GFR <60 ml/min/1.73 m2 (1 (link)). CKD was classified according to estimated GFR stages as defined above. Distributions of estimated GFR, estimated GFR stages and prevalence of CKD were compared for both equations.
Analyses were performed incorporating the sampling weights to obtain unbiased estimates from the complex NHANES sampling design using Stata (Version 10.0, StataCorp, College Station, TX). Standard errors for all estimates were obtained using the Taylor series (linearization) method following NHANES recommended procedures and weights (35 -37 ). Confidence intervals for prevalence estimates for CKD stages incorporating persistence data on of albuminuria were made using bootstrap methods implemented in Stata. Prevalence estimates were applied to the 2000 U.S. Census to obtain estimates of the number of individuals with CKD in the U.S.
Publication 2009
Albumins Chronic Condition Creatinine Diagnosis Kidney Diseases Kinetics Serum
The Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) conducted the study under a cooperative agreement with the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK). CKD-EPI collaborators provided data from clinical research studies and clinical populations.3 (link) GFR measurements were based on urinary or plasma clearance of exogenous filtration markers. Data from studies of urinary clearance of iothalamate were used for development and internal validation, and data from studies of other filtration markers were used for external validation. We included 13 studies with 5352 participants, who were randomly divided into separate data sets for development (3522) and internal validation (1830) (see Table S1a in the Supplementary Appendix, available with the full text of this article at NEJM .org). We included 5 other studies with 1119 participants for external validation (Table S1b in the Supplementary Appendix). We excluded studies involving transplant recipients because our preliminary analyses showed large variations among these studies in the relationship between serum cystatin C levels and measured GFR. The institutional review boards of all participating institutions approved the study.
The NIDDK was substantially involved in the design of the study and in the collection, analysis, and interpretation of the data; the NIDDK was not required to approve the final manuscript before submission for publication. The first author had full access to all the data in the study, vouches for the integrity of the data and the accuracy of the data analysis for the CKD-EPI database, and wrote the first draft of the manuscript. For a list of collaborators who provided data, see the Supplementary Appendix.
Publication 2012
Diabetic Nephropathy Digestive System Ethics Committees, Research Filtration Iothalamate Plasma Population Group Post-gamma-Globulin Serum Transplant Recipients Urine
hESC cultures were disaggregated using accutase for 20 minutes, washed using hESC media and pre-plated on gelatin for 1 hour at 37°C in the presence of ROCK inhibitor to remove MEFs. The nonadherent hESC were washed and plated on matrigel at a density of 10,000–25,000 cells/cm2 on matrigel (BD) coated dishes in MEF conditioned hESC media (CM) spiked with 10 ng/mL of FGF-2 and ROCK-inhibitor. Ideal cell density was found to be 18,000 cells/cm2. The ROCK inhibitor was withdrawn, and hESC were allowed to expand in CM for 3 days or until they were nearly confluent. The initial differentiation media conditions included knock out serum replacement (KSR) media with 10 nM TGF-b inhibitor (SB431542, Tocris) and 500 ng/mL of Noggin (R&D). Upon day 5 of differentiation, the TGF-b inhibitor was withdrawn and increasing amounts of N2 media (25%, 50%, 75%) was added to the KSR media every two days while maintaining 500 ng/mL of Noggin. For MS5 induction, established methods previously reported were used22 (link).
Publication 2009
4-(5-benzo(1,3)dioxol-5-yl-4-pyridin-2-yl-1H-imidazol-2-yl)benzamide accutase Cells Culture Media, Conditioned FGF10 protein, human Fibroblast Growth Factor 2 Gelatins Human Embryonic Stem Cells Hyperostosis, Diffuse Idiopathic Skeletal matrigel noggin protein Serum Transforming Growth Factor beta
For all studies, we recalibrated serum creatinine values to the standardized creatinine measurements using the Roche enzymatic method (Roche-Hitachi P-Module instrument with Roche Creatininase Plus assay, Hoffman-La Roche, Ltd., Basel, Switzerland) at the Cleveland Clinic Research Laboratory (Cleveland, OH) as previously described (29 (link), 30 (link)). We compared new equations to the MDRD Study equation, given by: estimated GFR = 175 × standardized Scr −1.154 × age−0.203 × 1.212 [if black] × 0.742 [if female], where GFR is expressed as mL/min/1.73 m2 of body surface area41 and Scr is expressed in mg/dL(4 (link)).
Publication 2009
Biological Assay creatininase Creatinine Enzymes Females Human Body Serum

Most recents protocols related to «Serum»

Example 6

TbpB and NMB0313 genes were amplified from the genome of Neisseria meningitidis serotype B strain B16B6. The LbpB gene was amplified from Neisseria meningitidis serotype B strain MC58. Full length TbpB was inserted into Multiple Cloning Site 2 of pETDuet using restriction free cloning ((F van den Ent, J. Löwe, Journal of Biochemical and Biophysical Methods (Jan. 1, 2006)).). NMB0313 was inserted into pET26, where the native signal peptide was replaced by that of pelB. Mutations and truncations were performed on these vectors using site directed mutagenesis and restriction free cloning, respectively. Pairs of vectors were transformed into E. coli C43 and were grown overnight in LB agar plates supplemented with kanamycin (50 μg/mL) and ampicillin (100 μg/mL).

tbpB genes were amplified from the genomes of M. catarrhalis strain 035E and H. influenzae strain 86-028NP and cloned into the pET52b plasmid by restriction free cloning as above. The corresponding SLAMs (M. catarrhalis SLAM 1, H. influenzae SLAM1) were inserted into pET26b also using restriction free cloning. A 6His-tag was inserted between the pelB and the mature SLAM sequences as above. Vectors were transformed into E. coli C43 as above.

Cells were harvested by centrifugation at 4000 g and were twice washed with 1 mL PBS to remove any remaining growth media. Cells were then incubated with either 0.05-0.1 mg/mL biotinylated human transferrin (Sigma-aldrich T3915-5 MG), α-TbpB (1:200 dilution from rabbit serum for M. catarrhalis and H. influenzae; 1:10000 dilution from rabbit serum for N. meningitidis), or α-LbpB (1:10000 dilution from rabbit serum-obtained a gift from J. Lemieux) or α-fHbp (1:5000 dilution from mouse, a gift from D. Granoff) for 1.5 hours at 4° C., followed by two washes with 1 mL of PBS. The cells were then incubated with R-Phycoerythrin-conjugated Streptavidin (0.5 mg/ml Cedarlane) or R-phycoerythrin conjugated Anti-rabbit IgG (Stock 0.5 mg/ml Rockland) at 25 ug/mL for 1.5 hours at 4° C. The cells were then washed with 1 mL PBS and resuspended in 200 uL fixing solution (PBS+2% formaldehyde) and left for 20 minutes. Finally, cells were washed with 2×1 mL PBS and transferred to 5 mL polystyrene FACS tubes. The PE fluorescence of each sample was measured for PE fluorescence using a Becton Dickinson FACSCalibur. The results were analyzed using FLOWJO software and were presented as mean fluorescence intensity (MFI) for each sample. For N. meningtidis experiments, all samples were compared to wildtype strains by normalizing wildtype fluorescent signals to 100%. Errors bars represent the standard error of the mean (SEM) across three experiments. Results were plotted statistically analysed using GraphPad Prism 5 software. The results shown in FIG. 6 for the SLPs, TbpB (FIG. 6A), LbpB. (FIG. 6B) and fHbp (FIG. 6C) demonstrate that SLAM effects translocation of all three SLP polypeptides in E. coli. The results shown in FIG. 10 demonstrate that translocation of TbpB from M. catarrhalis (FIG. 10C) and in H. influenzae (FIG. 10D) in E. coli require the co-expression of the required SLAM protein (Slam is an outer membrane protein that is required for the surface display of lipidated virulence factors in Neisseria. Hooda Y, Lai C C, Judd A, Buckwalter C M, Shin H E, Gray-Owen S D, Moraes T F. Nat Microbiol. 2016 Feb. 29; 1:16009).

Full text: Click here
Patent 2024
ADRB2 protein, human Agar Ampicillin anti-IgG Cells Centrifugation Cloning Vectors Culture Media Escherichia coli Fluorescence Formaldehyde Genes Genome Haemophilus influenzae Homo sapiens Kanamycin Lipoproteins Membrane Proteins Moraxella catarrhalis Mus Mutagenesis, Site-Directed Mutation Neisseria Neisseria meningitidis Phycoerythrin Plasmids Polypeptides Polystyrenes prisma Rabbits Serum Signaling Lymphocytic Activation Molecule Family Member 1 Signal Peptides Strains Streptavidin Technique, Dilution Transferrin Translocation, Chromosomal Virulence Factors

Example 20

The instant study is designed to test the immunogenicity in rabbits of candidate betacoronavirus (e.g., MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH or HCoV-HKU1 or a combination thereof) vaccines comprising a mRNA polynucleotide encoding the spike (S) protein, the S1 subunit (S1) of the spike protein, or the S2 subunit (S2) of the spike protein obtained from a betacoronavirus (e.g., MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH or HCoV-HKU1).

Rabbits are vaccinated on week 0 and 3 via intravenous (IV), intramuscular (IM), or intradermal (ID) routes. One group remains unvaccinated and one is administered inactivated betacoronavirus. Serum is collected from each rabbit on weeks 1, 3 (pre-dose) and 5. Individual bleeds are tested for anti-S, anti-S1 or anti-S2 activity via a virus neutralization assay from all three time points, and pooled samples from week 5 only are tested by Western blot using inactivated betacoronavirus (e.g., inactivated MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH or HCoV-HKU1).

In experiments where a lipid nanoparticle (LNP) formulation is used, the formulation may include a cationic lipid, non-cationic lipid, PEG lipid and structural lipid in the ratios 50:10:1.5:38.5. The cationic lipid is DLin-KC2-DMA (50 mol %) or DLin-MC3-DMA (50 mol %), the non-cationic lipid is DSPC (10 mol %), the PEG lipid is PEG-DOMG (1.5 mol %) and the structural lipid is cholesterol (38.5 mol %), for example.

Full text: Click here
Patent 2024
Antigens Betacoronavirus Biological Assay Cations Cholesterol Coronavirus 229E, Human Coronavirus OC43, Human Hemorrhage Human coronavirus HKU1 Lipid Nanoparticles Lipids Middle East Respiratory Syndrome Coronavirus M protein, multiple myeloma NL63, Human Coronavirus Oryctolagus cuniculus Polynucleotides Protein Subunits Rabbits RNA, Messenger Serum Severe acute respiratory syndrome-related coronavirus spike protein, SARS-CoV-2 Vaccines Virus Physiological Phenomena

Example 1

The sequence coding for the light chain variable region of the antibody was inserted into vector pFUSE2ss-CLIg-hK (Invivogen, Catalog Number: pfuse2ss-hclk) using EcoRI and BsiWI restriction sites to construct a light chain expression vector. The sequence coding for the heavy chain variable region of the antibody was inserted into vector pFUSEss-CHIg-hG2 (Invivogen, Catalog Number: pfusess-hchg2) or vector pFUSEss-CHIg-hG4 (Invivogen, Catalog Number: pfusess-hchg4) using EcoRI and NheI restriction sites to construct a heavy chain expression vector.

The culture and transfection of Expi293 cells were performed in accordance with the handbook of Expi293™ Expression System Kit from Invitrogen (Catalog Number: A14635). The density of the cells was adjusted to 2×106 cells/ml for transfection, and 0.6 μg of the light chain expression vector as described above and 0.4 μg of the heavy chain expression vector as described above were added to each ml of cell culture, and the supernatant of the culture was collected four days later.

The culture supernatant was subjected to non-reduced SDS-PAGE gel electrophoresis in accordance with the protocol described in Appendix 8, the Third edition of the “Molecular Cloning: A Laboratory Manual”.

Pictures were taken with a gel scanning imaging system from BEIJING JUNYI Electrophoresis Co., LTD and in-gel quantification was performed using Gel-PRO ANALYZER software to determine the expression levels of the antibodies after transient transfection. Results were expressed relative to the expression level of control antibody 1 (control antibody 1 was constructed according to U.S. Pat. No. 7,186,809, which comprises a light chain variable region as set forth in SEQ ID NO: 10 of U.S. Pat. No. 7,186,809 and a heavy chain variable region as set forth in SEQ ID NO: 12 of U.S. Pat. No. 7,186,809, the same below) (control antibody 2 was constructed according to U.S. Pat. No. 7,638,606, which comprises a light chain variable region as set forth in SEQ ID NO: 6 of U.S. Pat. No. 7,638,606 and a variable region as set forth in SEQ ID NO: 42 of U.S. Pat. No. 7,638,606, the same below). See Tables 2a-2c below for the results.

TABLE 2a
Expression levels of the antibodies of the present
invention after transient transfection (antibodies whose
expression levels are significantly higher than that of control antibody 1):
Number ofExpression level vsNumber of Expression level vs
the antibodycontrol antibody 1the antibodycontrol antibody 1
L1021H10002.08L1000H10281.27
L1020H10001.58L1000H10151.19
L1000H10271.56L1000H10321.18
L1000H10241.51L1000H10261.15
L1000H10251.48L1021H10291.12
L1001H10001.48L1000H10301.1
L1021H10161.43L1024H10311.08
L1000H10141.35L1000H10161.05

TABLE 2b
Expression levels of the antibodies of the present
invention after transient transfection (antibodies whose
expression levels are slightly lower than that of control antibody 1):
Number of Expression level vsNumber of Expression level vs
the antibodycontrol antibody 1the antibodycontrol antibody 1
L1000H10310.99L1017H10000.85
L1021H10310.99L1020H10160.84
L1020H10290.96L1000H10090.81
control anti-0.93L1000H10070.8
body 2
L1012H10000.89L1000H10230.8
L1019H10000.87L1020H10270.78
L1020H10310.87L1024H10070.77
L1021H10200.87L1000H10130.75
L1000H10290.86L1020H10070.74
L1008H10000.86L1021H10070.74
L1000H10010.85L1000H10210.71

TABLE 2c
Expression levels of the antibodies of the present
invention after transient transfection (antibodies whose
expression levels are significantly lower than that of control antibody 1):
Number ofExpression level vsNumber of Expression level vs
the antibodycontrol antibody 1the antibodycontrol antibody 1
L1000H10200.69L1024H10000.52
L1010H10000.69L1000H10080.51
L1000H10220.67L1000H10370.5
L1000H10120.64L1007H10000.49
L1022H10000.64L1016H10000.49
L1011H10000.63L1000H10170.47
L1000H10110.62L1000H10350.46
L1000H10330.62L1012H10270.46
L1020H10200.61L1018H10000.44
L1000H10360.6L1023H10000.43
L1021H10270.6L1012H10160.42
L1012H10070.59L1013H10000.41
L1009H10000.57L1000H10340.4
L1012H10200.57L1000H10180.35
L1012H10310.56L1000H10190.34
L1000H10380.54L1015H10000.27
L1012H10290.54L1014H10000.17
L1000H10100.53

Example 4

6-8 week-old SPF Balb/c mice were selected and injected subcutaneously with antibodies (the antibodies of the present invention or control antibody 2) in a dose of 5 mg/kg (weight of the mouse). Blood samples were collected at the time points before administration (0 h) and at 2, 8, 24, 48, 72, 120, 168, 216, 264, 336 h after administration. For blood sampling, the animals were anesthetized by inhaling isoflurane, blood samples were taken from the orbital venous plexus, and the sampling volume for each animal was about 0.1 ml; 336 h after administration, the animals were anesthetized by inhaling isoflurane and then euthanized after taking blood in the inferior vena cava.

No anticoagulant was added to the blood samples, and serum was isolated from each sample by centrifugation at 1500 g for 10 min at room temperature within 2 h after blood sampling. The collected supernatants were immediately transferred to new labeled centrifuge tubes and then stored at −70° C. for temporary storage. The concentrations of the antibodies in the mice were determined by ELISA:

1. Preparation of Reagents

sIL-4Rα (PEPRO TECH, Catalog Number: 200-04R) solution: sIL-4Rα was taken and 1 ml ddH2O was added therein, mixed up and down, and then a solution of 100 μg/ml was obtained. The solution was stored in a refrigerator at −20° C. after being subpacked.

Sample to be tested: 1 μl of serum collected at different time points was added to 999 μl of PBS containing 1% BSA to prepare a serum sample to be tested of 1:1000 dilution.

Standard sample: The antibody to be tested was diluted to 0.1 μg/ml with PBS containing 1% BSA and 0.1% normal animal serum (Beyotime, Catalog Number: ST023). Afterwards, 200, 400, 600, 800, 900, 950, 990 and 1000 μl of PBS containing 1% BSA and 0.1% normal animal serum were respectively added to 800, 600, 400, 200, 100, 50, 10 and 0 μl of 0.1 μg/ml antibodies to be tested, and thus standard samples of the antibodies of the present invention were prepared with a final concentration of 80, 60, 40, 20, 10, 5, 1, or 0 ng/ml respectively.

2. Detection by ELISA

250 μl of 100 μg/ml sIL-4Rα solution was added to 9.75 ml of PBS, mixed up and down, and then an antigen coating buffer of 2.5 μg/ml was obtained. The prepared antigen coating buffer was added to a 96-well ELISA plate (Corning) with a volume of 100 μl per well. The 96-well ELISA plate was incubated overnight in a refrigerator at 4° C. after being wrapped with preservative film (or covered). On the next day, the 96-well ELISA plate was taken out and the solution therein was discarded, and PBS containing 2% BSA was added thereto with a volume of 300 μl per well. The 96-well ELISA plate was incubated for 2 hours in a refrigerator at 4° C. after being wrapped with preservative film (or covered). Then the 96-well ELISA plate was taken out and the solution therein was discarded, and the plate was washed 3 times with PBST. The diluted standard antibodies and the sera to be detected were sequentially added to the corresponding wells, and three duplicate wells were made for each sample with a volume of 100 μl per well. The ELISA plate was wrapped with preservative film (or covered) and incubated for 1 h at room temperature. Subsequently, the solution in the 96-well ELISA plate was discarded and then the plate was washed with PBST for 3 times. Later, TMB solution (Solarbio, Catalog Number: PR1200) was added to the 96-well ELISA plate row by row with a volume of 100 μl per well. The 96-well ELISA plate was placed at room temperature for 5 minutes, and 2 M H2SO4 solution was added in immediately to terminate the reaction. The 96-well ELISA plate was then placed in flexstation 3 (Molecular Devices), the values of OD450 were read, the data were collected and the results were calculated with Winnonlin software. The pharmacokinetic results were shown in FIG. 1 and Table 6 below.

TABLE 6
Pharmacokinetic results of the antibodies of the present invention in mouse
Area
TimeUnder the
HalftoPeakdrug-timeVolume ofClearance
lifepeakconcentrationCurvedistributionrate
Numberhhμg/mlh*μg/mlml/kgml/h/kg
L1020H1031Mean269.347233.797679.28138.920.38
value
Standard105.730.000.42163.9122.480.09
deviation
L1012H1031Mean167.274845.59852.391.30.38
value
Standard8.520.001.86448.345.580.00
deviation
ControlMean56.67367.881132.68288.923.79
antibody 2value
Standard25.8416.970.2594.4249.451.12
deviation

Example 5

A series of pharmacokinetic experiments were carried out in Macaca fascicularises to further screen antibodies.

3-5 year-old Macaca fascicularises each weighting 2-5 Kg were selected and injected subcutaneously with antibodies (the antibodies of the present invention or control antibody 2) in a dose of 5 mg/kg (weight of the Macaca fascicularis). The antibody or control antibody 2 to be administered was accurately extracted with a disposable aseptic injector, and multi-point injections were made subcutaneously on the inner side of the thigh of the animal, and the injection volume per point was not more than 2 ml. Whole blood samples were collected from the subcutaneous vein of the hind limb of the animal at the time points before administration (0 h) and at 0.5, 2, 4, 8, 24, 48, 72, 120, 168, 240, 336 h, 432 h, 504 h, 600 h, 672 h after administration. The blood volume collected from each animal was about 0.1 ml each time.

No anticoagulant was added to the blood samples, and serum was isolated from each sample by centrifugation at 1500 g for 10 min at room temperature within 2 h after blood sampling. The collected supernatants were immediately transferred to new labeled centrifuge tubes and then stored at −70° C. for temporary storage. The concentrations of the antibodies in the Macaca fascicularises were determined according the method as described in Example 4. The pharmacokinetic results are shown in FIG. 2 and Table 7 below.

TABLE 7
Pharmacokinetic results of the antibodies of the present invention in macaca fascicularis
Area
TimeUnder the
HalftoPeakdrug-timeVolume ofClearance
lifepeakconcentrationCurvedistributionrate
Numberhhμg/mlh*μg/mlml/kgml/h/kg
L1020H1031Mean254.9548.0089.6522189.9175.940.22
value
Standard44.5733.9444.298557.1522.950.10
deviation
L1012H1031Mean185.75486516185.7373.410.28
value
Standard42.5433.944.52506.980.810.06
deviation
ControlMean37.031637.822773.2193.971.78
antibody 2value
Standard18.0311.316.75155.8442.470.07
deviation

Example 10

In vivo pharmacokinetics of the antibodies of the invention are further detected and compared in this Example, in order to investigate the possible effects of specific amino acids at specific positions on the pharmacokinetics of the antibodies in animals. The specific experimental method was the same as that described in Example 4, and the results are shown in Table 9 below.

TABLE 9
Detection results of in vivo pharmacokinetics of the antibodies of the present invention
Area
TimeUnder the
HalftoPeakdrug-timeVolume ofClearance
lifepeakconcentrationCurvedistributionrate
hhug/mlh*ug/mlml/kgml/h/kg
L1020H1031Mean185.494038.948188.8114.280.43
value
Standard18.5213.862.33510.476.50.05
deviation
L1012H1001Mean161.2648.0012.362491.19332.791.47
value
Standard54.300.002.26165.1676.910.20
deviation
L1001H1031Mean171.4156.0042.749273.7399.170.40
value
Standard6.1213.867.381868.6618.690.07
deviation
L1020H1001Mean89.0064.0020.113481.40164.141.30
value
Standard16.7013.862.14268.3922.860.20
deviation

From the specific sequence, the amino acid at position 103 in the sequence of the heavy chain H1031 (SEQ ID NO. 91) of the antibody (in CDR3) is Asp (103Asp), and the amino acid at position 104 is Tyr (104Tyr). Compared with antibodies that have no 103Asp and 104Tyr in heavy chain, the present antibodies which have 103Asp and 104Tyr have a 2- to 4-fold higher area under the drug-time curve and an about 70% reduced clearance rate.

The expression levels of the antibodies of the present invention are also detected and compared, in order to investigate the possible effects of specific amino acids at specific positions on the expression of the antibodies. Culture and transfection of Expi293 cells were conducted according to Example 1, and the collected culture supernatant was then passed through a 0.22 μm filter and then purified by GE MabSelect Sure (Catalog Number: 11003494) Protein A affinity chromatography column in the purification system GE AKTA purifier 10. The purified antibody was collected and concentrated using Amicon ultrafiltration concentrating tube (Catalog Number: UFC903096) and then quantified. The quantitative results are shown in Table 10 below.

TABLE 10
Detection results of the expression
levels of the antibodies of the present invention
Expression level
Antibody(×10−2 mg/ml culture medium)
L1020H10318.39
L1001H10311.79
L1020H10014.04
L1012H10015.00
L1023H10014.63
L1001H10011.75

From the specific sequence, the amino acid at position 31 in the sequence of the light chain L1012 (SEQ ID NO. 44), L1020 (SEQ ID NO. 55) or L1023 (SEQ ID NO. 51) of the antibody (in CDR1) is Ser (31Ser). Compared with antibodies that have no 31Ser in light chain, the present antibodies which have 31Ser have a 2- to 5-fold higher expression level.

The above description for the embodiments of the present invention is not intended to limit the present invention, and those skilled in the art can make various changes and variations according to the present invention, which are within the protection scope of the claims of the present invention without departing from the spirit of the same.

Full text: Click here
Patent 2024
Amino Acids Animals Antibodies Anticoagulants Antigens Asepsis BLOOD Blood Volume Buffers Cell Culture Techniques Cells Centrifugation Chromatography Chromatography, Affinity Cloning Vectors Culture Media Deoxyribonuclease EcoRI Drug Kinetics Electrophoresis Enzyme-Linked Immunosorbent Assay Hindlimb Human Body Immunoglobulin Heavy Chains Immunoglobulin Light Chains Immunoglobulins Interleukin-1 Isoflurane Light Macaca Macaca fascicularis Medical Devices Metabolic Clearance Rate Mice, Inbred BALB C Mus Open Reading Frames Pharmaceutical Preparations Pharmaceutical Preservatives SDS-PAGE Serum Staphylococcal Protein A Technique, Dilution Thigh Transfection Transients Ultrafiltration Veins Vena Cavas, Inferior

Example 1

a. Materials and Methods

i. Vector Construction

1. Virus-Like Particle

As most broadly neutralizing HPV antibodies are derived from the highly conserved N-terminal region of L2, amino acids 14-122 of HPV16 L2 were used to create HBc VLPs. L2 with flanking linker regions was inserted into the tip of the a-helical spike of an HBc gene copy which was fused to another copy of HBc lacking the L2 insert. This arrangement allows the formation of HBc dimers that contain only a single copy of L2, increasing VLP stability (Peyret et al. 2015). This heterodimer is referred to as HBche-L2. A dicot plant-optimized HPV16 L2 coding sequence was designed based upon the sequence of GenBank Accession No. CAC51368.1 and synthesized in vitro using synthetic oligonucleotides by the method described (Stemmer et al., 1995). The plant-optimized L2 nucleotide sequence encoding residues 1-473 is posted at GenBank Accession No. KC330735. PCR end-tailoring was used to insert Xbal and SpeI sites flanking the L2 aa 14-122 using primers L2-14-Xba-F (SEQ ID NO. 1: CGTCTAGAGTCCGCAACCCAACTTTACAAG) and L2-122-Spe-R (SEQ ID NO. 2: G GGACTAGTTGGGGCACCAGCATC). The SpeI site was fused to a sequence encoding a 6His tag, and the resulting fusion was cloned into a geminiviral replicon vector (Diamos, 2016) to produce pBYe3R2K2Mc-L2(14-122)6H.

The HBche heterodimer VLP system was adapted from Peyret et al (2015). Using the plant optimized HBc gene (Huang et al., 2009), inventors constructed a DNA sequence encoding a dimer comprising HBc aa 1-149, a linker (G2S)5G (SEQ ID NO. 39), HBc aa 1-77, a linker GT(G4S)2 (SEQ ID NO. 40), HPV-16 L2 aa 14-122, a linker (GGS)2GSSGGSGG (SEQ ID NO. 41), and HBc aa 78-176. The dimer sequence was generated using multiple PCR steps including overlap extensions and insertion of BamHI and SpeI restriction sites flanking the L2 aa 14-122, using primers L2-14-Bam-F (SEQ ID NO. 3: CAGGATCCGCAACC CAACTTTACAAGAC) and L2-122-Spe-R (SEQ ID NO. 2). The HBche-L2 coding sequence was inserted into a geminiviral replicon binary vector pBYR2eK2M (FIG. 3), which includes the following elements: CaMV 35S promoter with duplicated enhancer (Huang et al., 2009), 5′ UTR of N. benthamiana psaK2 gene (Diamos et al., 2016), intron-containing 3′ UTR and terminator of tobacco extensin (Rosenthal et al, 2018), CaMV 35S 3′ terminator (Rosenthal et al, 2018), and Rb7 matrix attachment region (Diamos et al., 2016).

2. Recombinant Immune Complex

The recombinant immune complex (RIC) vector was adapted from Kim et al., (2015). The HPV-16 L2 (aa 14-122) segment was inserted into the BamHI and SpeI sites of the gene encoding humanized mAb 6D8 heavy chain, resulting in 6D8 epitope-tagged L2. The heavy chain fusion was inserted into an expression cassette linked to a 6D8 kappa chain expression cassette, all inserted into a geminiviral replicon binary vector (FIG. 3, RIC vector). Both cassettes contain CaMV 35S promoter with duplicated enhancer (Huang et al., 2009), 5′ UTR of N. benthamiana psaK2 gene (Diamos et al., 2016), intron-containing 3′ UTR and terminator of tobacco extensin (Rosenthal et al, 2018), and Rb7 matrix attachment region (Diamos et al., 2016).

ii. Agroinfiltration of Nicotiana benthamiana Leaves

Binary vectors were separately introduced into Agrobacterium tumefaciens EHA105 by electroporation. The resulting strains were verified by restriction digestion or PCR, grown overnight at 30° C., and used to infiltrate leaves of 5- to 6-week-old N. benthamiana maintained at 23-25° C. Briefly, the bacteria were pelleted by centrifugation for 5 minutes at 5,000 g and then resuspended in infiltration buffer (10 mM 2-(N-morpholino)ethanesulfonic acid (MES), pH 5.5 and 10 mM MgSO4) to OD600=0.2, unless otherwise described. The resulting bacterial suspensions were injected by using a syringe without needle into leaves through a small puncture (Huang et al. 2004). Plant tissue was harvested after 5 DPI, or as stated for each experiment. Leaves producing GFP were photographed under UV illumination generated by a B-100AP lamp (UVP, Upland, CA).

iii. Protein Extraction

Total protein extract was obtained by homogenizing agroinfiltrated leaf samples with 1:5 (w:v) ice cold extraction buffer (25 mM sodium phosphate, pH 7.4, 100 mM NaCl, 1 mM EDTA, 0.1% Triton X-100, 10 mg/mL sodium ascorbate, 0.3 mg/mL PMSF) using a Bullet Blender machine (Next Advance, Averill Park, NY) following the manufacturer's instruction. To enhance solubility, homogenized tissue was rotated at room temperature or 4° C. for 30 minutes. The crude plant extract was clarified by centrifugation at 13,000 g for 10 minutes at 4° C. Necrotic leaf tissue has reduced water weight, which can lead to inaccurate measurements based on leaf mass. Therefore, extracts were normalized based on total protein content by Bradford protein assay kit (Bio-Rad) with bovine serum albumin as standard.

iv. SDS-PAGE and Western Blot

Clarified plant protein extract was mixed with sample buffer (50 mM Tris-HCl, pH 6.8, 2% SDS, 10% glycerol, 0.02% bromophenol blue) and separated on 4-15% polyacrylamide gels (Bio-Rad). For reducing conditions, 0.5M DTT was added, and the samples were boiled for 10 minutes prior to loading. Polyacrylamide gels were either transferred to a PVDF membrane or stained with Coomassie stain (Bio-Rad) following the manufacturer's instructions. For L2 detection, the protein transferred membranes were blocked with 5% dry milk in PBST (PBS with 0.05% tween-20) overnight at 4° C. and probed with polyclonal rabbit anti-L2 diluted 1:5000 in 1% PBSTM, followed by goat anti-rabbit horseradish peroxidase conjugate (Sigma). Bound antibody was detected with ECL reagent (Amersham).

v. Immunization of Mice and Sample Collection

All animals were handled in accordance to the Animal Welfare Act and Arizona State University IACUC. Female BALB/C mice, 6-8 weeks old, were immunized subcutaneously with purified plant-expressed L2 (14-122), HBche-L2 VLP, L2 RIC, or PBS mixed 1:1 with Imject® Alum (Thermo Scientific, Rockford, IL). In all treatment groups, the total weight of antigen was set to deliver an equivalent 5 μg of L2. Doses were given on days 0, 21, and 42. Serum collection was done as described (Santi et al. 2008) by submandibular bleed on days 0, 21, 42, and 63.

vi. Antibody Measurements

Mouse antibody titers were measured by ELISA. Bacterially-expressed L2 (amino acids 11-128) was bound to 96-well high-binding polystyrene plates (Corning), and the plates were blocked with 5% nonfat dry milk in PBST. After washing the wells with PBST (PBS with 0.05% Tween 20), the diluted mouse sera were added and incubated. Mouse antibodies were detected by incubation with polyclonal goat anti-mouse IgG-horseradish peroxidase conjugate (Sigma). The plate was developed with TMB substrate (Pierce) and the absorbance was read at 450 nm. Endpoint titers were taken as the reciprocal of the lowest dilution which produced an OD450 reading twice the background. IgG1 and IgG2a antibodies were measured with goat-anti mouse IgG1 or IgG2a horseradish peroxidase conjugate.

vii. Electron Microscopy

Purified samples of HBche or HBche-L2 were initially incubated on 75/300 mesh grids coated with formvar. Following incubation, samples were briefly washed twice with deionized water then negatively stained with 2% aqueous uranyl acetate. Transmission electron microscopy was performed with a Phillips CM-12 microscope, and images were acquired with a Gatan model 791 CCD camera.

viii. Statistical Analysis

The significance of vaccine treatments and virus neutralization was measured by non-parametric Mann-Whitney test using GraphPad prism software. Two stars (**) indicates p values <0.05. Three stars (***) indicates p values <0.001.

b. Design and Expression of HBc VLPs and RIC Displaying HPV16 L2

BeYDV plant expression vectors (FIG. 3) expressing either the target VLP HBche-L2, or L2 and HBche alone as controls, were agroinfiltrated into the leaves of N. benthamiana and analyzed for VLP production. After 4-5 days post infiltration (DPI), leaves displayed only minor signs of tissue necrosis, indicating that the VLP was well-tolerated by the plants (FIG. 4A). Leaf extracts analyzed by reducing SDS-PAGE showed an abundant band near the predicted size of 51 kDa for HBche-L2, just above the large subunit of rubisco (RbcL). HBche was detected around the predicted size of 38 kDa (FIG. 4B). Western blot probed with anti-L2 polyclonal serum detected a band for HBche-L2 at ˜51 kDa (FIG. 4B). These results indicate that this plant system is capable of producing high levels of L2-containing HBc VLP.

To express L2-containing MC, amino acids 14-122 of HPV16 L2 were fused with linker to the C-terminus of the 6D8 antibody heavy chain and tagged with the 6D8 epitope (Kim et al. 2015). A BeYDV vector (FIG. 3) expressing both the L2-fused 6D8 heavy chain and the light chain was agroinfiltrated into leaves of N. benthamiana and analyzed for RIC production. To create more homogenous human-type glycosylation, which has been shown to improve antibody Fc receptor binding in vivo, transgenic plants silenced for xylosyltransferase and fucosyltransferase were employed (Castilho and Steinkellner 2012). By western blot, high molecular weight bands >150 kDa suggestive of RIC formation were observed (FIG. 4C). Expression of soluble L2 RIC was lower than HBche-L2 due to relatively poor solubility of the RIC (FIG. 4C).

After rigorous genetic optimization, the N. benthamiana system is capable of producing very high levels of recombinant protein, up to 30-50% of the total soluble plant protein, in 4-5 days (Diamos et al. 2016). Using this system, we produced and purified milligram quantities of fully assembled and potently immunogenic HBc VLPs displaying HPV L2 through a simple one-step purification process (FIGS. 4A-4C and 6).

c. Purification and Characterization of HBche-L2 and L2 RIC

To assess the assembly of HBc-L2 VLP, clarified plant extracts containing either HBche-L2 or HBche were analyzed by sucrose gradient sedimentation. HBche-L2 sedimented largely with HBche, which is known to form VLP, though a small increase in density was observed with HBche-L2, perhaps due to the incorporation of L2 into the virus particle (FIG. 5A). To demonstrate particle formation, sucrose fractions were examined by electron microscopy. Both HBche and HBche-L2 formed ˜30 nm particles, although the appearance of HBche-L2 VLP suggested slightly larger, fuller particles (FIGS. 5C and 5D). As most plant proteins do not sediment with VLP, pooling peak sucrose fractions resulted in >95% pure HBche-L2 (FIG. 5B), yielding sufficient antigen (>3 mg) for vaccination from a single plant leaf.

L2 RIC was purified from plant tissue by protein G affinity chromatography. By SDS-PAGE, an appropriately sized band was visible >150 kDa that was highly pure (FIG. 5B). Western blot confirmed the presence of L2 in this band, indicating proper RIC formation (FIG. 5B). L2 RIC bound to human complement C1q receptor with substantially higher affinity compared to free human IgG standard, suggesting proper immune complex formation (FIG. 5E).

d. Mouse Immunization with HBche-L2 and L2 RIC

Groups of Balb/c mice (n=8) were immunized, using alum as adjuvant, with three doses each of 5 μg L2 delivered as either L2 alone, HBche-L2 VLP, L2 RIC, or a combination of half VLP and half RIC. VLP and RIC, alone or combined, greatly enhanced antibody titers compared to L2 alone by more than an order of magnitude at all time points tested (FIG. 6). After one or two doses, the combined VLP/RIC treatment group outperformed both the VLP or RIC groups, reaching mean endpoint titers of >200,000, which represent a 700-fold increase over immunization with L2 alone (FIG. 6). After the third dose, both the VLP and combined VLP/RIC groups reached endpoint titers >1,300,000, a 2-fold increase over the RIC alone group. To determine the antibody subtypes produced by each treatment group, sera were assayed for L2-binding IgG1 and IgG2a. All four groups produced predominately IgG1 (FIG. 7, note dilutions). However, RIC and especially VLP-containing groups had an elevated ratio of IgG2a:IgG1 (>3-fold) compared to L2 alone (FIG. 7).

In vitro neutralization of HPV16 pseudovirions showed that the VLP and RIC groups greatly enhanced neutralization compared to L2 alone (FIG. 5, p<0.001). Additionally, VLP and RIC combined further enhanced neutralization activity ($5-fold, p<0.05) compared to either antigen alone, supporting the strong synergistic effect of delivering L2 by both platforms simultaneously.

In this study, by displaying amino acids 11-128 on the surface of plant-produced HBc VLPs, L2 antibody titers as high as those seen with L1 vaccines were generated (FIG. 6). Mice immunized with L2 alone had highly variable antibody titers, with titers spanning two orders of magnitude. By contrast, the other groups had much more homogenous antibody responses, especially the VLP-containing groups, which had no animals below an endpoint titer of 1:1,000,000 (FIG. 6). These results underscore the potential of HBc VLP and RIC to provide consistently potent immune responses against L2. Moreover, significant synergy of VLP and RIC systems was observed when the systems were delivered together, after one or two doses (FIG. 6). Since equivalent amounts of L2 were delivered with each dose, the enhanced antibody titer did not result from higher L2 doses. Rather, these data suggest that higher L2-specific antibody production may be due to augmented stimulation of L2-specific B cells by T-helper cells that were primed by RIC-induced antigen presenting cells. Although treatment with VLP and RIC alone reached similar endpoint titers as the combined VLP/RIC group after 3 doses, virus neutralization was substantially higher (>5-fold) in the combined group (FIG. 8). Together, these data indicate unique synergy exists when VLP and RIC are delivered together. Inventors have observed similarly significant synergistic enhancement of immunogenicity for a variety of other antigens.

Mice immunized with L2 alone had highly variable antibody titers, with titers spanning two orders of magnitude. By contrast, the VLP and VLP/RIC groups had much more homogenous antibody responses, with no animals below an endpoint titer of 1:1,000,000 (FIG. 6). These results underscore the potential of HBc VLP and RIC to provide consistently potent immune responses against L2.

Fc gamma receptors are present on immune cells and strongly impact antibody effector functions such as antibody-dependent cell-mediated cytotoxicity and complement-dependent cytotoxicity (Jefferis 2009). In mice, these interactions are controlled in part by IgG subtypes. IgG1 is associated with a Th2 response and has limited effector functions. By contrast, IgG2a is associated with a Th1 response and more strongly binds complement components (Neuberger and Raj ewsky 1981) and Fc receptors (Radaev 2002), enhancing effector functions and opsonophagocytosis by macrophages (Takai et al. 1994). Immunization with L2 alone was found to produce low levels of IgG2a, however immunization with RIC and VLP produced significant increases in IgG2a titers. VLP-containing groups in particular showed a 3-fold increase in the ratio of IgG2a to IgG1 antibodies (FIG. 7). Importantly, production of IgG2a is associated with successful clearance of a plethora of viral pathogens (Coutelier et al. 1988; Gerhard et al. 1997; Wilson et al. 2000; Markine-Goriaynoff and Coutelier 2002).

The glycosylation state of the Fc receptor also plays an important role in antibody function. Advances in glycoengineering have led to the development of transgenic plants with silenced fucosyl- and xylosyl-transferase genes capable of producing recombinant proteins with authentic human N-glycosylation (Strasser et al. 2008). Antibodies produced in this manner have more homogenous glycoforms, resulting in improved interaction with Fc gamma and complement receptors compared to the otherwise identical antibodies produced in mammalian cell culture systems (Zeitlin et al. 2011; Hiatt et al. 2014; Strasser et al. 2014; Marusic et al. 2017). As the known mechanisms by which RIC vaccines increase immunogenicity of an antigen depend in part on Fc and complement receptor binding, HPV L2 RIC were produced in transgenic plants with silenced fucosyl- and xylosyl-transferase. Consistent with these data, we found that L2 RIC strongly enhanced the immunogenicity of L2 (FIG. 6). However, yield suffered from insolubility of the RIC (FIG. 4C). We found that the 11-128 segment of L2 expresses very poorly on its own in plants and may be a contributing factor to poor L2 RIC yield. Importantly, we have produced very high yields of RIC with different antigen fusions. Thus, in some aspects, antibody fusion with a shorter segment of L2 could substantially improve the yield of L2 RIC.

e. Neutralization of HPV Pseudovirions

Neutralization of papilloma pseudoviruses (HPV 16, 18, and 58) with sera from mice immunized IP with HBc-L2 VLP and L2(11-128) showed neutralization of HPV 16 at titers of 400-1600 and 200-800, respectively (Table 1). More mice IP-immunized with HBc-L2 VLP had antisera that cross-neutralized HPV 18 and HPV 58 pseudoviruses, compared with mice immunized with L2(11-128). Anti-HBc-L2 VLP sera neutralized HPV 18 at titers of 400 and HPV 58 at titers ranging from 400-800 (Table 1), while anti-L2(11-128) sera neutralized HPV 18 at a titer of 200 and HPV 58 at a titer of 400 (Table 1). None of the sera from intranasal-immunized mice demonstrated neutralizing activity, consistent with lower anti-L2 titers for intranasal than for intraperitoneal immunized mice.

TABLE 1
L2-specific serum IgG and pseudovirus neutralization
titers from IP immunized mice
Neutralization of Pseudoviruses
ImmunogenSerum IgGHPV 16HPV 18HPV 58
HBc-L2>50,000 400
~70,0001600400400
>80,0001600400800
L2 (11-128)~8000 200
~12,000 400
~50,000 800200400

Full text: Click here
Patent 2024
3' Untranslated Regions 5' Untranslated Regions AA 149 Agrobacterium tumefaciens aluminum potassium sulfate aluminum sulfate Amino Acids Animals Animals, Transgenic Antibodies Antibody Formation Antigen-Presenting Cells Antigens B-Lymphocytes Bacteria Bromphenol Blue Buffers Cell Culture Techniques Cells Centrifugation Chromatography, Affinity Cloning Vectors Cold Temperature Combined Modality Therapy complement 1q receptor Complement Receptor Complex, Immune Complex Extracts Cytotoxicities, Antibody-Dependent Cell Cytotoxin Digestion DNA, A-Form DNA Sequence Edetic Acid Electron Microscopy Electroporation Enzyme-Linked Immunosorbent Assay Epitopes ethane sulfonate Fc Receptor Females Formvar Fucosyltransferase G-substrate Gamma Rays Genes Genes, vif Glycerin Goat Helix (Snails) Helper-Inducer T-Lymphocyte Homo sapiens Homozygote Horseradish Peroxidase Human papillomavirus 16 Human papillomavirus 18 Human Papilloma Virus Vaccine IGG-horseradish peroxidase IgG1 IgG2A Immune Sera Immunoglobulin Heavy Chains Immunoglobulins Immunologic Factors Institutional Animal Care and Use Committees Introns Inventors L2 protein, Human papillomavirus type 16 Light Macrophage Mammals Matrix Attachment Regions Mice, Inbred BALB C Microscopy Milk, Cow's Morpholinos Mus Necrosis Needles Nicotiana Oligonucleotide Primers Oligonucleotides Open Reading Frames Opsonophagocytosis Papilloma Pathogenicity Plant Development Plant Extracts Plant Leaves Plant Proteins Plants Plants, Transgenic polyacrylamide gels Polystyrenes polyvinylidene fluoride prisma Protein Glycosylation Proteins Punctures Rabbits Receptors, IgG Recombinant Proteins Replicon Reproduction Response, Immune Ribulose-Bisphosphate Carboxylase Large Subunit Satellite Viruses SDS-PAGE Serum Serum Albumin, Bovine Sodium Ascorbate Sodium Chloride sodium phosphate Specimen Collection Stars, Celestial Strains Sucrose Sulfate, Magnesium Syringes System, Immune Technique, Dilution Tissue, Membrane Tissues Transferase Transmission Electron Microscopy Triton X-100 Tromethamine Tween 20 Ultraviolet Rays uranyl acetate Vaccination Vaccines Vaccines, Recombinant Virion Viroids Virus Vision Western Blotting xylosyltransferase

Example 66

The activity of SYN-PKU-2002 was assessed in vivo. To prepare the cells for the study, SYN-PKU901 and SYN-PKU-2002 overnight cultures were each used to inoculate 4 2 L flasks containing 500 mL of LB with DAP100 ug/mL. These cultures were grown for 1 hr and 45 min and then moved to the anaerobic chamber supplying 90% N2, 5% CO2, and 5% H2 for 4 hours. Cells were then spun down at 4600×G for 12 min and resuspended in 10 mL of formulation buffer (Glycerol: 15% (v/v), Sucrose: 10% (w/v) (100 g/L), MOPS: 10 mM (2.1 g/L), NaCl: 25 mM (1.46 g/L)). Several 40 ul aliquots were removed to be used for cell counting and activity determination. The viability as determined by cellometer count (in quadruplicate) 6.94e10 cfu/ml (+/−5.78e9).

Activity was determined using a plate based assay. Briefly, 1×108 cfu as determined by cellometer were added to 1 ml of prewarmed assay buffer (1× M9 minimal media containing 0.5% glucose, 50 mM MOPS, and 50 mM phenylalanine) in a microfuge tube, vortexed briefly, and immediately placed in a heat block or water bath at 37 degrees Celsius for static incubation (t=0). Supernatant samples from cells re-suspended in assay buffer were analyzed for the abundance of TCA over several time points using spectrophotometer at an absorbance of 290 nm. The accurate OD290 window for TCA detection occurs in a relatively narrow concentration range. For this reason, supernatant samples were diluted to ensure that the absorbance measurement fell into the linear range for detection. Measurements were compared to a TCA standard curve. Activity was determined to be 2.72 umol/hr/le9 cfu (+/−0.15 umol/hr/le9 cfu).

Beginning 4 days prior to the study (i.e., Days −4-1), Pah ENU2/2 mice (˜11-15 weeks of age) were maintained on phenylalanine-free chow and water that was supplemented with 0.5 grams/L phenylalanine. On the day of the study, mice were randomized into treatment groups according to weight as follows: Group 1: SYN-PKU901 (n=9); Group 2: Group 2: SYN-PKU-2002 (n=9). Blood samples were collected by sub-mandibular skin puncture to determine baseline phenylalanine levels. Mice were then administered single dose of phenylalanine by subcutaneous injection at 0.1 mg per gram body weight, according to the average group weight. At 1, 2 and 3 h post Phe challenge, the bacteria (or water) were administered to mice by oral gavage (3×250 ul). Whole blood was collected via submandibular bleed at each time point. Urine collection in metabolic caging commenced immediately after the 1st bacterial dose and continued to be collected for the duration of the study (4 hours).

Blood samples were kept on ice until processing for plasma in a centrifuge (2000 g for 10 min at 4 C) within 20 min of collection. Plasma was then transferred into a 96-well plate for MS analysis. Urine was collected in 5 mL tubes and volumes were recorded before transferring samples to MS for analysis. Results are shown in FIG. 17A and FIG. 17B and show that SYN-PKU-2002 causes decreased changes in phenylalanine post-Phe injection and produces hippurate, in a similar manner as SYN-PKU-710.

Full text: Click here
Patent 2024
Bacteria Bath Biological Assay BLOOD Buffers Cells Glucose Glycerin hippurate Mandible morpholinopropane sulfonic acid Mus Plasma Punctures Serum Skin Sodium Chloride Subcutaneous Injections Sucrose Tube Feeding Urine Urine Specimen Collection

Top products related to «Serum»

Sourced in United States, United Kingdom, Germany, China, Canada, Japan, Italy, France, Belgium, Australia, Uruguay, Switzerland, Israel, India, Spain, Denmark, Morocco, Austria, Brazil, Ireland, Netherlands, Montenegro, Poland
Matrigel is a solubilized basement membrane preparation extracted from the Engelbreth-Holm-Swarm (EHS) mouse sarcoma, a tumor rich in extracellular matrix proteins. It is widely used as a substrate for the in vitro cultivation of cells, particularly those that require a more physiologically relevant microenvironment for growth and differentiation.
Sourced in United States, China, United Kingdom, Germany, Australia, Japan, Canada, Italy, France, Switzerland, New Zealand, Brazil, Belgium, India, Spain, Israel, Austria, Poland, Ireland, Sweden, Macao, Netherlands, Denmark, Cameroon, Singapore, Portugal, Argentina, Holy See (Vatican City State), Morocco, Uruguay, Mexico, Thailand, Sao Tome and Principe, Hungary, Panama, Hong Kong, Norway, United Arab Emirates, Czechia, Russian Federation, Chile, Moldova, Republic of, Gabon, Palestine, State of, Saudi Arabia, Senegal
Fetal Bovine Serum (FBS) is a cell culture supplement derived from the blood of bovine fetuses. FBS provides a source of proteins, growth factors, and other components that support the growth and maintenance of various cell types in in vitro cell culture applications.
Sourced in United States, China, United Kingdom, Germany, France, Australia, Canada, Japan, Italy, Switzerland, Belgium, Austria, Spain, Israel, New Zealand, Ireland, Denmark, India, Poland, Sweden, Argentina, Netherlands, Brazil, Macao, Singapore, Sao Tome and Principe, Cameroon, Hong Kong, Portugal, Morocco, Hungary, Finland, Puerto Rico, Holy See (Vatican City State), Gabon, Bulgaria, Norway, Jamaica
DMEM (Dulbecco's Modified Eagle's Medium) is a cell culture medium formulated to support the growth and maintenance of a variety of cell types, including mammalian cells. It provides essential nutrients, amino acids, vitamins, and other components necessary for cell proliferation and survival in an in vitro environment.
Sourced in United States, Germany, United Kingdom, China, Canada, France, Japan, Australia, Switzerland, Israel, Italy, Belgium, Austria, Spain, Gabon, Ireland, New Zealand, Sweden, Netherlands, Denmark, Brazil, Macao, India, Singapore, Poland, Argentina, Cameroon, Uruguay, Morocco, Panama, Colombia, Holy See (Vatican City State), Hungary, Norway, Portugal, Mexico, Thailand, Palestine, State of, Finland, Moldova, Republic of, Jamaica, Czechia
Penicillin/streptomycin is a commonly used antibiotic solution for cell culture applications. It contains a combination of penicillin and streptomycin, which are broad-spectrum antibiotics that inhibit the growth of both Gram-positive and Gram-negative bacteria.
Sourced in United States, China, Germany, United Kingdom, Canada, Japan, France, Italy, Switzerland, Australia, Spain, Belgium, Denmark, Singapore, India, Netherlands, Sweden, New Zealand, Portugal, Poland, Israel, Lithuania, Hong Kong, Argentina, Ireland, Austria, Czechia, Cameroon, Taiwan, Province of China, Morocco
Lipofectamine 2000 is a cationic lipid-based transfection reagent designed for efficient and reliable delivery of nucleic acids, such as plasmid DNA and small interfering RNA (siRNA), into a wide range of eukaryotic cell types. It facilitates the formation of complexes between the nucleic acid and the lipid components, which can then be introduced into cells to enable gene expression or gene silencing studies.
Sourced in United States, United Kingdom, Germany, China, France, Canada, Japan, Australia, Switzerland, Italy, Israel, Belgium, Austria, Spain, Brazil, Netherlands, Gabon, Denmark, Poland, Ireland, New Zealand, Sweden, Argentina, India, Macao, Uruguay, Portugal, Holy See (Vatican City State), Czechia, Singapore, Panama, Thailand, Moldova, Republic of, Finland, Morocco
Penicillin is a type of antibiotic used in laboratory settings. It is a broad-spectrum antimicrobial agent effective against a variety of bacteria. Penicillin functions by disrupting the bacterial cell wall, leading to cell death.
Sourced in United States, United Kingdom, Germany, China, France, Canada, Australia, Japan, Switzerland, Italy, Belgium, Israel, Austria, Spain, Netherlands, Poland, Brazil, Denmark, Argentina, Sweden, New Zealand, Ireland, India, Gabon, Macao, Portugal, Czechia, Singapore, Norway, Thailand, Uruguay, Moldova, Republic of, Finland, Panama
Streptomycin is a broad-spectrum antibiotic used in laboratory settings. It functions as a protein synthesis inhibitor, targeting the 30S subunit of bacterial ribosomes, which plays a crucial role in the translation of genetic information into proteins. Streptomycin is commonly used in microbiological research and applications that require selective inhibition of bacterial growth.
Sourced in United States, Germany, United Kingdom, Italy, China, Japan, France, Canada, Sao Tome and Principe, Switzerland, Macao, Poland, Spain, Australia, India, Belgium, Israel, Sweden, Ireland, Denmark, Brazil, Portugal, Panama, Netherlands, Hungary, Czechia, Austria, Norway, Slovakia, Singapore, Argentina, Mexico, Senegal
Triton X-100 is a non-ionic surfactant commonly used in various laboratory applications. It functions as a detergent and solubilizing agent, facilitating the solubilization and extraction of proteins and other biomolecules from biological samples.
Sourced in United States, China, United Kingdom, Germany, Switzerland, Japan, Australia
Transwell chambers are a type of lab equipment used for cell culture and biological assays. They consist of a permeable membrane insert placed inside a well, allowing for the study of cell-cell interactions and the movement of molecules across a barrier. The core function of Transwell chambers is to provide a controlled environment for culturing cells and monitoring their behavior and permeability.
Sourced in United States, United Kingdom, Germany, New Zealand, Japan, China, France, Australia, Italy, Spain, Switzerland, Canada, Netherlands, Denmark, Austria, Belgium, Ireland, Israel, Brazil
Horse serum is a biological fluid derived from the blood of horses. It contains a complex mixture of proteins, including immunoglobulins, hormones, and other biomolecules. Horse serum is commonly used as a supplement in cell culture media to support the growth and maintenance of various cell types.

More about "Serum"

Serum is the clear, yellowish fluid that separates from the blood when it coagulates.
It contains various proteins, electrolytes, and other essential substances for cell growth and metabolism.
Serum is widely used in medical and research settings, particularly in cell culture and diagnostic procedures.
Optimizing serum protocols is crucial for ensuring reproducibility and accuracy in biological experiments.
PubCompare.ai is a platform that helps researchers streamline their serum experimentation by providing intelligent protocol selection and analysis tools, leveraging AI-driven comparisons of published, pre-print, and patent-based methods.
This enhances researchers' workflows and promotes enhanced reproducibility in their studies.
Serum is often used in conjunction with other cell culture components, such as Matrigel, a gelatinous protein mixture used to provide a more natural environment for cell growth.
Fetal Bovine Serum (FBS) is a common serum supplement, while Dulbecco's Modified Eagle Medium (DMEM) is a widely used cell culture medium.
Antibiotics like Penicillin and Streptomycin are often added to cell culture to prevent bacterial contamination.
Lipofectamine 2000 is a transfection reagent used to introduce genetic material into cells, while Triton X-100 is a detergent used for cell lysis and protein extraction.
Transwell chambers are tools used to study cell migration and invasion.
By leveraging the power of PubCompare.ai, researchers can streamline their serum-based experiments, enhance reproducibility, and gain valuable insights that lead to more robust and reliable research outcomes.