The largest database of trusted experimental protocols
> Anatomy > Body System > System, Immune

System, Immune

The Immune System is a complex network of cells, tissues, and organs that work together to protect the body from infection and disease.
It is responsible for recognizing and responding to a variety of pathogens, including viruses, bacteria, and parasites.
The system is composed of two main branches: the innate immune system, which provides immediate protection, and the adaptive immune system, which learns to recognize and remember specific threats.
Key components of the Immune System include lymphocytes (such as T cells and B cells), phagocytes, and cytokines.
Proper functioning of the Immune System is crucial for maintaning health and well-beiing; imbalances or dysfunctions can lead to autoimmune disorders, immunodeficiencies, or increased susceptibility to infection.
Researchers continue to explore the Immune System's intricate mechanisms in order to develop new therapies and improve human health.

Most cited protocols related to «System, Immune»

Browne et al. [1 (link)] analysed the correlation matrix for eight measures of immune system function of 72 females with breast cancer, recorded during investigation of the physiological consequences of a psychological intervention [3 (link),4 (link)]. Four 51Cr-release measures of natural killer cell lysis were obtained using effector (NK cell) to target cell (K562 human myeloid cell) ratios of 100:1, 50:1, 25:1 and 12.5:1. Following Browne et al. [1 (link)] we designate these measures by their effector to target (E:T) ratios, NK100, NK50, NK25 and NK12 respectively. Similarly, natural killer cell lysis measured in the presence of recombinant interferon gamma (rIFNγ) using E:T ratios of 50:1, 25:1, 12.5:1 and 6.25:1, are designated IFN50, IFN25, IFN12, and IFN6 respectively. Lower E:T ratios are used in the presence of rIFNγ because rIFNγ increases NK cells' ability to rupture target cells.
The correlations reported in Browne et al.'s [1 (link)] Table 1 indicate that the four NK measures correlate highly with one another (average r = 0.852), and that the four rIFNγ enhanced NK measures also correlate highly with one another (averaging 0.960). However, the low correlations between the sets of NK and rIFNγ measurements (averaging only .111) indicate that the two sets of measurements reflect relatively distinct aspects of natural killer cell functioning. Browne et al. [1 (link)] viewed this as justifying the use of an exploratory two-factor model (Figure 1) which, unfortunately, was significantly inconsistent with the data (χ2 = 103.59, degrees of freedom (df) = 13, and probability p < 10-15). The small but significant residual differences between the data correlations and the correlations implied by the two-factor model were dismissed by Browne et al.[1 (link)] as "negligible from a practical point of view". SEMNET discussion of this model prompted Hayduk to investigate whether some unrecognized measurement feature was producing the significant, even if seemingly slight, ill fit.
Andersen, Farrar, Golden-Kreutz, Kutz, MacCallum, Courtney & Glaser [3 (link)] provide a description of the reasonably standard procedures used to obtain the Browne et al. [1 (link)] data. Peripheral blood leukocytes (PBLs) were obtained from 60 mL of venous blood, counted so that a known number of PBLs could be suspended in medium and incubated with either additional medium or additional medium plus rIFNγ. K562 target cells (a human myeloid cell line sensitive to NK cell activity) were labelled with 51Cr and aliquoted with the effector cells (either the NK, or the rIFNγ activated NK cells) in the ratios reported above. The cell mixture was centrifuged to ensure cell surface contact, and incubated to provide an opportunity for the NK cells to bind and rupture the target cells, thereby releasing the radioactive target cell cytoplasm. Gamma radioactivity of the supernatant collected from a second centrifuging indicated the effectiveness of the NK or rIFNγ-activated-NK cells at lysing the target cells, with larger measurements corresponding to more effective NK cell activity.
Full text: Click here
Publication 2005
BLOOD Breast Carcinoma Cell Lines Cells Cytoplasm Females Gamma Rays Homo sapiens Interferon Type II K562 Cells Leukocytes Myeloid Cells Natural Killer Cells Radioactivity System, Immune Veins
TIMER is a comprehensive resource for systematic analysis of immune infiltrates across diverse cancer types (https://cistrome.shinyapps.io/timer/) (23 (link)). TIMER applies a deconvolution previously published statistical method (24 (link)) to infer the abundance of tumor-infiltrating immune cells (TIICs) from gene expression profiles. The TIMER database includes 10,897 samples across 32 cancer types from The Cancer Genome Atlas (TCGA) to estimate the abundance of immune infiltrates. We analyzed LAYN expression in different types of cancer and the correlation of LAYN expression with the abundance of immune infiltrates, including B cells, CD4+ T cells, CD8+ T cells, neutrophils, macrophages, and dendritic cells, via gene modules. Gene expression levels against tumor purity is displayed on the left-most panel (25 (link)). In addition, correlations between LAYN expression and gene markers of tumor-infiltrating immune cells were explored via correlation modules. The gene markers of tumor-infiltrating immune cells included markers of CD8+ T cells, T cells (general), B cells, monocytes, TAMs, M1 macrophages, M2 macrophages, neutrophils, natural killer (NK) cells, dendritic cells (DCs), T-helper 1 (Th1) cells, T-helper 2 (Th2) cells, follicular helper T (Tfh) cells, T-helper 17 (Th17) cells, Tregs, and exhausted T cells. These gene markers are referenced in prior studies (26 (link)–28 (link)). The correlation module generated the expression scatter plots between a pair of user-defined genes in a given cancer type, together with the Spearman's correlation and the estimated statistical significance. LAYN was used for the x-axis with gene symbols, and related marker genes are represented on the y-axis as gene symbols. The gene expression level was displayed with log2 RSEM.
Full text: Click here
Publication 2019
B-Lymphocytes CD4 Positive T Lymphocytes CD8-Positive T-Lymphocytes Cells Dendritic Cells Epistropheus Gene Expression Gene Modules Genes Genes, Neoplasm Genetic Markers Genome Macrophage Malignant Neoplasms Monocytes Myeloproliferative Syndrome, Transient Natural Killer Cells Neoplasms Neutrophil System, Immune T-Lymphocyte Th17 Cells Type-2 Helper T Cell Type 1 Helper T Cells
miRNA sets are defined as groups of miRNAs that have meaningful relationships. If any two miRNAs have meaningful relationships, for example they are associated with the same diseases, they are then integrated into one miRNA set. Here, miRNA sets were collected according to miRNA family, genome locations, function, associated diseases, and tissue specificity. Studies have indicated that miRNAs in one family are most likely derived from duplications of common ancestor miRNAs [18 (link),19 (link)], and tend to act together in various functional processes [20 (link),21 (link)]. Therefore, miRNAs in one family can be considered as one miRNA set. The miRNA family data from the miRBase database was downloaded [7 (link)] and utilized in this study.
miRNAs are not located randomly in the genome but tend to exist in clusters [22 (link)]. MiRNAs in a cluster are likely to be co-transcribed and have similar expression patterns [23 (link)]. Therefore, these clustered miRNAs may be involved in similar biological processes. In this study, miRNA clusters were identified by grouping miRNAs that were within a distance of 50 kb in the chromosomes, according to the observation of Baskerville and Bartel [23 (link)]. The integrated miRNAs were also manually integrated into different sets according to their functions, as reported in publications. For example, miRNAs that were associated with the immune system were collected from a recent review paper published in Cell [24 (link)]. The miRNA sets were generated by miRNA-associated diseases based on the Human MicroRNA Disease Database (HMDD, http://cmbi.bjmu.edu.cn/hmdd), a database for miRNA disease associations [3 (link)]. The tissue-specific index values of miRNA were obtained from the study of Lu et al.[3 (link)], and tissue-specific miRNA sets were generated by collecting miRNAs with tissue specificity index values of greater than or equal to 0.7. Finally, according to the methods described above, 257 miRNA sets were generated. These miRNA sets are available for download at the TAM website.
Full text: Click here
Publication 2010
Biological Processes Cells Chromosomes Genome Homo sapiens MicroRNAs System, Immune Tissue Specificity
Two important characteristics of the viral life cycle are the time it takes them to produce new infectious progeny, and the number of progeny each infected cell produces. The yield of new virions per infected cell is more clearly defined in lytic viruses, such as those infecting bacteria (bacteriophages), as viruses replicate within the cell and subsequently lyse the cell to release a 'burst' of progeny. This measure is usually termed 'burst size'. SARS-CoV-2 does not release its progeny by lysing the cell, but rather by continuous budding (Park et al., 2020b (link)). Even though there is no 'burst', we can still estimate the average number of virions produced by a single infected cell. Measuring the time to complete a replication cycle or the burst size in vivo is very challenging, and thus researchers usually resort to measuring these values in tissue-culture. There are various ways to estimate these quantities, but a common and simple one is using 'one-step' growth dynamics. The key principle of this method is to ensure that only a single replication cycle occurs. This is typically achieved by infecting the cells with a large number of virions, such that every cell gets infected, thus leaving no opportunity for secondary infections.
Assuming entry of the virus to the cells is rapid (we estimate 10 min for SARS-CoV-2), the time it takes to produce progeny can be estimated by quantifying the lag between inoculation and the appearance of new intracellular virions, also known as the 'eclipse period'. This eclipse period does not account for the time it takes to release new virions from the cell. The time from cell entry until the appearance of the first extracellular viruses, known as the 'latent period' (not to be confused with the epidemiological latent period; see glossary in Box 1), estimates the duration of the full replication cycle. The burst size can be estimated by waiting until virion production saturates, and then dividing the total virion yield by the number of cells infected. While both the time to complete a replication cycle and the burst size may vary significantly in an animal host due to factors including the type of cell infected or the action of the immune system, these numbers provide us with an approximate quantitative view of the viral life-cycle at the cellular level.
Full text: Click here
Publication 2020
Animals Bacteria Bacteriophages Cells DNA Replication Infection Protoplasm SARS-CoV-2 Secondary Infections System, Immune Tissues Vaccination Virion Virus Virus Internalization
A survey was conducted among healthy young Dutch adults aged 18–30 years. Participants were recruited at the campus of Utrecht University, and most of them were students. Surveys were completed on location, and data were collected during spring 2016. Written informed consent was obtained from all participants; no formal ethics approval was required to conduct this research, according to the Central Committee on Research Involving Human Subjects (CCMO).
Mental resilience was assessed using the BRS.6 (link) The BRS consists of six items that can be answered using a 5-point Likert scale ranging from strongly disagree to strongly agree. The average mental resilience score ranging from 0 to 6 was computed, with higher scores implying stronger mental resilience.
Perceived immune functioning and perceived health status were scored from 0 (very poor) to 10 (excellent), using single item questions.15 (link) A yes/no question was asked to determine whether participants perceived reduced immune functioning at this moment. In addition, the immune function questionnaire (IFQ) was completed.18 (link) The IFQ includes 19 items on weakened immune system functioning, such as sore throat, flu, cold sores, ear infection, and sudden high fever. The frequency of these immune-related illnesses (0=never, 1=once or twice, 2=occasionally, 3=regularly, and 4=frequently) was also scored on a 5-point Likert scale. The overall IFQ score ranges from 0 to 76, with higher scores implying worse immune functioning.
The BRS and IFQ have been used in several studies and reliability and validity have been demonstrated.6 (link),18 (link) The 1-item scores of perceived immune functioning and health have been used successfully in previous research, and outcomes correlate well with IFQ scores.15 (link)
IBM SPSS statistics version 23 was used for data analysis. Independent samples t-tests and Pearson correlation tests were used to assess significant differences and correlations between various groups and variables. Fisher’s r-to-z transformation calculation was used to test for significant differences between correlations.
Publication 2017
BAD protein, human Ear Infection Fever Herpes Labialis Immune System Processes Respiratory Diaphragm Sore Throat Student System, Immune Young Adult

Most recents protocols related to «System, Immune»

Example 1

a. Materials and Methods

i. Vector Construction

1. Virus-Like Particle

As most broadly neutralizing HPV antibodies are derived from the highly conserved N-terminal region of L2, amino acids 14-122 of HPV16 L2 were used to create HBc VLPs. L2 with flanking linker regions was inserted into the tip of the a-helical spike of an HBc gene copy which was fused to another copy of HBc lacking the L2 insert. This arrangement allows the formation of HBc dimers that contain only a single copy of L2, increasing VLP stability (Peyret et al. 2015). This heterodimer is referred to as HBche-L2. A dicot plant-optimized HPV16 L2 coding sequence was designed based upon the sequence of GenBank Accession No. CAC51368.1 and synthesized in vitro using synthetic oligonucleotides by the method described (Stemmer et al., 1995). The plant-optimized L2 nucleotide sequence encoding residues 1-473 is posted at GenBank Accession No. KC330735. PCR end-tailoring was used to insert Xbal and SpeI sites flanking the L2 aa 14-122 using primers L2-14-Xba-F (SEQ ID NO. 1: CGTCTAGAGTCCGCAACCCAACTTTACAAG) and L2-122-Spe-R (SEQ ID NO. 2: G GGACTAGTTGGGGCACCAGCATC). The SpeI site was fused to a sequence encoding a 6His tag, and the resulting fusion was cloned into a geminiviral replicon vector (Diamos, 2016) to produce pBYe3R2K2Mc-L2(14-122)6H.

The HBche heterodimer VLP system was adapted from Peyret et al (2015). Using the plant optimized HBc gene (Huang et al., 2009), inventors constructed a DNA sequence encoding a dimer comprising HBc aa 1-149, a linker (G2S)5G (SEQ ID NO. 39), HBc aa 1-77, a linker GT(G4S)2 (SEQ ID NO. 40), HPV-16 L2 aa 14-122, a linker (GGS)2GSSGGSGG (SEQ ID NO. 41), and HBc aa 78-176. The dimer sequence was generated using multiple PCR steps including overlap extensions and insertion of BamHI and SpeI restriction sites flanking the L2 aa 14-122, using primers L2-14-Bam-F (SEQ ID NO. 3: CAGGATCCGCAACC CAACTTTACAAGAC) and L2-122-Spe-R (SEQ ID NO. 2). The HBche-L2 coding sequence was inserted into a geminiviral replicon binary vector pBYR2eK2M (FIG. 3), which includes the following elements: CaMV 35S promoter with duplicated enhancer (Huang et al., 2009), 5′ UTR of N. benthamiana psaK2 gene (Diamos et al., 2016), intron-containing 3′ UTR and terminator of tobacco extensin (Rosenthal et al, 2018), CaMV 35S 3′ terminator (Rosenthal et al, 2018), and Rb7 matrix attachment region (Diamos et al., 2016).

2. Recombinant Immune Complex

The recombinant immune complex (RIC) vector was adapted from Kim et al., (2015). The HPV-16 L2 (aa 14-122) segment was inserted into the BamHI and SpeI sites of the gene encoding humanized mAb 6D8 heavy chain, resulting in 6D8 epitope-tagged L2. The heavy chain fusion was inserted into an expression cassette linked to a 6D8 kappa chain expression cassette, all inserted into a geminiviral replicon binary vector (FIG. 3, RIC vector). Both cassettes contain CaMV 35S promoter with duplicated enhancer (Huang et al., 2009), 5′ UTR of N. benthamiana psaK2 gene (Diamos et al., 2016), intron-containing 3′ UTR and terminator of tobacco extensin (Rosenthal et al, 2018), and Rb7 matrix attachment region (Diamos et al., 2016).

ii. Agroinfiltration of Nicotiana benthamiana Leaves

Binary vectors were separately introduced into Agrobacterium tumefaciens EHA105 by electroporation. The resulting strains were verified by restriction digestion or PCR, grown overnight at 30° C., and used to infiltrate leaves of 5- to 6-week-old N. benthamiana maintained at 23-25° C. Briefly, the bacteria were pelleted by centrifugation for 5 minutes at 5,000 g and then resuspended in infiltration buffer (10 mM 2-(N-morpholino)ethanesulfonic acid (MES), pH 5.5 and 10 mM MgSO4) to OD600=0.2, unless otherwise described. The resulting bacterial suspensions were injected by using a syringe without needle into leaves through a small puncture (Huang et al. 2004). Plant tissue was harvested after 5 DPI, or as stated for each experiment. Leaves producing GFP were photographed under UV illumination generated by a B-100AP lamp (UVP, Upland, CA).

iii. Protein Extraction

Total protein extract was obtained by homogenizing agroinfiltrated leaf samples with 1:5 (w:v) ice cold extraction buffer (25 mM sodium phosphate, pH 7.4, 100 mM NaCl, 1 mM EDTA, 0.1% Triton X-100, 10 mg/mL sodium ascorbate, 0.3 mg/mL PMSF) using a Bullet Blender machine (Next Advance, Averill Park, NY) following the manufacturer's instruction. To enhance solubility, homogenized tissue was rotated at room temperature or 4° C. for 30 minutes. The crude plant extract was clarified by centrifugation at 13,000 g for 10 minutes at 4° C. Necrotic leaf tissue has reduced water weight, which can lead to inaccurate measurements based on leaf mass. Therefore, extracts were normalized based on total protein content by Bradford protein assay kit (Bio-Rad) with bovine serum albumin as standard.

iv. SDS-PAGE and Western Blot

Clarified plant protein extract was mixed with sample buffer (50 mM Tris-HCl, pH 6.8, 2% SDS, 10% glycerol, 0.02% bromophenol blue) and separated on 4-15% polyacrylamide gels (Bio-Rad). For reducing conditions, 0.5M DTT was added, and the samples were boiled for 10 minutes prior to loading. Polyacrylamide gels were either transferred to a PVDF membrane or stained with Coomassie stain (Bio-Rad) following the manufacturer's instructions. For L2 detection, the protein transferred membranes were blocked with 5% dry milk in PBST (PBS with 0.05% tween-20) overnight at 4° C. and probed with polyclonal rabbit anti-L2 diluted 1:5000 in 1% PBSTM, followed by goat anti-rabbit horseradish peroxidase conjugate (Sigma). Bound antibody was detected with ECL reagent (Amersham).

v. Immunization of Mice and Sample Collection

All animals were handled in accordance to the Animal Welfare Act and Arizona State University IACUC. Female BALB/C mice, 6-8 weeks old, were immunized subcutaneously with purified plant-expressed L2 (14-122), HBche-L2 VLP, L2 RIC, or PBS mixed 1:1 with Imject® Alum (Thermo Scientific, Rockford, IL). In all treatment groups, the total weight of antigen was set to deliver an equivalent 5 μg of L2. Doses were given on days 0, 21, and 42. Serum collection was done as described (Santi et al. 2008) by submandibular bleed on days 0, 21, 42, and 63.

vi. Antibody Measurements

Mouse antibody titers were measured by ELISA. Bacterially-expressed L2 (amino acids 11-128) was bound to 96-well high-binding polystyrene plates (Corning), and the plates were blocked with 5% nonfat dry milk in PBST. After washing the wells with PBST (PBS with 0.05% Tween 20), the diluted mouse sera were added and incubated. Mouse antibodies were detected by incubation with polyclonal goat anti-mouse IgG-horseradish peroxidase conjugate (Sigma). The plate was developed with TMB substrate (Pierce) and the absorbance was read at 450 nm. Endpoint titers were taken as the reciprocal of the lowest dilution which produced an OD450 reading twice the background. IgG1 and IgG2a antibodies were measured with goat-anti mouse IgG1 or IgG2a horseradish peroxidase conjugate.

vii. Electron Microscopy

Purified samples of HBche or HBche-L2 were initially incubated on 75/300 mesh grids coated with formvar. Following incubation, samples were briefly washed twice with deionized water then negatively stained with 2% aqueous uranyl acetate. Transmission electron microscopy was performed with a Phillips CM-12 microscope, and images were acquired with a Gatan model 791 CCD camera.

viii. Statistical Analysis

The significance of vaccine treatments and virus neutralization was measured by non-parametric Mann-Whitney test using GraphPad prism software. Two stars (**) indicates p values <0.05. Three stars (***) indicates p values <0.001.

b. Design and Expression of HBc VLPs and RIC Displaying HPV16 L2

BeYDV plant expression vectors (FIG. 3) expressing either the target VLP HBche-L2, or L2 and HBche alone as controls, were agroinfiltrated into the leaves of N. benthamiana and analyzed for VLP production. After 4-5 days post infiltration (DPI), leaves displayed only minor signs of tissue necrosis, indicating that the VLP was well-tolerated by the plants (FIG. 4A). Leaf extracts analyzed by reducing SDS-PAGE showed an abundant band near the predicted size of 51 kDa for HBche-L2, just above the large subunit of rubisco (RbcL). HBche was detected around the predicted size of 38 kDa (FIG. 4B). Western blot probed with anti-L2 polyclonal serum detected a band for HBche-L2 at ˜51 kDa (FIG. 4B). These results indicate that this plant system is capable of producing high levels of L2-containing HBc VLP.

To express L2-containing MC, amino acids 14-122 of HPV16 L2 were fused with linker to the C-terminus of the 6D8 antibody heavy chain and tagged with the 6D8 epitope (Kim et al. 2015). A BeYDV vector (FIG. 3) expressing both the L2-fused 6D8 heavy chain and the light chain was agroinfiltrated into leaves of N. benthamiana and analyzed for RIC production. To create more homogenous human-type glycosylation, which has been shown to improve antibody Fc receptor binding in vivo, transgenic plants silenced for xylosyltransferase and fucosyltransferase were employed (Castilho and Steinkellner 2012). By western blot, high molecular weight bands >150 kDa suggestive of RIC formation were observed (FIG. 4C). Expression of soluble L2 RIC was lower than HBche-L2 due to relatively poor solubility of the RIC (FIG. 4C).

After rigorous genetic optimization, the N. benthamiana system is capable of producing very high levels of recombinant protein, up to 30-50% of the total soluble plant protein, in 4-5 days (Diamos et al. 2016). Using this system, we produced and purified milligram quantities of fully assembled and potently immunogenic HBc VLPs displaying HPV L2 through a simple one-step purification process (FIGS. 4A-4C and 6).

c. Purification and Characterization of HBche-L2 and L2 RIC

To assess the assembly of HBc-L2 VLP, clarified plant extracts containing either HBche-L2 or HBche were analyzed by sucrose gradient sedimentation. HBche-L2 sedimented largely with HBche, which is known to form VLP, though a small increase in density was observed with HBche-L2, perhaps due to the incorporation of L2 into the virus particle (FIG. 5A). To demonstrate particle formation, sucrose fractions were examined by electron microscopy. Both HBche and HBche-L2 formed ˜30 nm particles, although the appearance of HBche-L2 VLP suggested slightly larger, fuller particles (FIGS. 5C and 5D). As most plant proteins do not sediment with VLP, pooling peak sucrose fractions resulted in >95% pure HBche-L2 (FIG. 5B), yielding sufficient antigen (>3 mg) for vaccination from a single plant leaf.

L2 RIC was purified from plant tissue by protein G affinity chromatography. By SDS-PAGE, an appropriately sized band was visible >150 kDa that was highly pure (FIG. 5B). Western blot confirmed the presence of L2 in this band, indicating proper RIC formation (FIG. 5B). L2 RIC bound to human complement C1q receptor with substantially higher affinity compared to free human IgG standard, suggesting proper immune complex formation (FIG. 5E).

d. Mouse Immunization with HBche-L2 and L2 RIC

Groups of Balb/c mice (n=8) were immunized, using alum as adjuvant, with three doses each of 5 μg L2 delivered as either L2 alone, HBche-L2 VLP, L2 RIC, or a combination of half VLP and half RIC. VLP and RIC, alone or combined, greatly enhanced antibody titers compared to L2 alone by more than an order of magnitude at all time points tested (FIG. 6). After one or two doses, the combined VLP/RIC treatment group outperformed both the VLP or RIC groups, reaching mean endpoint titers of >200,000, which represent a 700-fold increase over immunization with L2 alone (FIG. 6). After the third dose, both the VLP and combined VLP/RIC groups reached endpoint titers >1,300,000, a 2-fold increase over the RIC alone group. To determine the antibody subtypes produced by each treatment group, sera were assayed for L2-binding IgG1 and IgG2a. All four groups produced predominately IgG1 (FIG. 7, note dilutions). However, RIC and especially VLP-containing groups had an elevated ratio of IgG2a:IgG1 (>3-fold) compared to L2 alone (FIG. 7).

In vitro neutralization of HPV16 pseudovirions showed that the VLP and RIC groups greatly enhanced neutralization compared to L2 alone (FIG. 5, p<0.001). Additionally, VLP and RIC combined further enhanced neutralization activity ($5-fold, p<0.05) compared to either antigen alone, supporting the strong synergistic effect of delivering L2 by both platforms simultaneously.

In this study, by displaying amino acids 11-128 on the surface of plant-produced HBc VLPs, L2 antibody titers as high as those seen with L1 vaccines were generated (FIG. 6). Mice immunized with L2 alone had highly variable antibody titers, with titers spanning two orders of magnitude. By contrast, the other groups had much more homogenous antibody responses, especially the VLP-containing groups, which had no animals below an endpoint titer of 1:1,000,000 (FIG. 6). These results underscore the potential of HBc VLP and RIC to provide consistently potent immune responses against L2. Moreover, significant synergy of VLP and RIC systems was observed when the systems were delivered together, after one or two doses (FIG. 6). Since equivalent amounts of L2 were delivered with each dose, the enhanced antibody titer did not result from higher L2 doses. Rather, these data suggest that higher L2-specific antibody production may be due to augmented stimulation of L2-specific B cells by T-helper cells that were primed by RIC-induced antigen presenting cells. Although treatment with VLP and RIC alone reached similar endpoint titers as the combined VLP/RIC group after 3 doses, virus neutralization was substantially higher (>5-fold) in the combined group (FIG. 8). Together, these data indicate unique synergy exists when VLP and RIC are delivered together. Inventors have observed similarly significant synergistic enhancement of immunogenicity for a variety of other antigens.

Mice immunized with L2 alone had highly variable antibody titers, with titers spanning two orders of magnitude. By contrast, the VLP and VLP/RIC groups had much more homogenous antibody responses, with no animals below an endpoint titer of 1:1,000,000 (FIG. 6). These results underscore the potential of HBc VLP and RIC to provide consistently potent immune responses against L2.

Fc gamma receptors are present on immune cells and strongly impact antibody effector functions such as antibody-dependent cell-mediated cytotoxicity and complement-dependent cytotoxicity (Jefferis 2009). In mice, these interactions are controlled in part by IgG subtypes. IgG1 is associated with a Th2 response and has limited effector functions. By contrast, IgG2a is associated with a Th1 response and more strongly binds complement components (Neuberger and Raj ewsky 1981) and Fc receptors (Radaev 2002), enhancing effector functions and opsonophagocytosis by macrophages (Takai et al. 1994). Immunization with L2 alone was found to produce low levels of IgG2a, however immunization with RIC and VLP produced significant increases in IgG2a titers. VLP-containing groups in particular showed a 3-fold increase in the ratio of IgG2a to IgG1 antibodies (FIG. 7). Importantly, production of IgG2a is associated with successful clearance of a plethora of viral pathogens (Coutelier et al. 1988; Gerhard et al. 1997; Wilson et al. 2000; Markine-Goriaynoff and Coutelier 2002).

The glycosylation state of the Fc receptor also plays an important role in antibody function. Advances in glycoengineering have led to the development of transgenic plants with silenced fucosyl- and xylosyl-transferase genes capable of producing recombinant proteins with authentic human N-glycosylation (Strasser et al. 2008). Antibodies produced in this manner have more homogenous glycoforms, resulting in improved interaction with Fc gamma and complement receptors compared to the otherwise identical antibodies produced in mammalian cell culture systems (Zeitlin et al. 2011; Hiatt et al. 2014; Strasser et al. 2014; Marusic et al. 2017). As the known mechanisms by which RIC vaccines increase immunogenicity of an antigen depend in part on Fc and complement receptor binding, HPV L2 RIC were produced in transgenic plants with silenced fucosyl- and xylosyl-transferase. Consistent with these data, we found that L2 RIC strongly enhanced the immunogenicity of L2 (FIG. 6). However, yield suffered from insolubility of the RIC (FIG. 4C). We found that the 11-128 segment of L2 expresses very poorly on its own in plants and may be a contributing factor to poor L2 RIC yield. Importantly, we have produced very high yields of RIC with different antigen fusions. Thus, in some aspects, antibody fusion with a shorter segment of L2 could substantially improve the yield of L2 RIC.

e. Neutralization of HPV Pseudovirions

Neutralization of papilloma pseudoviruses (HPV 16, 18, and 58) with sera from mice immunized IP with HBc-L2 VLP and L2(11-128) showed neutralization of HPV 16 at titers of 400-1600 and 200-800, respectively (Table 1). More mice IP-immunized with HBc-L2 VLP had antisera that cross-neutralized HPV 18 and HPV 58 pseudoviruses, compared with mice immunized with L2(11-128). Anti-HBc-L2 VLP sera neutralized HPV 18 at titers of 400 and HPV 58 at titers ranging from 400-800 (Table 1), while anti-L2(11-128) sera neutralized HPV 18 at a titer of 200 and HPV 58 at a titer of 400 (Table 1). None of the sera from intranasal-immunized mice demonstrated neutralizing activity, consistent with lower anti-L2 titers for intranasal than for intraperitoneal immunized mice.

TABLE 1
L2-specific serum IgG and pseudovirus neutralization
titers from IP immunized mice
Neutralization of Pseudoviruses
ImmunogenSerum IgGHPV 16HPV 18HPV 58
HBc-L2>50,000 400
~70,0001600400400
>80,0001600400800
L2 (11-128)~8000 200
~12,000 400
~50,000 800200400

Full text: Click here
Patent 2024
3' Untranslated Regions 5' Untranslated Regions AA 149 Agrobacterium tumefaciens aluminum potassium sulfate aluminum sulfate Amino Acids Animals Animals, Transgenic Antibodies Antibody Formation Antigen-Presenting Cells Antigens B-Lymphocytes Bacteria Bromphenol Blue Buffers Cell Culture Techniques Cells Centrifugation Chromatography, Affinity Cloning Vectors Cold Temperature Combined Modality Therapy complement 1q receptor Complement Receptor Complex, Immune Complex Extracts Cytotoxicities, Antibody-Dependent Cell Cytotoxin Digestion DNA, A-Form DNA Sequence Edetic Acid Electron Microscopy Electroporation Enzyme-Linked Immunosorbent Assay Epitopes ethane sulfonate Fc Receptor Females Formvar Fucosyltransferase G-substrate Gamma Rays Genes Genes, vif Glycerin Goat Helix (Snails) Helper-Inducer T-Lymphocyte Homo sapiens Homozygote Horseradish Peroxidase Human papillomavirus 16 Human papillomavirus 18 Human Papilloma Virus Vaccine IGG-horseradish peroxidase IgG1 IgG2A Immune Sera Immunoglobulin Heavy Chains Immunoglobulins Immunologic Factors Institutional Animal Care and Use Committees Introns Inventors L2 protein, Human papillomavirus type 16 Light Macrophage Mammals Matrix Attachment Regions Mice, Inbred BALB C Microscopy Milk, Cow's Morpholinos Mus Necrosis Needles Nicotiana Oligonucleotide Primers Oligonucleotides Open Reading Frames Opsonophagocytosis Papilloma Pathogenicity Plant Development Plant Extracts Plant Leaves Plant Proteins Plants Plants, Transgenic polyacrylamide gels Polystyrenes polyvinylidene fluoride prisma Protein Glycosylation Proteins Punctures Rabbits Receptors, IgG Recombinant Proteins Replicon Reproduction Response, Immune Ribulose-Bisphosphate Carboxylase Large Subunit Satellite Viruses SDS-PAGE Serum Serum Albumin, Bovine Sodium Ascorbate Sodium Chloride sodium phosphate Specimen Collection Stars, Celestial Strains Sucrose Sulfate, Magnesium Syringes System, Immune Technique, Dilution Tissue, Membrane Tissues Transferase Transmission Electron Microscopy Triton X-100 Tromethamine Tween 20 Ultraviolet Rays uranyl acetate Vaccination Vaccines Vaccines, Recombinant Virion Viroids Virus Vision Western Blotting xylosyltransferase

Example 3

Serum was obtained from mice immunized with the composite influenza peptides Pep 63 and Pep 64 both in conjugated and unconjugated forms. These serum sample were tested for IgG1, IgG2a and IgG2b activity against Pep 3, Pep 6, Pep 10, and Pep 11 (Pep 11—the composite 3, 6 and 10 peptides).

With regard to Pep 3, Pep 6, Pep 10, and Pep 64, both conjugated and unconjugated, as compared to Pep 63 showed an overall greater IgG1 response (FIGS. 2, 3 and 4). With regard to Pep 11, Pep 64, both conjugated and unconjugated, as compared to Pep 63 also showed a greater IgG1 response (FIG. 5).

With regard to Pep 3, Pep 6, and Pep 10, there was a minimal IgG2a response to either Pep 63 or Pep 64, whether in conjugated or unconjugated form (FIGS. 6-8). With regard to Pep 11, Pep 64, conjugated and unconjugated showed only a weak IgG2a response; conjugated greater than unconjugated (FIG. 9).

With regard to Pep 3, Pep 6, Pep 10 there was a greater IgG2b response to Pep 64, conjugated, as compared to Pep 63 which mostly appeared after booster was administered (FIGS. 10-12). With regard to Pep 11, Pep 64, conjugated, showed a very large IgG2b response that was enhanced after the booster was administered (FIG. 13).

Pep 64 (both conjugated and unconjugated) with the T-cell epitope at the N-terminal end induced increased serum antibody responses to the individual peptides across IgG1 and IgG2b isotypes, but not IgG2a. What this data clearly shows is that the location of the T cell epitope on an antigen can have a significant effect of how the antigen is seen and responded to by the host immune system. These data also indicate that T cell epitope placement can have a profound effect on both the Th-1 and Th-2 responses.

Full text: Click here
Patent 2024
Antibody Formation Antigens cyclo-acetyl-(cysteinyl-histidyl-phenylalanyl-glutaminyl-phenylalanyl-cysteinyl)amide Debility Epitopes, T-Lymphocyte IgG1 IgG2A IgG2B Immunoglobulin Isotypes Mus Peptides Secondary Immunization Serum System, Immune Virus Vaccine, Influenza Vision

Example 11

MPV.10.34.d IRC Effectiveness in Human Assays

While the in vitro functional test results of the above experiments were promising, the next desired step in the analysis was to perform similar experiments in human-based assays. To this end, the response of mock human cellular immune system components to tumor cells exposed to MPV.10.34.d IRC was examined in vitro. Human CMV (HCMV) was selected for this study since human CMV is highly prevalent (infecting 50-90% of the human population) and mostly asymptomatic in healthy individuals. (See, Longmate et al., Immunogenetics, 52(3-4):165-73, 2001; Pardieck et al., F1000Res, 7, 2018; and van den Berg et al., Med. Microbiol. Immunol., 208(3-4):365-373, 2019). Importantly, HCMV establishes a life-long persistent infection that requires long-lived cellular immunity to prevent disease. Hence, it is rational to hypothesize that a complex adaptive cell-mediated anti-viral immunity developed over many years to strongly control a viral infection in an aging person can be repurposed and harnessed to treat cancer.

In these experiments, CD8+ T cell responses to CMV peptides were tested in three different human tumor cell lines, including HCT116, OVCAR3, and MCF7. All three of these human tumor cell lines are HLA-A*0201 positive.

In vitro cytotoxicity assays. HTC112, human colon cancer cells, MCF7, human breast cancer cells, and OVCAR3, human ovarian cancer cells (all from ATCC, Manassas, VA, US) were seeded overnight at 0.01 to 0.2×106 per well per 100 μL per 96 well plate. The next day (about 20 to 22 hrs later), each cell line was incubated for one hour at 37° C. under the following conditions: (1) CMV peptide at a final concentration of 1 μg/mL (positive control), (2) MPV.10.34.d at a final concentration of 2.5 μg/mL (negative control), (3) CMV-conjugated MPV.10.34.d IRC at a final concentration of 2.5 μg/mL, (4) CMV-conjugated HPV16 IRC at a final concentration of 2.5 μg/mL, and (5) no antigen (negative control). After 1 hour, the cells were washed vigorously with 200 μL of media for three times to remove non-specific binding. Human patient donor CMV T cells (ASTARTE Biologics, Seattle, WA, US) were added at the E:T (effector cell:target cell) ratio of 10:1 and incubated in a tissue culture incubator for 24 hrs at 37 C, 5% CO2. The total final volume of each sample after co-culture was 200 μL. Cell viability was measured after co-culturing. Cell viability was measured with CELLTITER-GLO® (Promega, Madison, WI, US). This assay provides a luciferase-expressing chemical probe that detects and binds to ATP, a marker of cell viability. The amount of ATP generated from tumor cells was quantified according to manufacturer protocols. In these assays, reduced luciferase activity indicates cell death and suggests greater immune redirection and greater cytotoxicity.

The results are provided in FIG. 25. CMV-conjugated MPV.10.34.d IRC (“VERI-101” in FIGS. 25A, 25B, and 25C) was equally effective as CMV-conjugated HPV16 IRC (“CMV AIR-VLP” in FIGS. 25A, 25B, and 25C) in redirecting human healthy donor CMV pp65-specific CD8+ T-cells (Astarte Biologics, Inc., Bothell, WA, US) to kill immortalized HLA.A2 positive human colon cancer cells (HCT116), human ovarian cancer cells (OVCAR3), and human breast cancer cells (MCF7). The control samples (“No Ag” or “VERI-000” in FIGS. 25A, 25B, and 25C) showed no background tumor killing. Together, these data demonstrate that MPV.10.34.d IRC redirects mouse and human immune responses against tumor cells in vitro.

Full text: Click here
Patent 2024
Acclimatization Antigens Antiviral Agents Biological Assay Biological Factors Cancer of Colon CD8-Positive T-Lymphocytes Cell Death Cell Line, Tumor Cell Lines Cells Cell Survival Cellular Immune Response Cellular Immunity Cytotoxin Figs HLA-A2 Antigen Homo sapiens Human papillomavirus 16 In Vitro Testing Luciferases Malignant Neoplasms Mammary Carcinoma, Human MCF-7 Cells Mus Neoplasms Ovarian Cancer Patients Peptides Persistent Infection Promega Response, Immune Response Elements System, Immune T-Lymphocyte Tissue Donors Tissues UL83 protein, Human herpesvirus 5 Virus Virus Diseases
Activity 3 starts with the instructor explaining
that, after the interaction of the spike protein with the entry receptor
ACE2, cleavage of the S1 domain is achieved by a protease. Proteolytic
cleavage is followed by conformational changes in S2, which allows
the fusion of the virus with the cellular membranes leading to the
cytoplasmatic release of the viral genome into the host cell.15 (link) Because the viral genome must access the cytoplasm,
every step of this process is important. Understanding the foundations
of these entry mechanisms allows researchers to design vaccines, antibodies,
small molecule inhibitors, and other potential therapeutics targeting
to prevent SARS-CoV-2 access into the host cell.
A brief outline
should be also provided to students about how the body fights illness
and how vaccines work. So, they must know that after bacteria or viruses
enter the human body they start to multiply, giving rise to infection
and causing disease. Immediately, the immune system is activated and
produces antibodies to fight off the infection, but this process requires
a few days, which is why we have symptoms such as fever, headache,
fatigue, or body aches. After the first infection, the immune system
will recognize the germ and will already know how to defend the body.
Vaccines contain attenuated or inactivated parts of a specific organism
which provoke a mimicked infection in the body helping the immune
system to create the specific antibodies. Of course, this simulated
infection can cause some symptoms which are common while the body
creates the new antibodies. Vaccines are the safest and most effective
way of protecting people from infections. Of course, they are not
perfect and a person can develop disease despite having been vaccinated,
although they will be at a much lower risk of becoming seriously ill.
Next, students load and overlay the structures with IDs: 7V2A,16 (link)7TB8,17 (link)7WPD,18 (link)7CZP,19 (link)7CZQ,19 (link) and 7JZL(20 (link)) (Figure S5).
All are complexes of the spike
protein with antibodies or inhibitors
bonded to the receptor binding domain (RBD). They must answer the
following two questions: (1) why do SARS-CoV-2 vaccines prevent
serious illness and save hundreds of thousands of lives?
And
based on what they have learned: (2) what could be the influence
of virus variants on the efficacy of these antibodies, and why?
At the end of these activities, most of the students made
the connection
between the observed structural features and the efficacy of vaccines,
concluding by themselves that antibodies or inhibitors act by blocking
the ACE2 binding of the spike protein and, as consequence, the viral
entry into the host cells.
During the sessions, the students
explained to the instructors
their respective answers to the questions and the instructors evaluated
them. In addition, a quick assessment of the student’s learning
can be done using a short questionnaire as such the one provided in
the SI. If desired, it can be carried
out with Kahoot or similar tools.
Full text: Click here
Publication 2023
Ache Angiotensin Converting Enzyme 2 Antibodies Antibodies, Viral Bacteria COVID-19 Vaccines Cytokinesis Cytoplasm Fatigue Fever Headache Human Body Infection inhibitors M protein, multiple myeloma Peptide Hydrolases Plasma Membrane Safety SARS-CoV-2 Student System, Immune Therapeutics Vaccines Viral Genome Virus

Protocol full text hidden due to copyright restrictions

Open the protocol to access the free full text link

Publication 2023
Adult Arthropathy Bone-Implant Interface Connective Tissue Diseases Diagnosis Ethanol Ethics Committees, Clinical Females Femoral Fractures Femur Heads Fever Fracture, Bone Head Homo sapiens Infection Joints Males Necrosis Pain Paraffin Embedding paraform Patient Participation Patients Repeat Surgery Sinuses, Nasal Synovial Fluid Synovial Membrane System, Immune Tissue, Membrane Tissues Total Hip Arthroplasty X-Rays, Diagnostic

Top products related to «System, Immune»

Sourced in Germany, United States, United Kingdom, Japan, Switzerland, France, China, Canada, Italy, Spain, Singapore, Austria, Hungary, Australia
The LSM 710 is a laser scanning microscope developed by Zeiss. It is designed for high-resolution imaging and analysis of biological and materials samples. The LSM 710 utilizes a laser excitation source and a scanning system to capture detailed images of specimens at the microscopic level. The specific capabilities and technical details of the LSM 710 are not provided in this response to maintain an unbiased and factual approach.
Sourced in Germany, United States, United Kingdom, Netherlands, Spain, Japan, Canada, France, China, Australia, Italy, Switzerland, Sweden, Belgium, Denmark, India, Jamaica, Singapore, Poland, Lithuania, Brazil, New Zealand, Austria, Hong Kong, Portugal, Romania, Cameroon, Norway
The RNeasy Mini Kit is a laboratory equipment designed for the purification of total RNA from a variety of sample types, including animal cells, tissues, and other biological materials. The kit utilizes a silica-based membrane technology to selectively bind and isolate RNA molecules, allowing for efficient extraction and recovery of high-quality RNA.
Sourced in United States, Germany, United Kingdom, Canada, France, Australia, Switzerland, Uruguay
The BD LSRII flow cytometer is a multi-parameter instrument designed for advanced flow cytometry applications. It features a modular design that allows for customization to meet specific research needs. The LSRII utilizes laser excitation and sensitive detectors to analyze the physical and fluorescent properties of individual cells or particles passing through a fluid stream.
Sourced in United States, China, Japan, Germany, United Kingdom, Canada, France, Italy, Australia, Spain, Switzerland, Netherlands, Belgium, Lithuania, Denmark, Singapore, New Zealand, India, Brazil, Argentina, Sweden, Norway, Austria, Poland, Finland, Israel, Hong Kong, Cameroon, Sao Tome and Principe, Macao, Taiwan, Province of China, Thailand
TRIzol reagent is a monophasic solution of phenol, guanidine isothiocyanate, and other proprietary components designed for the isolation of total RNA, DNA, and proteins from a variety of biological samples. The reagent maintains the integrity of the RNA while disrupting cells and dissolving cell components.
Sourced in United States
IRDye 800CW-conjugated goat anti-rabbit IgG is a secondary antibody reagent. It is designed to be used for the detection of rabbit primary antibodies in immunoassays and other applications requiring fluorescent labeling.
The Milliplex Mouse Cytokine / Chemokine Magnetic Bead Panel MCYTOMAG-70K is a multiplex assay kit used for the simultaneous quantitative measurement of multiple mouse cytokines and chemokines in a variety of sample types. The kit utilizes Luminex bead-based technology to detect and quantify the analytes of interest.
Sourced in United States, United Kingdom
Cytofix buffer is a reagent used in cell biology and flow cytometry applications. It is designed to fix and permeabilize cells, preparing them for subsequent staining and analysis procedures. The core function of Cytofix buffer is to preserve the structure and antigenicity of cells, enabling the detection and quantification of intracellular targets.
Sourced in Germany, United States, United Kingdom, Spain, Netherlands, Canada, France, Japan, China, Italy, Switzerland, Australia, Sweden, India, Singapore, Denmark, Belgium
The RNeasy kit is a laboratory equipment product that is designed for the extraction and purification of ribonucleic acid (RNA) from various biological samples. It utilizes a silica-membrane-based technology to efficiently capture and isolate RNA molecules.

More about "System, Immune"

The Immune System is a complex, dynamic network of cells, tissues, and organs that work tirelessly to protect the body from a variety of threats, including viruses, bacteria, and parasites.
This intricate system is composed of two primary branches: the innate immune system, which provides immediate protection, and the adaptive immune system, which learns to recognize and remember specific pathogens.
Key components of the Immune System include lymphocytes (such as T cells and B cells), phagocytes, and cytokines.
These cellular players, along with a host of supporting tissues and organs like the thymus, spleen, and lymph nodes, work in harmony to detect, respond to, and neutralize potential threats.
Proper functioning of the Immune System is crucial for maintaining good health and well-being.
Imbalances or dysfunctions in this system can lead to a range of issues, from autoimmune disorders to immunodeficiencies, which can increase susceptibility to infection.
Researchers are continually exploring the Immune System's intricate mechanisms, leveraging advanced tools and techniques like the LSRII flow cytometer, TRIzol reagent, and Milliplex Mouse Cytokine / Chemokine Magnetic Bead Panel MCYTOMAG-70K, to develop new therapies and improve human health.
By understanding the complexities of this remarkable system, scientists can uncover new ways to harness its power and optimize immune responses.
Whether you're studying the Immune System, working on a related research project, or simply curious about this vital aspect of human biology, exploring the insights and resources available can provide a deeper appreciation for the incredible capabilities of this essential system.