ChIP-chip data for FoxA1 and controls in MCF7 cells were previously published [1 (link)], and their corresponding ChIP-Seq data were generated specifically for this study. Around 3 ng FoxA1 ChIP DNA and 3 ng control DNA were used for library preparation, each consisting of an equimolar mixture of DNA from three independent experiments. Libraries were prepared as described in [8 (link)] using a PCR preamplification step and size selection for DNA fragments between 150 and 400 bp. FoxA1 ChIP and control DNA were each sequenced with two lanes by the Illumina/Solexa 1G Genome Analyzer, and yielded 3.9 million and 5.2 million uniquely mapped tags, respectively.
Jurkat Cells
These cells have been instrumental in the study of T cell signaling, activation, and apoptosis.
Jurkat cells express a variety of T cell surface markers and exhibit many characteristics of immature T lymphocytes, making them a valuable model for investigating T cell biology and immunology.
Researhcers can leverage PubCompare.ai's AI-powered platform to easily locate the best Jurkat cell protocols from literature, preprints, and patents, optimizing their experimental workflows and taking the guesswork out of their research.
Most cited protocols related to «Jurkat Cells»
ChIP-chip data for FoxA1 and controls in MCF7 cells were previously published [1 (link)], and their corresponding ChIP-Seq data were generated specifically for this study. Around 3 ng FoxA1 ChIP DNA and 3 ng control DNA were used for library preparation, each consisting of an equimolar mixture of DNA from three independent experiments. Libraries were prepared as described in [8 (link)] using a PCR preamplification step and size selection for DNA fragments between 150 and 400 bp. FoxA1 ChIP and control DNA were each sequenced with two lanes by the Illumina/Solexa 1G Genome Analyzer, and yielded 3.9 million and 5.2 million uniquely mapped tags, respectively.
The images were captured using an inverted microscope (IX81, Olympus, Japan) equipped with a × 20 objective (numerical aperture (NA)=0.75, UPlanSApo, Olympus) or a × 40 objective (NA 0.90, UApo/340, Olympus), an electron-multiplying cooled-coupled device (EM-CCD) camera (ImagEM, Hamamatsu Photonics, Japan), a filter wheel (Lambda 10-3, Sutter Instrument, USA), a xenon lamp (ebx75) and a metal halide lamp (EL6000, Leica, Germany) at a rate of one frame per 2 or 3 s with the following excitation/emission filter settings: 472±15 nm/520±17.5 nm for G-GECO1.1, CEPIA1er, G-CEPIA1er, CEPIA2–4mt and EYFP-er; 562±20 nm/641±37.5 nm for R-GECO1, R-CEPIA1er and mCherry-STIM1; 377±25 nm/466±20 nm and 377±25 nm/520±17.5 nm for GEM-GECO1 and GEM-CEPIA1er; 340±13 nm/510±42 nm and 365±6 nm/510±42 nm for fura-2; 440±10.5 nm/480±15 nm and 440±10.5 nm/535±13 nm for D1ER19 (link)20 (link). For analysis of the ratiometric indicators, we calculated the fluorescence ratio (F466/F520 for GEM-GECO1 and GEM-CEPIA1er; F340/F365 for fura-2; F535/F480 for D1ER). Photobleaching was corrected for using a linear fit to the fluorescence intensity change before agonist stimulation. All images were analysed with ImageJ software.
To image subcellular ER Ca2+ dynamics during agonist-induced Ca2+ wave formation, we imaged HeLa cells expressing either G-CEPIA1er or R-CEPIA1er. Images were captured at a rate of one frame per 30–100 ms using a × 60 objective (NA 1.45, PlanApo TIRF, Olympus) and the metal halide lamp or an LED lamp (pE-100, CoolLED, UK). To evaluate Ca2+ wave velocity in the ER and cytosol, images were normalized by the resting intensity, and a linear region of interest (ROI) was defined along the direction of wave propagation. A line-scan image was created by averaging 30 adjacent linear ROIs parallel to the original ROI, and time derivative was obtained to detect the time point that showed maximal change during the scan duration. Then, the time points were plotted against the pixel, and the wave velocity was estimated by the slope of the least-squares regression line.
For mitochondrial Ca2+ imaging with ER and cytosolic Ca2+, mitochondrial inner membrane potential or mitochondrial pH at subcellular resolution, we imaged HeLa cells with a confocal microscope (TCS SP8, Leica) equipped with a × 63 objective (NA 1.40, HC PL APO, Leica) at a rate of one frame per 2 or 3 s with the following excitation/emission spectra: R-GECO1mt (552 nm/560–800nm), G-CEPIA1er (488 nm/500–550 nm) and GEM-GECO1 (405 nm/500–550 nm); GEM-GECO1mt (405 nm/500–550 nm), JC-1 (488 nm/500–550 nm and 488 nm/560–800nm); R-GECO1mt (552 nm/560–800nm), SypHer-dmito (405 nm/500–550 nm and 488 nm/500–550 nm). For analysis of JC-1 and SypHer-dmito, we calculated the fluorescence ratio (488 nm/560–800 nm over 488 nm/500–550 nm for JC-1 (ref. 55 (link)); 488 nm/500–550 nm over 405 nm/500–550 nm for SypHer-dmito62 (link)).
To perform in situ Ca2+ titration of CEPIA, we permeabilized the plasma membrane of HeLa cells with 150 μM β-escin (Nacalai Tesque, Japan) in a solution containing (in mM) 140 KCl, 10 NaCl, 1 MgCl2 and 20 HEPES (pH 7.2). After 4 min treatment with β-escin, we applied various Ca2+ concentrations in the presence of 3 μM ionomycin and 3 μM thapsigargin, and estimated the maximum and minimum fluorescent intensity (Rmax and Rmin), dynamic range (Rmax/Rmin), Kd and n.
For the estimation of [Ca2+]ER based on the ratiometric measurement using GEM-CEPIA1er (
where R=(F at 466 nm)/(F at 510 nm), n=1.37 and Kd=558 μM.
To evaluate pH-dependent change of EYFP-er fluorescence (
Most recents protocols related to «Jurkat Cells»
Example 8
Antibody-dependent cell-mediated cytotoxicity assays (ADCC assays) were performed for the characterization of anti-human CD25 antibodies using CD25-expressing SR786 cells, herein called target (T) cells, incubated for 20 minutes at 37 C with different concentrations of anti-human CD25 antibodies in a low-IgG FBS-supplemented medium (4% FBS in RPMI). ADCC effector (E) cells are then added to the cell-mAbs mixture at an E:T ratio of 1:1. The effector cells are Jurkat cells stably transfected with a luciferase reporter system and over-expressing CD16/FcgammaRIIIA (Promega). After overnight incubation at 37 C, the cells are lysed and luciferase activity is measured by mean of luminescence release from the hydrolysis of a specific luciferase substrate, following manufacturer instruction (Promega Bio-Glow protocol). Graphs of the raw data are produced using Graphpad Prism v7 to generate dose response curves. The Relative Luminescences Units (RLU) are plotted on a XY chart against the log of the antibody concentration, and the data fir to a non-linear regression curve from which the EC50 is calculated.
Example 2
CAR-T constructs in pLenti6.3/V5-DEST were purified using the PureLink HQ plasmid purification kit (Life Technology). CAR-T plasmids were lipofected into 293-FT cells with ViraPower packaging plasmids (Life Technologies) according to the manufacturer's protocol. After 48-72 hours, cell supernatant containing live Lentivirus was harvested. Optionally, the virus was concentrated using Lenti-X Concentrator (Clontech), according to the manufacturer's protocol.
Jurkat E6.1 cells were grown in RPMI (Sigma), 10% foetal bovine serum, 2 mM L-glutamine
Jurkat E6.1 cells were transduced for 48-72 hours with viral supernatant in a 50:50 mix of HEK cell supernatant:Jurkat medium: cells at a final concentration of 5×105/ml.
A non-CAR-T construct containing the open reading frame of the Green Fluorescent Protein (GFP) was included as a control. Note that this construct gives cytoplasmic expression.
Example 5
In Vitro Cytotoxicity Assay
Cells from the Jurkat cell line were treated with different doses of chimera. The result was that the chimera is toxic to Jurkat cells in a dose-dependent manner as can be seen in
HT29 cells were treated with different doses of GRNLY and chimera. The result was that both GRNLY and the chimera are toxic to HT29 cells in a dose-dependent manner as can be seen in
Furthermore, labeling was also performed with Alexa-46-conjugated annexin-V showing phosphatidylserine exposure and with 7AAD showing membrane integrity on HT29 cells treated with different concentrations of chimera for analyzing the type of induced cell death. By increasing the concentration of chimera, an increase in cells labeled with annexin which still have not lost membrane integrity is observed, indicating that cell death is caused by apoptosis (
In Vivo Assay with HELA-CEA Cells
Five mice per group (control group, granulysin group, and MFE group (with the chimera) were assayed. Although there was a mouse in the MFE group that died after the sixth injection, the other 4 mice, however, reached the end of the experiment in good conditions state. The tumor was subcutaneously injected with Matrigel at 2 million cells. Treatments began when the tumors reached a size of 150 mm3. The treatments were systemic intraperitoneal treatments performed every two days (injections):
-
- Control group, 500 ul of PBS.
- Granulysin group, 220 ul of a stock at 500 ug/ml (40 uM), i.e., 110 ug per injection, which yields a concentration of about 5 uM in 2 ml of total blood.
- MFE group, 500 ul of stocks of about 900 ug/ml (25 uM), i.e., 425 ug per injection, which yields a concentration of about 5 uM in 2 ml of total blood.
Ten injections were performed and the mice were sacrificed 2 days after the last injection.
The results are illustrated in
Example 3
Cells transduced with Lenti-GFP as explained above were analysed on a Sony SH800Z flow cytometer with 488 laser. Signal from GFP transduced cells was compared with untransduced cells. The results are shown in
Constructs expressing irrelevant VH with a HIS tag were shown by flow cytometry to have surface expression on Jurkat cells using anti-His detection agents. This shows that the leader sequence directs the CART to the surface of the cell as expected.
EXAMPLE 41
To verify if the CD28-Fc binding clones could also bind to the native form of the CD28 antigen, serial dilutions of purified protein preparations of such clones were allowed to bind to the human Jurkat T-cell line, which expresses human CD28. Binding of putative CD28 reactive Nanobodies clones was detected using unlabeled anti-c-myc tag mouse monoclonal antibody 9E10, followed by a phycoerythrin conjugated F(ab′)2 derived from goat-anti-mouse IgG (human and bovine crossabsorbed), and read on a BD FACSarray instrument. Dead cells were excluded from the analysis by gating out TOPRO3 vital dye positive scoring cells. Binding of the Nanobodies to cells was evaluated in BD FACS array control software as PE channel histograms. Based on these FACS experiments, all CD28-Fc binding Nanobody clones bound cell expressed CD28. Results of a representative experiment are depicted in
Top products related to «Jurkat Cells»
More about "Jurkat Cells"
These immortalized cells have been instrumental in the study of T cell signaling, activation, and apoptosis (programmed cell death).
Jurkat cells express a variety of T cell surface markers and exhibit many characteristics of immature T lymphocytes, making them a valuable model for investigating T cell biology and immunology.
Researchers can leverage the power of PubCompare.ai's AI-driven platform to easily locate the best Jurkat cell protocols from the published literature, preprints, and patents.
This optimizes experimental workflows and takes the guesswork out of Jurkat cell research.
The platform's comparison tools allow researchers to quickly identify the most effective Jurkat cell methods, from cell culture techniques to experimental assays.
When culturing Jurkat cells, it is common to use RPMI 1640 medium, which is a standard cell culture medium that provides the necessary nutrients and supplements for cell growth and maintenance.
Fetal bovine serum (FBS) is often added to the RPMI 1640 medium to further support cell proliferation and survival.
Antibiotics, such as penicillin and streptomycin, are also commonly included to prevent bacterial contamination.
In addition to RPMI 1640, researchers may also use other cell culture media, such as Dulbecco's Modified Eagle Medium (DMEM), depending on the specific requirements of their experiments.
Transfection reagents, like Lipofectamine 2000, are often utilized to introduce genetic material into Jurkat cells for various studies, such as gene expression analysis or gene silencing experiments.
By leveraging the comprehensive resources and advanced comparison tools provided by PubCompare.ai, researchers can streamline their Jurkat cell research, optimize their experimental protocols, and gain valuable insights into T cell biology and immunology.