Lymphocyte
These cells are responsible for recognizing and responding to foreign invaders, such as viruses and bacteria, as well as abnormal cells within the body.
Lymphocytes can be divided into two main types: B cells and T cells.
B cells produce antibodies that bind to and neutralize pathogens, while T cells directly attack infected or cancerous cells.
Understanding the function and behavior of lymphocytes is essential for the diagnosis and treatment of a wide range of immune-related disorders, including autoimmune diseases, infections, and cancer.
Researchers in this field utilize advanced techniques, such as flow cytometry and genetic analysis, to study lymphocyte subsets and their interactions with other immune components.
The optimal design and execution of lymphocyte research protocols is crucial for ensuring accurate and reproducible results, which can lead to new insights and therapies for improving human health.
Most cited protocols related to «Lymphocyte»
We removed from analysis samples that were outliers with respect to any one of the internal control probes (excluding probes designed to evaluate the background noise and probes designed to normalize the data) and samples that were not of non-Hispanic white ancestry, either self-declared or by investigation of genetic ancestry using genome-wide SNP data. After sample exclusion, we were left with 489 adult males and 357 adult females.
Having defined this set of 78 labels and 68 categories (53 categories are directly represented by labels, with 15 additional categories not directly represented in the dataset), we exhaustively encoded the relationships between labels and categories using three possible relationships (Additional file
C : “positive samples” are those whose label is included in the category (all cells composing a sample which is in C are in the category)
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ \overline{C} $$\end{document}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ \overline{C} $$\end{document}
-1 : “mixed samples” are those whose label is partly overlapping with the category (some cells of the sample are in C and some are in
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ \overline{C} $$\end{document}
Note that the relationships represented in Additional file
Most recents protocols related to «Lymphocyte»
Example 7
Impact of IL-2 signalling on Teff responses is characterised in a T cell activation assay, in which intracellular granzyme B (GrB) upregulation and proliferation are examined. Previously frozen primary human Pan T cells (Stemcell Technologies) are labelled with eFluor450 cell proliferation dye (Invitrogen) according to manufacturer's recommendation, and added to 96-U-bottom well plates at 1×105 cells/well in RPMI 1640 (Life Technologies) containing 10% FBS (Sigma), 2 mM L-Glutamine (Life Technologies) and 10,000 U/ml Pen-Strep (Sigma). The cells are then treated with 10 μg/ml anti-CD25 antibodies or control antibodies followed by Human T-Activator CD3/CD28 (20:1 cell to bead ratio; Gibco) and incubated for 72 hrs in a 37° C., 5% CO2 humidified incubator. To assess T cell activation, cells are stained with the eBioscience Fixable Viability Dye efluor780 (Invitrogen), followed by fluorochrome labelled antibodies for surface T cell markers (CD3-PerCP-Cy5.5 clone UCHT1 Biolegend, CD4-BV510 clone SK3 BD Bioscience, CD8-Alexa Fluor 700 clone RPA-T8 Invitrogen, CD45RA-PE-Cy7 clone HI100 Invitrogen, CD25-BUV737 clone 2A3 BD Bioscience) and then fixed and permeabilized with the eBioscience™ Foxp3/Transcription Factor Staining Buffer Set (Invitrogen) before staining for intracellular GrB and intranuclear FoxP3 (Granzyme B-PE clone GB11 BD Bioscience, FoxP3-APC clone 236A/E7). Samples are acquired on the Fortessa LSR X20 Flow Cytometer (BD Bioscience) and analysed using the BD FACSDIVA software. Doublets are excluded using FCS-H versus FCS-A, and lymphocytes defined using SSC-A versus FCS-A parameters. CD4+ and CD8+ T cell subsets gated from the live CD3+ lymphocytes are assessed using a GrB-PE-A versus proliferation eFluor450-A plot. Results are presented as percentage of proliferating GrB positive cells from the whole CD4+ T cell population. Graphs and statistical analysis is performed using GraphPad Prism v7. (results not shown)
Example 4
Peripheral blood mononuclear cells (PBMCs) were isolated from freshly collected whole blood from Ulcerative Colitis (UC) and Crohn's Disease (CD) patients, by conventional density gradient centrifugation. To induce CD30L expression on primary lymphocytes, the isolated cells were stimulated overnight with Phorbol 12-myristate 13-acetate (PMA) and ionomycin. The next day, the stimulated cells, along with non-stimulated cells kept as control, were collected, washed and incubated on ice with increasing concentrations of fluorescently labeled anti-CD30L antibodies or isotype control (from 0.001 nM to 60 nM). After washing to remove unbound antibodies, the cells were fixed in a paraformaldehyde solution and analyzed by flow cytometry to quantify cell surface antibody binding. Typical results from this assay are shown in Table 7.
Example 3
This example provides a showing of the effect of disclosed anti-PD-L1 antibodies on lymphocyte proliferation. Anti-PD-L1 antibodies were assayed for their ability to modulate the response of lymphocytes to stimulation. The anti-PD-L1 antibodies H1, H6 and H10 were added at 10 μg/ml to cultures of peripheral blood mononuclear cells labeled with the fluorescent dye carboxyfluorescein (CFSE) and stimulated with anti-CD3 (1 ng/ml). After three days of culture, the cells were assayed for proliferative activity by flow cytometry using a FACS Aria (Becton Dickinson, San Jose, CA). The results, shown in
Example 2
This example provides the results from binding the disclosed anti-PD-L1 antibodies to human lymphocytes. Anti-PD-L1 antibodies were assayed for binding to non-activated lymphocytes. Peripheral blood mononuclear cells were incubated with anti-PD-L1 antibodies (1 μg/ml) followed by washing. Binding of the anti-PD-L1 antibody was detected by staining with a phycoerythrin conjugated and human Ig reagent. To identify the stained populations the cells were co-stained with an anti-CD3 FITC or an anti-CD56 APC reagent. Since the anti-human Ig reagent reacts with immunoglobulin on B lymphocytes the cells were also stained with an anti-human CD19 APC-Cy5 reagent. The data in
Example 6
Three or four days after G418 selection (0.5 mg/mL), retroviral vector-transduced primary T cells were cultured in complete RPMI media containing 25 U/mL human IL-2 for an additional 2-3 days. Viable lymphocytes were recovered by centrifugation over HISTOPAQUE®-1083 (Sigma, St. Louis, MO) and used as effector cells. Lysis of target cells (RMA, RMA/Rae-1R, RMA/H60, EG7, RMA-S, RMA-S/Rae-1p, and YAC-1) was determined by a 4-hour 51Cr release assay (Sentman, et al. (1994) supra). To block NKG2D receptors, anti-NKG2D (clone: CX5, 20 μg/mL) was included in those assays. The percentage of specific lysis was calculated as follows:
% Specific lysis=[(Specific51Cr release−spontaneous51Cr release)/(Maximal51Cr release-spontaneous51Cr release)]×100.
Top products related to «Lymphocyte»
More about "Lymphocyte"
These white blood cells can be divided into two main types: B cells and T cells.
B cells produce antibodies that bind to and neutralize pathogens, while T cells directly attack infected or cancerous cells.
Understanding the function and behavior of lymphocytes is essential for the diagnosis and treatment of a wide range of immune-related disorders, including autoimmune diseases, infections, and cancer.
Researchers in this field utilize advanced techniques, such as flow cytometry and genetic analysis, to study lymphocyte subsets and their interactions with other immune components.
Flow cytometry instruments like the FACSCalibur, FACSCanto II, and LSRFortessa are commonly used to analyze and sort lymphocytes based on their surface markers and intracellular properties.
These instruments, along with the FACSDiva software, enable researchers to accurately quantify and characterize different lymphocyte populations.
Proper sample preparation is crucial for ensuring accurate and reproducible results in lymphocyte research.
Techniques like culturing cells in RPMI 1640 medium supplemented with fetal bovine serum (FBS) and treating samples with DNase I can help maintain the viability and functionality of lymphocytes during experimental procedures.
By incorporating these advanced techniques and tools, researchers can optimize their lymphocyte research protocols and unlock new insights that can lead to the development of improved diagnostics and therapies for a variety of immune-related conditions.
Streamline your workflow and elevate your lymphocyte research with the power of PubCompare.ai, the ultimate resource for protocol optimization and collaboration.