Protocol full text hidden due to copyright restrictions
Open the protocol to access the free full text link
Example 3
Verification of CD117 as a Marker for Ventral Midbrain Dopaminergic Progenitor Cells Derived from Different Pluripotent Stem Cell Sources
To verify that the correlation of CD117 with the highly important intracellular marker FoxA2, thus highlighting the ventral midbrain dopaminergic progenitor cells, is independent from the sources auf pluripotent stem cells. We could show this correlation for one iPS line (F5) and one ES line (1(15).
Example 1
The pluripotent stem cell line H9 was obtained from NIH line WA 09, supplied by WiCell (Madison, Wis.) and was maintained in an undifferentiated state by passaging on irradiated human foreskin fibroblasts (line HS27, ATCC, Manassas, Va.) and gelatin coated plates. To differentiate the pluripotent stem cells towards a mesodermal and then mesenchymal lineage, the colonies of the pluripotent stem cells were mechanically dissected into small pieces under microscopic guidance and then transferred to tissue culture-treated 6-well plates (Corning). The cells at this stage were considered passage 0 (P0). The cells were cultured in DMEM/F12 supplemented with non-essential amino acids and 10% fetal bovine serum (FBS, Invitrogen-Gibco, Grand Island, N.Y.). When the culture approached confluency, cells were trypsinized and transferred to a new tissue culture flask.
Example 3
We generated and analyzed a collection of 14 early-passage (passage ≤9) human pES cell lines for the persistence of haploid cells. All cell lines originated from activated oocytes displaying second polar body extrusion and a single pronucleus. We initially utilized chromosome counting by metaphase spreading and G-banding as a method for unambiguous and quantitative discovery of rare haploid nuclei. Among ten individual pES cell lines, a low proportion of haploid metaphases was found exclusively in a single cell line, pES10 (1.3%, Table 1B). We also used viable FACS with Hoechst 33342 staining, aiming to isolate cells with a DNA content corresponding to less than two chromosomal copies (2c) from four additional lines, leading to the successful enrichment of haploid cells from a second cell line, pES12 (Table 2).
Two individual haploid-enriched ES cell lines were established from both pES10 and pES12 (hereafter referred to as h-pES10 and h-pES12) within five to six rounds of 1c-cell FACS enrichment and expansion (
Both h-pES10 and h-pES12 exhibited classical human pluripotent stem cell features, including typical colony morphology and alkaline phosphatase activity (
Haploid cells are valuable for loss-of-function genetic screening because phenotypically-selectable mutants can be identified upon disruption of a single allele. To demonstrate the applicability of this principle in haploid human ES cells, we generated a genome-wide mutant library using a piggyBac transposon gene trap system that targets transcriptionally active loci (
Example 14
It is expected that intravenous and other administration of pluripotent stem cells produced according to the methods described herein (or other published methods) one or more times can provide replacement cells to the body and that such administration may serve to extend the life or improve the health of the patient suffering age-related senescence.
Example 3
Pluripotent stem cell-derived cells (2.5×105 cells), having been passaged at least five times, were collected in 15-ml conical tubes and centrifuged at 150 g for 5 min after which they were transferred to serum-free chondrogenic media (Lonza Basel Switzerland) in the presence or absence of TGFβ3 (10 ng/ml; Peprotech, Rocky Hill, N.J.). The media was changed twice weekly. At the end of 3 weeks, some cell pellets were fixed with Z-Fix (Anatech, Battle Creek, Mich.), paraffin-embedded, sectioned, and assessed for their chondrogenic differentiation status as detailed below for histochemical stains, immunocytochemical markers, and mRNA as described below.
Total RNA was extracted from cell pellets with RNeasy kit (Invitrogen, Carlsbad, Calif.) and was reverse transcribed to cDNA with SuperScript (Invitrogen, Carlsbad, Calif.). Real-time RT-PCR of collagen IIA1 and aggrecan was performed using Taqman-® Gene expression assays as per manufacturer's instructions (Applied Biosystems, Foster City, Calif.).