The largest database of trusted experimental protocols
> Anatomy > Tissue > Mucous Membrane

Mucous Membrane

Mucous Membranes are the moist, protective linings of various organs and body cavities, such as the nose, mouth, throat, and digestive tract.
They play a crucial role in trapping dust, germs, and other particles, while also aiding in the lubrication and moisturization of these areas.
Proper understanding and study of mucous membranes is essential for adressing a wide range of medical conditions, from respiratory infections to gastrointestinal disorders.
PubCompare.ai is an AI-driven platform that streamlines your mucous membrane research, helping you locate the best protocols, identify effective products, and optimize your workflows through data-driven insights.
Experience the power of reproducible science and take your mucous membrane studies to the nxet level with PubCompare.ai.

Most cited protocols related to «Mucous Membrane»

Data for this study were acquired from a recently completed placebo-controlled randomized trial of rosiglitazone for mild to moderately active ulcerative colitis (clinicaltrials.gov #NCT00065065) which has been described in greater detail previously.7 (link) The trial used a slight modification of the Mayo score to assess disease activity (Table 1). Specifically, the bleeding component as described in the Mayo index was modified such that a score of 3 required both visible blood in 50% or more of bowel movements and at least some bowel movements with blood alone.
The study included 105 patients with mild to moderately active disease defined as a total DAI score of 4 to 10, inclusively. Patients were randomized in a 1:1 ratio to receive either rosiglitazone 4 mg or placebo twice daily for 12 weeks. Disease activity was measured at randomization and every four weeks thereafter until week 12, however lower endoscopy was only completed at week 0 and week 12, such that only a partial Mayo score (9 point scale that excludes the endoscopic appearance of the mucosa) could be calculated at the interim visits. In the very early accrual period of the study, a follow-up visit was included at week 2. Without knowledge of the response rates in either arm, the Data and Safety Monitoring Board (DSMB) requested that the week 2 follow-up evaluation be eliminated with the hopes of minimizing the placebo response rate and maximizing recruitment and retention.6 (link), 8 (link), 9 (link) Eighteen patients completed the week 2 follow-up visit.
During the course of the study, patients could be treated with other conventional medications used to treat active ulcerative colitis including mesalamine, oral corticosteroids, immunomodulators, or topical therapies (mesalamine or corticosteroids) at stable doses. Use of corticosteroids at doses greater than 20mg per day of prednisone or the equivalent was an exclusion criterion. Steroid tapering was not permitted during the study.
In anticipation of this sub-study, at each visit we also included questions about change in disease activity compared to the previous visit and compared to the randomization visit on a global seven-point scale (Table 2). The choices included much better, moderately better, a little better, unchanged, a little worse, moderately worse, and much worse. Patients also graded their current disease activity at each visit on a 6 point Likert scale – perfect, very good (minimal symptoms), good (only mild symptoms), moderately active, moderately severe, or severe. Data on quality of life were measured with the Inflammatory Bowel Disease Questionnaire (IBDQ) authored by Dr. Jan Irvine under license from McMaster University, Hamilton, Canada.10 (link)
Publication 2008
Adrenal Cortex Hormones BLOOD Clinical Trials Data Monitoring Committees Defecation Endoscopy Endoscopy, Gastrointestinal Immunologic Adjuvants Inflammatory Bowel Diseases Mesalamine Mucous Membrane Patients Pharmaceutical Preparations Placebos Prednisone Retention (Psychology) Rosiglitazone Steroids Ulcerative Colitis

Protocol full text hidden due to copyright restrictions

Open the protocol to access the free full text link

Publication 2009
Bohring syndrome Cecum Colon Colon, Ascending Colon, Descending Colonoscopy Endoscopy Feces Intestines Left Colic Flexure Mucous Membrane Rectum Sigmoid Colon Transverse Colon Vision
After quality control (QC), this study included whole-genome sequencing (WGS) data for 1,439 colorectal cancer (CRC) cases and 720 controls from 5 studies, and GWAS array data for 58,131 CRC or advanced adenoma cases (3,674; 6.3% of cases) and 67,347 controls from 45 studies from GECCO, CORECT, and CCFR. The Stage 1 meta-analysis comprised existing genotyping data from 30 studies that were included in previously published CRC GWAS13 (link),18 (link),22 (link). After QC, the Stage 1 meta-analysis included 34,869 cases and 29,051 controls. Study participants were predominantly of European ancestry (31,843 cases and 26,783 controls; 91.7% of participants). Because it was shown previously that the vast majority of known CRC risk variants are shared between Europeans and East Asians17 (link), we included 3,026 cases and 2,268 controls of East Asian ancestry to increase power for discovery. The Stage 2 meta-analysis comprised newly generated genotype data involving 4 genotyping projects and 22 studies. After QC, the Stage 2 meta-analysis included 23,262 cases and 38,296 controls, all of European ancestry. Studies, sample selection, and matching are described in the Supplementary Text. Supplementary Table 1 provides details on sample numbers, and demographic characteristics of study participants. All participants provided written informed consent, and each study was approved by the relevant research ethics committee or institutional review board. Four normal colon mucosa biopsies for ATAC-seq were obtained from patients with a normal colon at colonoscopy at the Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), Spain. Patients signed informed consent, and the protocol was approved by the Bellvitge Hospital Ethics Committee (Colscreen protocol PR084/16).
Publication 2018
Adenoma Asian Persons ATAC-Seq Biopsy Colon Colonoscopy Colorectal Carcinoma East Asian People Ethics Committees, Clinical Ethics Committees, Research Europeans Genome-Wide Association Study Malignant Neoplasms Mucous Membrane Patients
For validation, we reviewed the literature and found three studies18 (link),20 (link),44 (link) of advanced melanoma treated with anti-PD1 ICB with response, WES and RNA-seq data. However, one did not have information on previous ipilimumab treatment20 (link), and another18 (link) had only two patients who were naive to ipilimumab and nine who were treated with ipilimumab with post-ipilimumab tumor biopsies and available WES and NanoString data; thus, we used the remaining cohort44 (link) as our primary validation cohort.
To allow appropriate validation, only cutaneous, occult, acral and mucosal samples were included from validation cohorts; specifically, uveal and ocular melanomas were excluded (Riaz cohort, n = 5 excluded). Only patients with evaluable response criteria were included (Riaz cohort, n = 2 excluded). WES, transcriptomic and heterogeneity data were obtained from https://github.com/riazn/bms038_analysis. Fragments per kilobase of transcript per million mapped reads values were converted to TPM to be consistent with our cohort normalization.
Publication 2019
Biopsy Gene Expression Profiling Genetic Heterogeneity Ipilimumab Melanoma Mucous Membrane Neoplasms Patients RNA-Seq Uvea Vision
The HumanMethylation450 data for the unmethylated, methylated and hemi-methylated reference standards, as well as the NA17105 and NA17018 DNA samples, and the MCF7 and A431 cancer cell lines were obtained from the Illumina website in the raw IDAT format. The HumanMethylation27 MCF7 data were kindly provided by Dr Marina Bibikova (Illumina).
The normal human kidney and rectum methylation data were sourced from The Cancer Genome Atlas (TCGA) Data Portal [32 ]. Specifically, the normal kidney samples (TCGA-B0-5121-11, TCGA-BP-4177-11 and TCGA-B0-5092-11) were part of the kidney renal clear cell carcinoma cohort, whilst the normal rectum samples (TCGA-AG-3731-11, TCGA-AG-3725-11 and TCGA-B0-5121-11) were from the rectal adenocarcinoma cohort. All the data were in the raw IDAT format.
The RRBS data were obtained from the Epigenomics Roadmap at NCBI [33 ]. The normal human kidney (NA000003582.1) and normal human primary rectal mucosal tissue (NA000003579.1) samples were both obtained in WIG format, which is a series of base pair positions with corresponding β values for each chromosome.
The data for the male versus female differential methylation comparison comprise a subset of data generated for an unrelated study by Martino et al. [34 ]. Briefly, the five HumanMethylation450 arrays used in this study were hybridized with bisulfite converted DNA pooled from three samples from two male individuals and two samples from two female individuals extracted from mononuclear cells collected at birth. These data were also in the raw IDAT format.
Publication 2012
Adenocarcinoma Base Pairing Birth Cell Lines Chromosomes Females Genome Homo sapiens hydrogen sulfite Hypernephroid Carcinomas Kidney Males Malignant Neoplasms MCF-7 Cells Methylation Mucous Membrane Rectum Tissues

Most recents protocols related to «Mucous Membrane»

Example 12

As a proof of concept, the patient population of this study is patients that (1) have moderate to severe ulcerative colitis, regardless of extent, and (2) have had an insufficient response to a previous treatment, e.g., a conventional therapy (e.g., 5-ASA, corticosteroid, and/or immunosuppressant) or a FDA-approved treatment. In this placebo-controlled eight-week study, patients are randomized. All patient undergo a colonoscopy at the start of the study (baseline) and at week 8. Patients enrolled in the study are assessed for clinical status of disease by stool frequency, rectal bleeding, abdominal pain, physician's global assessment, and biomarker levels such as fecal calprotectin and hsCRP. The primary endpoint is a shift in endoscopy scores from Baseline to Week 8. Secondary and exploratory endpoints include safety and tolerability, change in rectal bleeding score, change in abdominal pain score, change in stool frequency, change in partial Mayo score, change in Mayo score, proportion of subjects achieving endoscopy remission, proportion of subjects achieving clinical remission, change in histology score, change in biomarkers of disease such as fecal calprotectin and hsCRP, level of adalimumab in the blood/tissue/stool, change in cytokine levels (e.g., TNFα, IL-6) in the blood and tissue.

FIG. 72 describes an exemplary process of what would occur in clinical practice, and when, where, and how the ingestible device will be used. Briefly, a patient displays symptoms of ulcerative colitis, including but not limited to: diarrhea, bloody stool, abdominal pain, high c-reactive protein (CRP), and/or high fecal calprotectin. A patient may or may not have undergone a colonoscopy with diagnosis of ulcerative colitis at this time. The patient's primary care physician refers the patient. The patient undergoes a colonoscopy with a biopsy, CT scan, and/or MRI. Based on this testing, the patient is diagnosed with ulcerative colitis. Most patients are diagnosed with ulcerative colitis by colonoscopy with biopsy. The severity based on clinical symptoms and endoscopic appearance, and the extent, based on the area of involvement on colonoscopy with or without CT/MRI is documented. Treatment is determined based on diagnosis, severity and extent.

For example, treatment for a patient that is diagnosed with ulcerative colitis is an ingestible device programmed to release a single bolus of a therapeutic agent, e.g., 40 mg adalimumab, in the cecum or proximal to the cecum. Prior to administration of the treatment, the patient is fasted overnight and is allowed to drink clear fluids. Four hours after swallowing the ingestible device, the patient can resume a normal diet. An ingestible device is swallowed at the same time each day. The ingestible device is not recovered.

In some embodiments, there may be two different ingestible devices: one including an induction dose (first 8 to 12 weeks) and a different ingestible device including a different dose or a different dosing interval.

In some examples, the ingestible device can include a mapping tool, which can be used after 8 to 12 weeks of induction therapy, to assess the response status (e.g., based on one or more of the following: drug level, drug antibody level, biomarker level, and mucosal healing status). Depending on the response status determined by the mapping tool, a subject may continue to receive an induction regimen or maintenance regimen of adalimumab.

In different clinical studies, the patients may be diagnosed with Crohn's disease and the ingestible devices (including adalimumab) can be programmed to release adalimumab in the cecum, or in both the cecum and transverse colon.

In different clinical studies, the patients may be diagnosed with illeocolonic Crohn's disease and the ingestible devices (including adalimumab) can be programmed to release adalimumab in the late jejunum or in the jejunum and transverse colon.

Patent 2024
Abdominal Pain Adalimumab Adrenal Cortex Hormones Biological Markers Biopsy BLOOD Cecum Colonoscopy C Reactive Protein Crohn Disease Cytokine Diarrhea Diet Endoscopy Endoscopy, Gastrointestinal Feces Homo sapiens Immunoglobulins Immunosuppressive Agents Jejunum Leukocyte L1 Antigen Complex Medical Devices Mesalamine Mucous Membrane Neoadjuvant Therapy Patient Care Management Patients Pharmaceutical Preparations Placebos Primary Care Physicians Safety Therapeutics Tissues Transverse Colon Treatment Protocols Tumor Necrosis Factor-alpha Ulcerative Colitis X-Ray Computed Tomography
Not available on PMC !

Example 17

Mice imaging was approved by the Institutional Animal Care and Use Committee (IACUC) of the Children's Hospital of Los Angeles (permit number: 38616) and of the University of Southern California (permit number: 20685). Experimental research on vertebrates complied with institutional, national and international ethical guidelines. Animals were kept on a 13:11 hours light:dark cycle. Animals were breathing double filtered air, temperature in the room was kept at 68-73 F, and cage bedding was changed weekly. All these factors contributed to minimize intra- and inter-experiment variability. Adult 8 weeks old C57Bl mice were euthanized with euthasol. Tracheas were quickly harvested from the mouse, washed in PBS, and cut longitudinally alongside the muscolaris mucosae in order to expose the lumen. A 3 mm×3 mm piece of the trachea was excised and arranged onto a microscope slide for imaging.

Patent 2024
Adult Animals Institutional Animal Care and Use Committees Mice, Inbred C57BL Mice, Laboratory Microscopy Mucous Membrane Trachea Vertebrates

Example 3

16S rRNA sequencing of ileal biopsies showed that the mucosally-associated bacteria from pediatric CD patients had reduced alpha diversity (Faith's phylogenetic diversity) compared to non-IBD patients (FIG. 2A and FIG. 2B). In addition, by examining the beta diversity, we found that microbial communities were more dissimilar among CD patients than a separately recruited, slightly younger non-IBD patient cohort (FIG. 2C and FIG. 2D). In the pediatric population, healthy volunteers are not available. The non-IBD controls were culled from pediatric patients with abdominal pain, who had no evidence of intestinal inflammation by histology, and were primarily comprised of individuals with functional abdominal pain and irritable bowel syndrome. Analysis of the bacterial composition of CD and non-IBD patients revealed distinguishing taxa between non-IBD and CD patients (FIG. 9A, FIG. 9B and FIG. 9C). These results suggested that the non-IBD controls in this study, while slightly younger on average and exhibiting GI complaints without evidence of inflammation were nevertheless more homogeneous and maintained an overall diverse microbial community.

Patent 2024
Abdominal Pain Bacteria Biopsy Healthy Volunteers Ileum Inflammation Intestines Irritable Bowel Syndrome Microbial Community Microbiome Mucous Membrane Patients RNA, Ribosomal, 16S Youth

Example 5

The response to 5-hydroxytryptophan (5HT; 0.003-300 μM) on the mucosal or serosal side and tryptamine (0.003-3000 μM) on the mucosal or serosal side was determined in segments of proximal colon, stripped of external muscle layers, from both 5HTR4 KO and WT mice.

Colon segments from 5HTR4 KO mice displayed decreased responsiveness to serosal serotonin and no response to mucosal serotonin when compared with colon segments from WT mice. Cumulative concentration response curves induced by serosal tryptamine were significantly different between 5HTR WT (Emax: 110±17 μA/cm2; n=6-7) and KO mice (no response). While Δlsc did not reach maximum response following mucosal application of 3000 μM tryptamine, responses were seen in 5HTR4 WT mice (99.5±30.7 n=5) while no response was elicited in 5HTR4 KO (FIG. 18).

These results show that tryptamine acts as a 5HTR4 mimetic with effects on gut epithelial function independent of serotonin.

Patent 2024
5-Hydroxytryptophan Bladder Detrusor Muscle Colon Mice, Knockout Mucous Membrane Mus Serotonin Serous Membrane SERPINA3 protein, human tryptamine Vision
Intestinal permeability was determined using Ussing chamber analysis. The colonic mucosa was intactly scraped from the distal colon specimens, installed in a slider with a 0.3 cm2 rectangular hole in the center, fixed in the U-shaped chamber, and immersed in oxygen-containing Krebs’ solution on both the serosal and mucosal sides. Then, the chamber was mounted on Ussing Chamber System (World Precision Instruments, USA). The transepithelial resistance (TER) of the colonic mucosa was recorded by an automatic voltage clamp model after a 20 min equilibration. In addition, mucosal-to-serosal permeability was assessed by fluorescein isothiocyanate conjugated dextran (FD4, FITC-dextran, molecular weight: 4 kD, Sigma-Aldrich, Madrid, Spain). After the TER recording, 1 mg/ml FD4 was added to the mucosal side of the chamber, and the same volume of Krebs’ solution was added to the serosal side without light. One hundred microliters of solution was sampled from the serosal side every 30 min over a 2 h period, and the fluorescence intensity was detected by a fluorescence spectrophotometer (485 nm/528 nm, Ex/Em, BioTek, Winooski, VT, USA). The FD4 concentration in the serosal side was evaluated by a standard curve of continuous dilutions of FD4 in Krebs’ solution.
Publication 2023
Colon fluorescein isothiocyanate dextran Fluorescence Intestines Krebs-Ringer solution Light Mucous Membrane Oxygen Permeability Serous Membrane Technique, Dilution

Top products related to «Mucous Membrane»

Sourced in United States, China, United Kingdom, Germany, Australia, Japan, Canada, Italy, France, Switzerland, New Zealand, Brazil, Belgium, India, Spain, Israel, Austria, Poland, Ireland, Sweden, Macao, Netherlands, Denmark, Cameroon, Singapore, Portugal, Argentina, Holy See (Vatican City State), Morocco, Uruguay, Mexico, Thailand, Sao Tome and Principe, Hungary, Panama, Hong Kong, Norway, United Arab Emirates, Czechia, Russian Federation, Chile, Moldova, Republic of, Gabon, Palestine, State of, Saudi Arabia, Senegal
Fetal Bovine Serum (FBS) is a cell culture supplement derived from the blood of bovine fetuses. FBS provides a source of proteins, growth factors, and other components that support the growth and maintenance of various cell types in in vitro cell culture applications.
Sourced in United States, China, Japan, Germany, United Kingdom, Canada, France, Italy, Australia, Spain, Switzerland, Netherlands, Belgium, Lithuania, Denmark, Singapore, New Zealand, India, Brazil, Argentina, Sweden, Norway, Austria, Poland, Finland, Israel, Hong Kong, Cameroon, Sao Tome and Principe, Macao, Taiwan, Province of China, Thailand
TRIzol reagent is a monophasic solution of phenol, guanidine isothiocyanate, and other proprietary components designed for the isolation of total RNA, DNA, and proteins from a variety of biological samples. The reagent maintains the integrity of the RNA while disrupting cells and dissolving cell components.
Sourced in Germany, United States, United Kingdom, Netherlands, Spain, Japan, Canada, France, China, Australia, Italy, Switzerland, Sweden, Belgium, Denmark, India, Jamaica, Singapore, Poland, Lithuania, Brazil, New Zealand, Austria, Hong Kong, Portugal, Romania, Cameroon, Norway
The RNeasy Mini Kit is a laboratory equipment designed for the purification of total RNA from a variety of sample types, including animal cells, tissues, and other biological materials. The kit utilizes a silica-based membrane technology to selectively bind and isolate RNA molecules, allowing for efficient extraction and recovery of high-quality RNA.
Sourced in United States, China, Germany, Japan, France, Poland, Australia, Israel, United Kingdom, Italy
The SW480 is a laboratory equipment product from the American Type Culture Collection (ATCC). It is a colorectal adenocarcinoma cell line that can be used for various cell-based research applications.
Sourced in United States, China, Germany, United Kingdom, Japan, Australia, France, Israel, Spain, Poland, Italy
The HCT116 cell line is a human colorectal carcinoma cell line that is widely used in research. It is a commonly used model system for studying various aspects of cancer biology and drug development.
Sourced in United States, China, United Kingdom, Germany, France, Australia, Canada, Japan, Italy, Switzerland, Belgium, Austria, Spain, Israel, New Zealand, Ireland, Denmark, India, Poland, Sweden, Argentina, Netherlands, Brazil, Macao, Singapore, Sao Tome and Principe, Cameroon, Hong Kong, Portugal, Morocco, Hungary, Finland, Puerto Rico, Holy See (Vatican City State), Gabon, Bulgaria, Norway, Jamaica
DMEM (Dulbecco's Modified Eagle's Medium) is a cell culture medium formulated to support the growth and maintenance of a variety of cell types, including mammalian cells. It provides essential nutrients, amino acids, vitamins, and other components necessary for cell proliferation and survival in an in vitro environment.
Sourced in United States, China, Germany, United Kingdom, Japan, France, Canada, Australia, Italy, Switzerland, Belgium, New Zealand, Spain, Israel, Sweden, Denmark, Macao, Brazil, Ireland, India, Austria, Netherlands, Holy See (Vatican City State), Poland, Norway, Cameroon, Hong Kong, Morocco, Singapore, Thailand, Argentina, Taiwan, Province of China, Palestine, State of, Finland, Colombia, United Arab Emirates
RPMI 1640 medium is a commonly used cell culture medium developed at Roswell Park Memorial Institute. It is a balanced salt solution that provides essential nutrients, vitamins, and amino acids to support the growth and maintenance of a variety of cell types in vitro.
Sourced in United States, United Kingdom, Germany, Japan, Lithuania, Italy, Australia, Canada, Denmark, China, New Zealand, Spain, Belgium, France, Sweden, Switzerland, Brazil, Austria, Ireland, India, Netherlands, Portugal, Jamaica
RNAlater is a RNA stabilization solution developed by Thermo Fisher Scientific. It is designed to protect RNA from degradation during sample collection, storage, and transportation. RNAlater stabilizes the RNA in tissues and cells, allowing for efficient RNA extraction and analysis.
Sourced in United States, Germany, China, Japan, United Kingdom, Canada, France, Italy, Australia, Spain, Switzerland, Belgium, Denmark, Netherlands, India, Ireland, Lithuania, Singapore, Sweden, Norway, Austria, Brazil, Argentina, Hungary, Sao Tome and Principe, New Zealand, Hong Kong, Cameroon, Philippines
TRIzol is a monophasic solution of phenol and guanidine isothiocyanate that is used for the isolation of total RNA from various biological samples. It is a reagent designed to facilitate the disruption of cells and the subsequent isolation of RNA.
Sourced in Germany, United States, Japan
The VIO300D is a high-performance electrosurgical generator. It is designed for use in a variety of surgical procedures, providing precise control and consistent cutting and coagulation performance.

More about "Mucous Membrane"

Mucous membranes, also known as mucosae, are the moist, protective linings of various organs and body cavities, such as the nose, mouth, throat, and digestive tract.
These vital structures play a crucial role in trapping dust, germs, and other particles, while also aiding in the lubrication and moisturization of these areas.
Proper understanding and study of mucous membranes is essential for addressing a wide range of medical conditions, from respiratory infections to gastrointestinal disorders.
Mucous membranes are composed of epithelial cells that secrete a viscous, slippery substance called mucus.
This mucus serves as a protective barrier, trapping pathogens and foreign particles before they can enter the body.
The respiratory system, for example, is lined with mucous membranes that help filter the air we breathe and prevent the inhalation of harmful substances.
In the digestive tract, mucous membranes line the esophagus, stomach, and intestines, facilitating the smooth passage of food and protecting the underlying tissues from the acidic environment.
Mucous membranes also play a role in the urinary and reproductive systems, helping to maintain a moist, healthy environment.
Researchers studying mucous membranes may utilize a variety of techniques and tools, such as FBS (Fetal Bovine Serum) to support cell growth, TRIzol reagent for RNA extraction, and the RNeasy Mini Kit for purification.
Cell lines like SW480 and HCT116, commonly used in mucous membrane research, are often cultured in DMEM or RPMI 1640 medium.
The preservative RNAlater can also be used to stabilize RNA samples for downstream analysis.
PubCompare.ai is an AI-driven platform that streamlines your mucous membrane research, helping you locate the best protocols, identify effective products, and optimize your workflows through data-driven insights.
Experience the power of reproducible science and take your mucous membrane studies to the next level with PubCompare.ai.