The largest database of trusted experimental protocols
> Anatomy > Tissue > Tissues

Tissues

Tissues are the building blocks of the body, composed of cells and the extracellular matrix that surrounds them.
They can be classified into four main types: epithelial, connective, muscle, and nervous tissue.
Tissues perform specialized functions and are essential for organ structure and function.
Understanding tissue biology is crucial for advancements in fields like regenerative medicine, tissue engineering, and disease research.
Discover the latest insights and protocols for working with tissues using PubCompare.ai's AI-driven tissue comparison and optimization capabilites.
Expereince the power of AI-driven comparison today.

Most cited protocols related to «Tissues»

Protocol full text hidden due to copyright restrictions

Open the protocol to access the free full text link

Publication 2017
Gene Expression Genes Genome Malignant Neoplasms Neoplasms Patients RNA-Seq Tissues
ESTIMATE outputs stromal, immune and ESTIMATE scores by performing ssGSEA13 (link)23 (link)37 (link). For a given sample, gene expression values were rank-normalized and rank-ordered. The empirical cumulative distribution functions of the genes in the signature and the remaining genes were calculated. A statistic was calculated by an integration of the difference between the empirical cumulative distribution function, which is similar to the one used in gene set-enrichment analysis but based on absolute expression rather than differential expression.
We defined ssGSEA based on the signatures related to stromal tissue and immune cell infiltration as stromal and immune scores and combined the stromal and immune scores as the ‘ESTIMATE score’. The formula for calculating ESTIMATE-based tumour purity was developed in TCGA Affymetrix data (n=1,001) including both the ESTIMATE score and ABSOLUTE-based tumour purity. To develop a precise prediction model for tumour purity, we excluded six outliers from all Affymetrix data by computing a multivariate outlier criterion based on the generalized extreme studentized deviate test57 58 using the Bioconductor Parametric and Resistant Outlier Detection (PARODY) package (Supplementary Fig. S8a). Next, we entered both the ESTIMATE score and tumour purity to Eureqa Formuliza 0.97 Beta using the default setting59 . Eureqa attempts to design a mathematical formula that fits observed data employing an evolutionary algorithm60 (link). We obtained a fitted formula to predict tumour purity based on the ESTIMATE score. Finally, we applied this formula to the nonlinear least squares method (nls function for stats package) to determine the final formula for predicting tumour purity, as follows:
Tumour purity=cos (0.6049872018+0.0001467884 × ESTIMATE score). (1)
Publication 2013
Biological Evolution Gene Expression Genes Neoplasms Operator, Genetic Stromal Cells Tissues
To promote the analysis of eQTL results across a wide range of human tissues, the NIH funded five centers to develop improved methods for statistical analysis. Investigators funded through this RFA form an analysis consortium that will provide innovative approaches to analyses of GTEx data and other similar datasets. Investigators also collaborate with the LDACC to perform data quality assessment/quality control before release into dbGaP. The initial GTEx Consortium publications, anticipated in 2013, will include genome-wide analysis of cis- and trans-eQTLs, allele-specific expression, splicing quantitative trait loci, and a comparison of array and RNA-Seq based gene expression results.
Publication 2013
Alleles Gene Expression Genome Homo sapiens Quantitative Trait Loci RNA-Seq Tissues
For a two-library comparison, we use the sage.test function from the CRAN statmod package [28 ] to calculate a Fisher exact P-value for each gene. To apply TMM normalization, we replace the original library sizes with 'effective' library sizes. For two libraries, the effective library sizes are calculated by multiplying/dividing the square root of the estimated normalization factor with the original library size.
For comparisons with technical replicates, we followed the analysis procedure used in the Marioni et al. study [6 (link)]. Briefly, it is assumed that the counts mapping to a gene are Poisson-distributed, according to:
where represents the fraction of total reads for gene g in experimental condition zk. Their analysis utilizes an offset to account for the library size and a likelihood ratio (LR) statistic to test for differences in expression between libraries (that is, H0:μg1 = μg2). In order to use TMM normalization, we augment the original offset with the estimated normalization factor. The same LR testing framework is then used to calculate P-values for DE between tissues. We modified this analysis to use an exact Poisson test for testing the difference between two replicated groups. The strategy is similar in principle to the Fisher's exact test: conditioning on the total count, we calculated the probability of observing group counts as or more extreme than what we actually observed. The total and group total counts are all Poisson distributed.
We re-implemented the method from Cloonan et al. [12 (link)] for the analysis of simulated data using a custom R [29 ] script.
Full text: Click here
Publication 2010
DNA Library Genes, vif Hereditary Diseases Plant Roots Tissues
To further reduce false positives and miscalled germline events, we employ a panel of normal samples as a filter. To create this filter we run MuTect on a set of normals as if they were tumors without a matched normal in STD mode. From this data, a VCF file is created for the sites that were identified as variant by MuTect in more than one normal.
This VCF is then supplied to the caller, which rejects these sites. However, if the site was present in the supplied VCF of known mutations (--cosmic) it is retained because these sites could represent known recurrent somatic mutations which have been detected in the panel of normal when the normal are from adjacent tissue or have some contamination tumor DNA.
The more normal samples used to construct this panel, the higher the power will be to detect and remove rare artifacts. Therefore, we typically we use all the normal samples readily available. The results presented here were obtained by using a panel of whole genome sequencing data from blood normals of 125 solid tumor cancer patients. The samples used as part of the virtual tumor approach were not included in this panel.
Publication 2013
Cosmic composite resin Diploid Cell DNA, Neoplasm Germ Line Hematologic Neoplasms Malignant Neoplasms Mutation Neoplasms Patients Tissues

Most recents protocols related to «Tissues»

Example 12

As a proof of concept, the patient population of this study is patients that (1) have moderate to severe ulcerative colitis, regardless of extent, and (2) have had an insufficient response to a previous treatment, e.g., a conventional therapy (e.g., 5-ASA, corticosteroid, and/or immunosuppressant) or a FDA-approved treatment. In this placebo-controlled eight-week study, patients are randomized. All patient undergo a colonoscopy at the start of the study (baseline) and at week 8. Patients enrolled in the study are assessed for clinical status of disease by stool frequency, rectal bleeding, abdominal pain, physician's global assessment, and biomarker levels such as fecal calprotectin and hsCRP. The primary endpoint is a shift in endoscopy scores from Baseline to Week 8. Secondary and exploratory endpoints include safety and tolerability, change in rectal bleeding score, change in abdominal pain score, change in stool frequency, change in partial Mayo score, change in Mayo score, proportion of subjects achieving endoscopy remission, proportion of subjects achieving clinical remission, change in histology score, change in biomarkers of disease such as fecal calprotectin and hsCRP, level of adalimumab in the blood/tissue/stool, change in cytokine levels (e.g., TNFα, IL-6) in the blood and tissue.

FIG. 72 describes an exemplary process of what would occur in clinical practice, and when, where, and how the ingestible device will be used. Briefly, a patient displays symptoms of ulcerative colitis, including but not limited to: diarrhea, bloody stool, abdominal pain, high c-reactive protein (CRP), and/or high fecal calprotectin. A patient may or may not have undergone a colonoscopy with diagnosis of ulcerative colitis at this time. The patient's primary care physician refers the patient. The patient undergoes a colonoscopy with a biopsy, CT scan, and/or MRI. Based on this testing, the patient is diagnosed with ulcerative colitis. Most patients are diagnosed with ulcerative colitis by colonoscopy with biopsy. The severity based on clinical symptoms and endoscopic appearance, and the extent, based on the area of involvement on colonoscopy with or without CT/MRI is documented. Treatment is determined based on diagnosis, severity and extent.

For example, treatment for a patient that is diagnosed with ulcerative colitis is an ingestible device programmed to release a single bolus of a therapeutic agent, e.g., 40 mg adalimumab, in the cecum or proximal to the cecum. Prior to administration of the treatment, the patient is fasted overnight and is allowed to drink clear fluids. Four hours after swallowing the ingestible device, the patient can resume a normal diet. An ingestible device is swallowed at the same time each day. The ingestible device is not recovered.

In some embodiments, there may be two different ingestible devices: one including an induction dose (first 8 to 12 weeks) and a different ingestible device including a different dose or a different dosing interval.

In some examples, the ingestible device can include a mapping tool, which can be used after 8 to 12 weeks of induction therapy, to assess the response status (e.g., based on one or more of the following: drug level, drug antibody level, biomarker level, and mucosal healing status). Depending on the response status determined by the mapping tool, a subject may continue to receive an induction regimen or maintenance regimen of adalimumab.

In different clinical studies, the patients may be diagnosed with Crohn's disease and the ingestible devices (including adalimumab) can be programmed to release adalimumab in the cecum, or in both the cecum and transverse colon.

In different clinical studies, the patients may be diagnosed with illeocolonic Crohn's disease and the ingestible devices (including adalimumab) can be programmed to release adalimumab in the late jejunum or in the jejunum and transverse colon.

Full text: Click here
Patent 2024
Abdominal Pain Adalimumab Adrenal Cortex Hormones Biological Markers Biopsy BLOOD Cecum Colonoscopy C Reactive Protein Crohn Disease Cytokine Diarrhea Diet Endoscopy Endoscopy, Gastrointestinal Feces Homo sapiens Immunoglobulins Immunosuppressive Agents Jejunum Leukocyte L1 Antigen Complex Medical Devices Mesalamine Mucous Membrane Neoadjuvant Therapy Patient Care Management Patients Pharmaceutical Preparations Placebos Primary Care Physicians Safety Therapeutics Tissues Transverse Colon Treatment Protocols Tumor Necrosis Factor-alpha Ulcerative Colitis X-Ray Computed Tomography

Example 12

There has been a growing interest in the fabrication of nanofibers derived from natural polymers due to their ability to mimic the structure and function of extracellular matrix. Electrospinning is a simple technique to obtain nano-micro fibers with customized fiber topology and composition (FIGS. 33A and 33B). The chitosan electrospun nanofibers have recently been extensively studied due to the favorable properties of chitosan such as controllable biodegradation, good biocompatibility and high mechanical strength. Currently, chitosan can be electrospun from a solution of chitosan dissolved in either trifluoroacetic acid (TFA) or acetic acid (HAc). However, processes to remove residual acid and acid salts from the electrospun material generally resulted in a swelling of fibers and deterioration of the nano-fibrous structure. Crosslinking in combination with neutralization methods also had not been effective at preventing loss of nano-fibrous structure.

The current study aimed to improve and maintain nano-fibrous and porous structure of the electrospun membranes by introducing a new post electrospinning chemical treatment. Membrane thickness was tripled in this research in order to increase the general tearing strength. Scanning electron micrograph (SEM) examination (FIG. 33C) and transmission electron micrograph (TEM) examination (FIG. 33D) showed Fiber diameters of the triethanolamine/N-tert-butoxycarbonyl (TEA/t-BoC) treated membranes ranged from 40 nm to 130 nm while fiber diameters were not able to be determined for the Na2CO3 group. Membranes treated by TEA/tboc (FIG. 34A) exhibited more nano-scale fibrous structure than membranes treated by saturated Na2CO3 (FIGS. 35B-35D, as seen demonstrated in scanning electron micrographs. After immersion in PBS for 24 hours, membranes treated by TEA/tboc exhibited less than 30% swelling (FIG. 34B) and retained their nanofibrous structure, compared with membranes treated by Na2CO3 (FIGS. 35B-35D) or compared with the non-treated chitosan membrane (FIG. 35A). After soaking the TEA/tBoc treated membranes in water overnight, membranes still kept the porous structure. In both, the before and after water status, fibers kept diameters in the nanometer range (FIG. 35C). TEA/tBoC modified nanofiber membranes also well preserved their fibrous structure over 4 weeks in physiological solution compared with Na2CO3 treated membranes (FIG. 35D).

Chitosan membranes treated by TEA/tboc showed better nano-fiber morphology characteristics than membranes neutralized by saturated Na2CO3 solution before and after being soaked in PBS. Retention of the nanofibrous structure for guided tissue regeneration applications may be of benefit for enabling nutrient exchange between soft gingival tissue and bone compartments and for mimicking the natural nanofibrillar components of the extracellular matrix during regeneration.

Full text: Click here
Patent 2024
Acetic Acid Acids Bones Chitosan Electrons Environmental Biodegradation Extracellular Matrix Fibrosis Gingiva Guided Tissue Regeneration Hydrochloric acid Nutrients physiology Polymers Regeneration Retention (Psychology) Submersion TERT protein, human Tissue, Membrane Tissues Transmission, Communicable Disease triethanolamine Trifluoroacetic Acid Vision

Example 49

The functional activity of compounds was determined in a cell line where p70S6K is constitutively activated. Test article was dissolved in DMSO to make a 10 μM stock. PathScan® Phospho-S6 Ribosomal Protein (Ser235/236) Sandwich ELISA Kit was purchased from Cell Signaling Technology. A549 lung cancer cell line, was purchased from American Type Culture Collection. A549 cells were grown in F-12K Medium supplemented with 10% FBS. 100 μg/mL penicillin and 100 μg/mL streptomycin were added to the culture media. Cultures were maintained at 37° C. in a humidified atmosphere of 5% CO2 and 95% air. 2.0×105 cells were seeded in each well of 12-well tissue culture plates for overnight. Cells were treated with DMSO or test article (starting at 100 μM, 10-dose with 3 fold dilution) for 3 hours. The cells were washed once with ice cold PBS and lysed with 1× cell lysis buffer. Cell lysates were collected and samples were added to the appropriate wells of the ELISA plate. Plate was incubated for overnight at 4° C. 100 μL of reconstituted Phospho-S6 Ribosomal Protein (Ser235/236) Detection Antibody was added to each well and the plate was incubated at 37° C. for 1 hour. Wells were washed and 100 μl of reconstituted HRP-Linked secondary antibody was added to each well. The plate was incubated for 30 minutes at 37° C. Wash procedure was repeated and 100 μL of TMB Substrate was added to each well. The plate was incubated for 10 minutes at 37° C. 100 μL of STOP Solution was added to each well and the absorbance was read at 460 nm using Envision 2104 Multilabel Reader (PerkinElmer, Santa Clara, CA). IC50 curves were plotted and IC50 values were calculated using the GraphPad Prism 4 program based on a sigmoidal dose-response equation.

TABLE 2
In vitro biological data for representative compounds of Formula
I-IX Unless otherwise noted, compounds that were tested had an IC50
of less than 50 μM in the S6K binding assay.
Example NumberS6K Binding Activity
1A
2B
3B
4A
5A
6A
7A
8A
9B
10B
11B
12C
13C
14C
15A
16A
17B
18A
19A
20A
21A
22C
23B
24A
25A
26C
27A
28C
29C
30C
31A
32A
33C
34C
35C
36C
37C
38A
39A
40A
41A

Unless otherwise noted, compounds that were tested had an IC50 of less than 50 μM in the S6K Binding assay. A=less than 0.05 μM; B=greater than 0.05 μM and less than 0.5 μM; C=greater than 0.5 μM and less than 10 μM;

Full text: Click here
Patent 2024
A549 Cells Atmosphere Biological Assay Biopharmaceuticals Buffers Cell Lines Cells Cold Temperature Culture Media Enzyme-Linked Immunosorbent Assay Immunoglobulins Lung Cancer Penicillins prisma Psychological Inhibition Ribosomal Proteins Ribosomal Protein S6 Ribosomal Protein S6 Kinases, 70-kDa Streptomycin Sulfoxide, Dimethyl Technique, Dilution Tissues

Example 17

To further validate the activity of the DMPK siRNAs, many of the sequences that showed the best activity in the initial screen were selected for a follow-up evaluation in dose response format. Once again, two human cell lines were used to assess the in vitro activity of the DMPK siRNAs: first, SJCRH30 human rhabdomyosarcoma cell line; and second, Myotonic Dystrophy Type 1 (DM1) patient-derived immortalized human skeletal myoblasts. The selected siRNAs were transfected in a 10-fold dose response at 100, 10, 1, 0.1, 0.01, 0,001, and 0.0001 nM final concentrations or in a 9-fold dose response at 50, 5.55556, 0.617284, 0.068587, 0.007621, 0.000847, and 0.000094 nM final concentrations. The siRNAs were formulated with transfection reagent Lipofectamine RNAiMAX (Life Technologies) according to the manufacturer's “forward transfection” instructions. Cells were plated 24 h prior to transfection in triplicate on 96-well tissue culture plates, with 8500 cells per well for SJCRH30 and 4000 cells per well for DM1 myoblasts. At 48 h (SJCRH30) or 72 h (DM1 myoblasts) post-transfection cells were washed with PBS and harvested with TRIzol® reagent (Life Technologies). RNA was isolated using the Direct-zol-96 RNA Kit (Zymo Research) according to the manufacturer's instructions. 10 μl of RNA was reverse transcribed to cDNA using the High Capacity cDNA Reverse Transcription Kit (Applied Biosystems) according to the manufacturer's instructions. cDNA samples were evaluated by qPCR with DMPK-specific and PPIB-specific TaqMan human gene expression probes (Thermo Fisher) using TaqMan® Fast Advanced Master Mix (Applied Biosystems). DMPK values were normalized within each sample to PPIB gene expression. The quantification of DMPK downregulation was performed using the standard 2−ΔΔCt a method. All experiments were performed in triplicate, with Tables 16A-B, 17A-B, and 18A-B presenting the mean values of the triplicates as well as the calculated IC50 values determined from fitting curves to the dose-response data by non-linear regression.

TABLE 16A
sense strandSEQantisense strandSEQ
sequence (5′-3′)IDsequence (5′-3′)ID
ID #1Passenger Strand (PS)NO:Guide Strand (GS)NO:
535GGGCGAGGUGUCGUGCUUA9349UAAGCACGACACCUCGCCC12053
584GACCGGCGGUGGAUCACGA9398UCGUGAUCCACCGCCGGUC12102
716AUGGCGCGCUUCUACCUGA9530UCAGGUAGAAGCGCGCCAU12234
1028CAGACGCCCUUCUACGCGA9842UCGCGUAGAAGGGCGUCUG12546
1276UUUCGAAGGUGCCACCGAA10090UUCGGUGGCACCUUCGAAA12794
1825UGCUCCUGUUCGCCGUUGA10639UCAACGGCGAACAGGAGCA13343
1945CCCUAGAACUGUCUUCGAA10759UUCGAAGACAGUUCUAGGG13463
2529CUUCGGCGGUUUGGAUAUA11343UAUAUCCAAACCGCCGAAG14047
2558GUCCUCCGACUCGCUGACA11372UGUCAGCGAGUCGGAGGAC14076
2628CCGACAUUCCUCGGUAUUA11442UAAUACCGAGGAAUGUCGG14146
2636CCUCGGUAUUUAUUGUCUA11450UAGACAAUAAAUACCGAGG14154
119mer position in NM_001288766.1

TABLE 16B
IC50
ID #1qPCR2qPCR3qPCR4qPCR5qPCR6qPCR7qPCR8(nM)
535111.9105.4106.382.436.729.535.70.165
58490.590.284.767.838.025.828.30.190
71688.985.281.962.032.619.320.30.181
102888.581.883.061.332.727.331.50.127
127687.085.084.066.140.534.036.40.150
182585.185.983.769.136.225.225.00.259
194585.081.774.444.922.917.717.20.070
252983.381.875.350.624.617.517.70.103
255884.381.174.345.423.413.311.80.088
262885.384.079.559.830.323.525.10.140
263686.386.974.344.019.812.413.00.070
2SJCRH30; 0.0001 nM; % DMPK mRNA
3SJCRH30; 0.001 nM; % DMPK mRNA
4SJCRH30; 0.01 nM; % DMPK mRNA
5SJCRH30; 0.1 nM; % DMPK mRNA
6SJCRH30; 1 nM; % DMPK mRNA
7SJCRH30; 10 nM; % DMPK mRNA
8SJCRH30; 100 nM; % DMPK mRNA

TABLE 17A
sense strandSEQantisense strandSEQ
sequence (5′-3′)IDsequence (5′-3′)ID
ID #1Passenger Strand (PS)NO:Guide Strand (GS)NO:
2600CAAUCCACGUUUUGGAUGA11414UCAUCCAAAACGUGGAUUG14118
2636CCUCGGUAUUUAUUGUCUA11450UAGACAAUAAAUACCGAGG14154
2675CCCCGACCCUCGCGAAUAA11489UUAUUCGCGAGGGUCGGGG14193
2676CCCGACCCUCGCGAAUAAA11490UUUAUUCGCGAGGGUCGGG14194
2679GACCCUCGCGAAUAAAAGA11493UCUUUUAUUCGCGAGGGUC14197
2680ACCCUCGCGAAUAAAAGGA11494UCCUUUUAUUCGCGAGGGU14198
2681CCCUCGCGAAUAAAAGGCA11495UGCCUUUUAUUCGCGAGGG14199
2682CCUCGCGAAUAAAAGGCCA11496UGGCCUUUUAUUCGCGAGG14200
119mer position in NM_001288766.1

TABLE 17B
IC50
ID #1qPCR2qPCR3qPCR4qPCR5qPCR6qPCR7(nM)
2600107.5107.6108.1106.3103.172.731.31
263681.181.174.047.225.711.50.073
267588.188.384.364.638.120.70.151
267688.978.984.472.744.935.60.204
267984.087.382.753.331.413.50.091
268087.485.385.168.544.539.60.110
268187.085.477.649.626.516.00.061
268282.483.977.150.827.331.10.047
2SJCRH30; 0.000094 nM; % DMPK mRNA
3SJCRH30; 0.000847 nM; % DMPK mRNA
4SJCRH30; 0.007621 nM; % DMPK mRNA
5SJCRH30; 0.068587 nM; % DMPK mRNA
6SJCRH30; 0.617284 nM; % DMPK mRNA
7SJCRH30; 5.55556 nM; % DMPK mRNA

TABLE 18A
sense strandSEQantisense strandSEQ
sequence (5′-3′)IDsequence (5′-3′)ID
ID #1Passenger Strand (PS)NO:Guide Strand (GS)NO:
584GACCGGCGGUGGAUCACGA9398UCGUGAUCCACCGCCGGUC12102
716AUGGCGCGCUUCUACCUGA9530UCAGGUAGAAGCGCGCCAU12234
1265UUUACACCGGAUUUCGAAA10079UUUCGAAAUCCGGUGUAAA12783
1297AUGCAACUUCGACUUGGUA10111UACCAAGUCGAAGUUGCAU12815
1945CCCUAGAACUGUCUUCGAA10759UUCGAAGACAGUUCUAGGG13463
1960CGACUCCGGGGCCCCGUUA10774UAACGGGGCCCCGGAGUCG13478
2529CUUCGGCGGUUUGGAUAUA11343UAUAUCCAAACCGCCGAAG14047
2530UUCGGCGGUUUGGAUAUUA11344UAAUAUCCAAACCGCCGAA14048
2531UCGGCGGUUUGGAUAUUUA11345UAAAUAUCCAAACCGCCGA14049
2554CCUCGUCCUCCGACUCGCA11368UGCGAGUCGGAGGACGAGG14072
2628CCGACAUUCCUCGGUAUUA11442UAAUACCGAGGAAUGUCGG14146
2629CGACAUUCCUCGGUAUUUA11443UAAAUACCGAGGAAUGUCG14147
2681CCCUCGCGAAUAAAAGGCA11495UGCCUUUUAUUCGCGAGGG14199
119mer position in NM_001288766.1

TABLE 18B
IC50
ID #1qPCR2qPCR3qPCR4qPCR5qPCR6qPCR7(nM)
58490.877.097.771.945.029.70.228
71696.582.577.064.643.333.90.080
126568.580.968.057.137.525.70.146
129771.467.269.453.540.525.40.171
194571.862.341.729.822.415.30.006
196063.065.462.145.831.128.30.068
252963.558.749.231.122.921.90.017
253069.366.753.143.238.824.50.016
253169.972.457.340.235.425.60.018
255468.270.151.243.032.117.30.043
262869.767.962.538.431.617.10.042
262972.165.669.042.134.413.70.078
268182.491.587.655.529.319.60.084
2DM1 myoblasts; 0.000094 nM; % DMPK mRNA
3DM1 myoblasts; 0.000847 nM; % DMPK mRNA
4DM1 myoblasts; 0.007621 nM; % DMPK mRNA
5DM1 myoblasts; 0.068587 nM; % DMPK mRNA
6DM1 myoblasts; 0.617284 nM; % DMPK mRNA
7DM1 myoblasts; 5.55556 nM; % DMPK mRNA

Full text: Click here
Patent 2024
Cell Lines Cells DNA, Complementary Down-Regulation Gene Expression Homo sapiens Lipofectamine Myoblasts Myoblasts, Skeletal Myotonic Dystrophy NM-107 Patients PPIB protein, human Reverse Transcription Rhabdomyosarcoma RNA, Messenger RNA, Small Interfering Tissues Transfection trizol

Example 1

a. Materials and Methods

i. Vector Construction

1. Virus-Like Particle

As most broadly neutralizing HPV antibodies are derived from the highly conserved N-terminal region of L2, amino acids 14-122 of HPV16 L2 were used to create HBc VLPs. L2 with flanking linker regions was inserted into the tip of the a-helical spike of an HBc gene copy which was fused to another copy of HBc lacking the L2 insert. This arrangement allows the formation of HBc dimers that contain only a single copy of L2, increasing VLP stability (Peyret et al. 2015). This heterodimer is referred to as HBche-L2. A dicot plant-optimized HPV16 L2 coding sequence was designed based upon the sequence of GenBank Accession No. CAC51368.1 and synthesized in vitro using synthetic oligonucleotides by the method described (Stemmer et al., 1995). The plant-optimized L2 nucleotide sequence encoding residues 1-473 is posted at GenBank Accession No. KC330735. PCR end-tailoring was used to insert Xbal and SpeI sites flanking the L2 aa 14-122 using primers L2-14-Xba-F (SEQ ID NO. 1: CGTCTAGAGTCCGCAACCCAACTTTACAAG) and L2-122-Spe-R (SEQ ID NO. 2: G GGACTAGTTGGGGCACCAGCATC). The SpeI site was fused to a sequence encoding a 6His tag, and the resulting fusion was cloned into a geminiviral replicon vector (Diamos, 2016) to produce pBYe3R2K2Mc-L2(14-122)6H.

The HBche heterodimer VLP system was adapted from Peyret et al (2015). Using the plant optimized HBc gene (Huang et al., 2009), inventors constructed a DNA sequence encoding a dimer comprising HBc aa 1-149, a linker (G2S)5G (SEQ ID NO. 39), HBc aa 1-77, a linker GT(G4S)2 (SEQ ID NO. 40), HPV-16 L2 aa 14-122, a linker (GGS)2GSSGGSGG (SEQ ID NO. 41), and HBc aa 78-176. The dimer sequence was generated using multiple PCR steps including overlap extensions and insertion of BamHI and SpeI restriction sites flanking the L2 aa 14-122, using primers L2-14-Bam-F (SEQ ID NO. 3: CAGGATCCGCAACC CAACTTTACAAGAC) and L2-122-Spe-R (SEQ ID NO. 2). The HBche-L2 coding sequence was inserted into a geminiviral replicon binary vector pBYR2eK2M (FIG. 3), which includes the following elements: CaMV 35S promoter with duplicated enhancer (Huang et al., 2009), 5′ UTR of N. benthamiana psaK2 gene (Diamos et al., 2016), intron-containing 3′ UTR and terminator of tobacco extensin (Rosenthal et al, 2018), CaMV 35S 3′ terminator (Rosenthal et al, 2018), and Rb7 matrix attachment region (Diamos et al., 2016).

2. Recombinant Immune Complex

The recombinant immune complex (RIC) vector was adapted from Kim et al., (2015). The HPV-16 L2 (aa 14-122) segment was inserted into the BamHI and SpeI sites of the gene encoding humanized mAb 6D8 heavy chain, resulting in 6D8 epitope-tagged L2. The heavy chain fusion was inserted into an expression cassette linked to a 6D8 kappa chain expression cassette, all inserted into a geminiviral replicon binary vector (FIG. 3, RIC vector). Both cassettes contain CaMV 35S promoter with duplicated enhancer (Huang et al., 2009), 5′ UTR of N. benthamiana psaK2 gene (Diamos et al., 2016), intron-containing 3′ UTR and terminator of tobacco extensin (Rosenthal et al, 2018), and Rb7 matrix attachment region (Diamos et al., 2016).

ii. Agroinfiltration of Nicotiana benthamiana Leaves

Binary vectors were separately introduced into Agrobacterium tumefaciens EHA105 by electroporation. The resulting strains were verified by restriction digestion or PCR, grown overnight at 30° C., and used to infiltrate leaves of 5- to 6-week-old N. benthamiana maintained at 23-25° C. Briefly, the bacteria were pelleted by centrifugation for 5 minutes at 5,000 g and then resuspended in infiltration buffer (10 mM 2-(N-morpholino)ethanesulfonic acid (MES), pH 5.5 and 10 mM MgSO4) to OD600=0.2, unless otherwise described. The resulting bacterial suspensions were injected by using a syringe without needle into leaves through a small puncture (Huang et al. 2004). Plant tissue was harvested after 5 DPI, or as stated for each experiment. Leaves producing GFP were photographed under UV illumination generated by a B-100AP lamp (UVP, Upland, CA).

iii. Protein Extraction

Total protein extract was obtained by homogenizing agroinfiltrated leaf samples with 1:5 (w:v) ice cold extraction buffer (25 mM sodium phosphate, pH 7.4, 100 mM NaCl, 1 mM EDTA, 0.1% Triton X-100, 10 mg/mL sodium ascorbate, 0.3 mg/mL PMSF) using a Bullet Blender machine (Next Advance, Averill Park, NY) following the manufacturer's instruction. To enhance solubility, homogenized tissue was rotated at room temperature or 4° C. for 30 minutes. The crude plant extract was clarified by centrifugation at 13,000 g for 10 minutes at 4° C. Necrotic leaf tissue has reduced water weight, which can lead to inaccurate measurements based on leaf mass. Therefore, extracts were normalized based on total protein content by Bradford protein assay kit (Bio-Rad) with bovine serum albumin as standard.

iv. SDS-PAGE and Western Blot

Clarified plant protein extract was mixed with sample buffer (50 mM Tris-HCl, pH 6.8, 2% SDS, 10% glycerol, 0.02% bromophenol blue) and separated on 4-15% polyacrylamide gels (Bio-Rad). For reducing conditions, 0.5M DTT was added, and the samples were boiled for 10 minutes prior to loading. Polyacrylamide gels were either transferred to a PVDF membrane or stained with Coomassie stain (Bio-Rad) following the manufacturer's instructions. For L2 detection, the protein transferred membranes were blocked with 5% dry milk in PBST (PBS with 0.05% tween-20) overnight at 4° C. and probed with polyclonal rabbit anti-L2 diluted 1:5000 in 1% PBSTM, followed by goat anti-rabbit horseradish peroxidase conjugate (Sigma). Bound antibody was detected with ECL reagent (Amersham).

v. Immunization of Mice and Sample Collection

All animals were handled in accordance to the Animal Welfare Act and Arizona State University IACUC. Female BALB/C mice, 6-8 weeks old, were immunized subcutaneously with purified plant-expressed L2 (14-122), HBche-L2 VLP, L2 RIC, or PBS mixed 1:1 with Imject® Alum (Thermo Scientific, Rockford, IL). In all treatment groups, the total weight of antigen was set to deliver an equivalent 5 μg of L2. Doses were given on days 0, 21, and 42. Serum collection was done as described (Santi et al. 2008) by submandibular bleed on days 0, 21, 42, and 63.

vi. Antibody Measurements

Mouse antibody titers were measured by ELISA. Bacterially-expressed L2 (amino acids 11-128) was bound to 96-well high-binding polystyrene plates (Corning), and the plates were blocked with 5% nonfat dry milk in PBST. After washing the wells with PBST (PBS with 0.05% Tween 20), the diluted mouse sera were added and incubated. Mouse antibodies were detected by incubation with polyclonal goat anti-mouse IgG-horseradish peroxidase conjugate (Sigma). The plate was developed with TMB substrate (Pierce) and the absorbance was read at 450 nm. Endpoint titers were taken as the reciprocal of the lowest dilution which produced an OD450 reading twice the background. IgG1 and IgG2a antibodies were measured with goat-anti mouse IgG1 or IgG2a horseradish peroxidase conjugate.

vii. Electron Microscopy

Purified samples of HBche or HBche-L2 were initially incubated on 75/300 mesh grids coated with formvar. Following incubation, samples were briefly washed twice with deionized water then negatively stained with 2% aqueous uranyl acetate. Transmission electron microscopy was performed with a Phillips CM-12 microscope, and images were acquired with a Gatan model 791 CCD camera.

viii. Statistical Analysis

The significance of vaccine treatments and virus neutralization was measured by non-parametric Mann-Whitney test using GraphPad prism software. Two stars (**) indicates p values <0.05. Three stars (***) indicates p values <0.001.

b. Design and Expression of HBc VLPs and RIC Displaying HPV16 L2

BeYDV plant expression vectors (FIG. 3) expressing either the target VLP HBche-L2, or L2 and HBche alone as controls, were agroinfiltrated into the leaves of N. benthamiana and analyzed for VLP production. After 4-5 days post infiltration (DPI), leaves displayed only minor signs of tissue necrosis, indicating that the VLP was well-tolerated by the plants (FIG. 4A). Leaf extracts analyzed by reducing SDS-PAGE showed an abundant band near the predicted size of 51 kDa for HBche-L2, just above the large subunit of rubisco (RbcL). HBche was detected around the predicted size of 38 kDa (FIG. 4B). Western blot probed with anti-L2 polyclonal serum detected a band for HBche-L2 at ˜51 kDa (FIG. 4B). These results indicate that this plant system is capable of producing high levels of L2-containing HBc VLP.

To express L2-containing MC, amino acids 14-122 of HPV16 L2 were fused with linker to the C-terminus of the 6D8 antibody heavy chain and tagged with the 6D8 epitope (Kim et al. 2015). A BeYDV vector (FIG. 3) expressing both the L2-fused 6D8 heavy chain and the light chain was agroinfiltrated into leaves of N. benthamiana and analyzed for RIC production. To create more homogenous human-type glycosylation, which has been shown to improve antibody Fc receptor binding in vivo, transgenic plants silenced for xylosyltransferase and fucosyltransferase were employed (Castilho and Steinkellner 2012). By western blot, high molecular weight bands >150 kDa suggestive of RIC formation were observed (FIG. 4C). Expression of soluble L2 RIC was lower than HBche-L2 due to relatively poor solubility of the RIC (FIG. 4C).

After rigorous genetic optimization, the N. benthamiana system is capable of producing very high levels of recombinant protein, up to 30-50% of the total soluble plant protein, in 4-5 days (Diamos et al. 2016). Using this system, we produced and purified milligram quantities of fully assembled and potently immunogenic HBc VLPs displaying HPV L2 through a simple one-step purification process (FIGS. 4A-4C and 6).

c. Purification and Characterization of HBche-L2 and L2 RIC

To assess the assembly of HBc-L2 VLP, clarified plant extracts containing either HBche-L2 or HBche were analyzed by sucrose gradient sedimentation. HBche-L2 sedimented largely with HBche, which is known to form VLP, though a small increase in density was observed with HBche-L2, perhaps due to the incorporation of L2 into the virus particle (FIG. 5A). To demonstrate particle formation, sucrose fractions were examined by electron microscopy. Both HBche and HBche-L2 formed ˜30 nm particles, although the appearance of HBche-L2 VLP suggested slightly larger, fuller particles (FIGS. 5C and 5D). As most plant proteins do not sediment with VLP, pooling peak sucrose fractions resulted in >95% pure HBche-L2 (FIG. 5B), yielding sufficient antigen (>3 mg) for vaccination from a single plant leaf.

L2 RIC was purified from plant tissue by protein G affinity chromatography. By SDS-PAGE, an appropriately sized band was visible >150 kDa that was highly pure (FIG. 5B). Western blot confirmed the presence of L2 in this band, indicating proper RIC formation (FIG. 5B). L2 RIC bound to human complement C1q receptor with substantially higher affinity compared to free human IgG standard, suggesting proper immune complex formation (FIG. 5E).

d. Mouse Immunization with HBche-L2 and L2 RIC

Groups of Balb/c mice (n=8) were immunized, using alum as adjuvant, with three doses each of 5 μg L2 delivered as either L2 alone, HBche-L2 VLP, L2 RIC, or a combination of half VLP and half RIC. VLP and RIC, alone or combined, greatly enhanced antibody titers compared to L2 alone by more than an order of magnitude at all time points tested (FIG. 6). After one or two doses, the combined VLP/RIC treatment group outperformed both the VLP or RIC groups, reaching mean endpoint titers of >200,000, which represent a 700-fold increase over immunization with L2 alone (FIG. 6). After the third dose, both the VLP and combined VLP/RIC groups reached endpoint titers >1,300,000, a 2-fold increase over the RIC alone group. To determine the antibody subtypes produced by each treatment group, sera were assayed for L2-binding IgG1 and IgG2a. All four groups produced predominately IgG1 (FIG. 7, note dilutions). However, RIC and especially VLP-containing groups had an elevated ratio of IgG2a:IgG1 (>3-fold) compared to L2 alone (FIG. 7).

In vitro neutralization of HPV16 pseudovirions showed that the VLP and RIC groups greatly enhanced neutralization compared to L2 alone (FIG. 5, p<0.001). Additionally, VLP and RIC combined further enhanced neutralization activity ($5-fold, p<0.05) compared to either antigen alone, supporting the strong synergistic effect of delivering L2 by both platforms simultaneously.

In this study, by displaying amino acids 11-128 on the surface of plant-produced HBc VLPs, L2 antibody titers as high as those seen with L1 vaccines were generated (FIG. 6). Mice immunized with L2 alone had highly variable antibody titers, with titers spanning two orders of magnitude. By contrast, the other groups had much more homogenous antibody responses, especially the VLP-containing groups, which had no animals below an endpoint titer of 1:1,000,000 (FIG. 6). These results underscore the potential of HBc VLP and RIC to provide consistently potent immune responses against L2. Moreover, significant synergy of VLP and RIC systems was observed when the systems were delivered together, after one or two doses (FIG. 6). Since equivalent amounts of L2 were delivered with each dose, the enhanced antibody titer did not result from higher L2 doses. Rather, these data suggest that higher L2-specific antibody production may be due to augmented stimulation of L2-specific B cells by T-helper cells that were primed by RIC-induced antigen presenting cells. Although treatment with VLP and RIC alone reached similar endpoint titers as the combined VLP/RIC group after 3 doses, virus neutralization was substantially higher (>5-fold) in the combined group (FIG. 8). Together, these data indicate unique synergy exists when VLP and RIC are delivered together. Inventors have observed similarly significant synergistic enhancement of immunogenicity for a variety of other antigens.

Mice immunized with L2 alone had highly variable antibody titers, with titers spanning two orders of magnitude. By contrast, the VLP and VLP/RIC groups had much more homogenous antibody responses, with no animals below an endpoint titer of 1:1,000,000 (FIG. 6). These results underscore the potential of HBc VLP and RIC to provide consistently potent immune responses against L2.

Fc gamma receptors are present on immune cells and strongly impact antibody effector functions such as antibody-dependent cell-mediated cytotoxicity and complement-dependent cytotoxicity (Jefferis 2009). In mice, these interactions are controlled in part by IgG subtypes. IgG1 is associated with a Th2 response and has limited effector functions. By contrast, IgG2a is associated with a Th1 response and more strongly binds complement components (Neuberger and Raj ewsky 1981) and Fc receptors (Radaev 2002), enhancing effector functions and opsonophagocytosis by macrophages (Takai et al. 1994). Immunization with L2 alone was found to produce low levels of IgG2a, however immunization with RIC and VLP produced significant increases in IgG2a titers. VLP-containing groups in particular showed a 3-fold increase in the ratio of IgG2a to IgG1 antibodies (FIG. 7). Importantly, production of IgG2a is associated with successful clearance of a plethora of viral pathogens (Coutelier et al. 1988; Gerhard et al. 1997; Wilson et al. 2000; Markine-Goriaynoff and Coutelier 2002).

The glycosylation state of the Fc receptor also plays an important role in antibody function. Advances in glycoengineering have led to the development of transgenic plants with silenced fucosyl- and xylosyl-transferase genes capable of producing recombinant proteins with authentic human N-glycosylation (Strasser et al. 2008). Antibodies produced in this manner have more homogenous glycoforms, resulting in improved interaction with Fc gamma and complement receptors compared to the otherwise identical antibodies produced in mammalian cell culture systems (Zeitlin et al. 2011; Hiatt et al. 2014; Strasser et al. 2014; Marusic et al. 2017). As the known mechanisms by which RIC vaccines increase immunogenicity of an antigen depend in part on Fc and complement receptor binding, HPV L2 RIC were produced in transgenic plants with silenced fucosyl- and xylosyl-transferase. Consistent with these data, we found that L2 RIC strongly enhanced the immunogenicity of L2 (FIG. 6). However, yield suffered from insolubility of the RIC (FIG. 4C). We found that the 11-128 segment of L2 expresses very poorly on its own in plants and may be a contributing factor to poor L2 RIC yield. Importantly, we have produced very high yields of RIC with different antigen fusions. Thus, in some aspects, antibody fusion with a shorter segment of L2 could substantially improve the yield of L2 RIC.

e. Neutralization of HPV Pseudovirions

Neutralization of papilloma pseudoviruses (HPV 16, 18, and 58) with sera from mice immunized IP with HBc-L2 VLP and L2(11-128) showed neutralization of HPV 16 at titers of 400-1600 and 200-800, respectively (Table 1). More mice IP-immunized with HBc-L2 VLP had antisera that cross-neutralized HPV 18 and HPV 58 pseudoviruses, compared with mice immunized with L2(11-128). Anti-HBc-L2 VLP sera neutralized HPV 18 at titers of 400 and HPV 58 at titers ranging from 400-800 (Table 1), while anti-L2(11-128) sera neutralized HPV 18 at a titer of 200 and HPV 58 at a titer of 400 (Table 1). None of the sera from intranasal-immunized mice demonstrated neutralizing activity, consistent with lower anti-L2 titers for intranasal than for intraperitoneal immunized mice.

TABLE 1
L2-specific serum IgG and pseudovirus neutralization
titers from IP immunized mice
Neutralization of Pseudoviruses
ImmunogenSerum IgGHPV 16HPV 18HPV 58
HBc-L2>50,000 400
~70,0001600400400
>80,0001600400800
L2 (11-128)~8000 200
~12,000 400
~50,000 800200400

Full text: Click here
Patent 2024
3' Untranslated Regions 5' Untranslated Regions AA 149 Agrobacterium tumefaciens aluminum potassium sulfate aluminum sulfate Amino Acids Animals Animals, Transgenic Antibodies Antibody Formation Antigen-Presenting Cells Antigens B-Lymphocytes Bacteria Bromphenol Blue Buffers Cell Culture Techniques Cells Centrifugation Chromatography, Affinity Cloning Vectors Cold Temperature Combined Modality Therapy complement 1q receptor Complement Receptor Complex, Immune Complex Extracts Cytotoxicities, Antibody-Dependent Cell Cytotoxin Digestion DNA, A-Form DNA Sequence Edetic Acid Electron Microscopy Electroporation Enzyme-Linked Immunosorbent Assay Epitopes ethane sulfonate Fc Receptor Females Formvar Fucosyltransferase G-substrate Gamma Rays Genes Genes, vif Glycerin Goat Helix (Snails) Helper-Inducer T-Lymphocyte Homo sapiens Homozygote Horseradish Peroxidase Human papillomavirus 16 Human papillomavirus 18 Human Papilloma Virus Vaccine IGG-horseradish peroxidase IgG1 IgG2A Immune Sera Immunoglobulin Heavy Chains Immunoglobulins Immunologic Factors Institutional Animal Care and Use Committees Introns Inventors L2 protein, Human papillomavirus type 16 Light Macrophage Mammals Matrix Attachment Regions Mice, Inbred BALB C Microscopy Milk, Cow's Morpholinos Mus Necrosis Needles Nicotiana Oligonucleotide Primers Oligonucleotides Open Reading Frames Opsonophagocytosis Papilloma Pathogenicity Plant Development Plant Extracts Plant Leaves Plant Proteins Plants Plants, Transgenic polyacrylamide gels Polystyrenes polyvinylidene fluoride prisma Protein Glycosylation Proteins Punctures Rabbits Receptors, IgG Recombinant Proteins Replicon Reproduction Response, Immune Ribulose-Bisphosphate Carboxylase Large Subunit Satellite Viruses SDS-PAGE Serum Serum Albumin, Bovine Sodium Ascorbate Sodium Chloride sodium phosphate Specimen Collection Stars, Celestial Strains Sucrose Sulfate, Magnesium Syringes System, Immune Technique, Dilution Tissue, Membrane Tissues Transferase Transmission Electron Microscopy Triton X-100 Tromethamine Tween 20 Ultraviolet Rays uranyl acetate Vaccination Vaccines Vaccines, Recombinant Virion Viroids Virus Vision Western Blotting xylosyltransferase

Top products related to «Tissues»

Sourced in United States, China, Japan, Germany, United Kingdom, Canada, France, Italy, Australia, Spain, Switzerland, Netherlands, Belgium, Lithuania, Denmark, Singapore, New Zealand, India, Brazil, Argentina, Sweden, Norway, Austria, Poland, Finland, Israel, Hong Kong, Cameroon, Sao Tome and Principe, Macao, Taiwan, Province of China, Thailand
TRIzol reagent is a monophasic solution of phenol, guanidine isothiocyanate, and other proprietary components designed for the isolation of total RNA, DNA, and proteins from a variety of biological samples. The reagent maintains the integrity of the RNA while disrupting cells and dissolving cell components.
Sourced in United States, Germany, China, Japan, United Kingdom, Canada, France, Italy, Australia, Spain, Switzerland, Belgium, Denmark, Netherlands, India, Ireland, Lithuania, Singapore, Sweden, Norway, Austria, Brazil, Argentina, Hungary, Sao Tome and Principe, New Zealand, Hong Kong, Cameroon, Philippines
TRIzol is a monophasic solution of phenol and guanidine isothiocyanate that is used for the isolation of total RNA from various biological samples. It is a reagent designed to facilitate the disruption of cells and the subsequent isolation of RNA.
Sourced in Germany, United States, United Kingdom, Netherlands, Spain, Japan, Canada, France, China, Australia, Italy, Switzerland, Sweden, Belgium, Denmark, India, Jamaica, Singapore, Poland, Lithuania, Brazil, New Zealand, Austria, Hong Kong, Portugal, Romania, Cameroon, Norway
The RNeasy Mini Kit is a laboratory equipment designed for the purification of total RNA from a variety of sample types, including animal cells, tissues, and other biological materials. The kit utilizes a silica-based membrane technology to selectively bind and isolate RNA molecules, allowing for efficient extraction and recovery of high-quality RNA.
Sourced in Germany, United States, United Kingdom, Spain, Canada, Netherlands, Japan, China, France, Australia, Denmark, Switzerland, Italy, Sweden, Belgium, Austria, Hungary
The DNeasy Blood and Tissue Kit is a DNA extraction and purification product designed for the isolation of genomic DNA from a variety of sample types, including blood, tissues, and cultured cells. The kit utilizes a silica-based membrane technology to efficiently capture and purify DNA, providing high-quality samples suitable for use in various downstream applications.
Sourced in United States, China, United Kingdom, Germany, Australia, Japan, Canada, Italy, France, Switzerland, New Zealand, Brazil, Belgium, India, Spain, Israel, Austria, Poland, Ireland, Sweden, Macao, Netherlands, Denmark, Cameroon, Singapore, Portugal, Argentina, Holy See (Vatican City State), Morocco, Uruguay, Mexico, Thailand, Sao Tome and Principe, Hungary, Panama, Hong Kong, Norway, United Arab Emirates, Czechia, Russian Federation, Chile, Moldova, Republic of, Gabon, Palestine, State of, Saudi Arabia, Senegal
Fetal Bovine Serum (FBS) is a cell culture supplement derived from the blood of bovine fetuses. FBS provides a source of proteins, growth factors, and other components that support the growth and maintenance of various cell types in in vitro cell culture applications.
Sourced in Germany, United States, United Kingdom, Netherlands, Spain, Japan, China, Canada, France, Australia, Switzerland, Italy, Belgium, Denmark, Sweden
The DNeasy Blood & Tissue Kit is a DNA extraction and purification kit designed for the efficient isolation of high-quality genomic DNA from a variety of sample types, including whole blood, tissue, and cultured cells. The kit utilizes a silica-based membrane technology to capture and purify DNA, providing a reliable and consistent method for DNA extraction.
Sourced in Japan, China, United States, France, Germany, Switzerland, Canada, Sweden, Italy, Puerto Rico, Singapore
The PrimeScript RT reagent kit is a reverse transcription kit designed for the synthesis of first-strand cDNA from RNA templates. The kit includes RNase-free reagents and enzymes necessary for the reverse transcription process.
Sourced in United States, Germany, China, United Kingdom, Morocco, Ireland, France, Italy, Japan, Canada, Spain, Switzerland, New Zealand, India, Hong Kong, Sao Tome and Principe, Sweden, Netherlands, Australia, Belgium, Austria
PVDF membranes are a type of laboratory equipment used for a variety of applications. They are made from polyvinylidene fluoride (PVDF), a durable and chemically resistant material. PVDF membranes are known for their high mechanical strength, thermal stability, and resistance to a wide range of chemicals. They are commonly used in various filtration, separation, and analysis processes in scientific and research settings.
Sourced in United States, Germany, United Kingdom, Japan, Lithuania, France, Italy, China, Spain, Canada, Switzerland, Poland, Australia, Belgium, Denmark, Sweden, Hungary, Austria, Ireland, Netherlands, Brazil, Macao, Israel, Singapore, Egypt, Morocco, Palestine, State of, Slovakia
The High-Capacity cDNA Reverse Transcription Kit is a laboratory tool used to convert RNA into complementary DNA (cDNA) molecules. It provides a reliable and efficient method for performing reverse transcription, a fundamental step in various molecular biology applications.
Sourced in United States, China, United Kingdom, Germany, France, Australia, Canada, Japan, Italy, Switzerland, Belgium, Austria, Spain, Israel, New Zealand, Ireland, Denmark, India, Poland, Sweden, Argentina, Netherlands, Brazil, Macao, Singapore, Sao Tome and Principe, Cameroon, Hong Kong, Portugal, Morocco, Hungary, Finland, Puerto Rico, Holy See (Vatican City State), Gabon, Bulgaria, Norway, Jamaica
DMEM (Dulbecco's Modified Eagle's Medium) is a cell culture medium formulated to support the growth and maintenance of a variety of cell types, including mammalian cells. It provides essential nutrients, amino acids, vitamins, and other components necessary for cell proliferation and survival in an in vitro environment.

More about "Tissues"

Tissues are the fundamental building blocks of the human body, composed of cells and the extracellular matrix that surrounds them.
These tissues can be classified into four main types: epithelial, connective, muscle, and nervous tissue.
Each type of tissue performs specialized functions that are essential for organ structure and function.
Understanding tissue biology is crucial for advancements in fields like regenerative medicine, tissue engineering, and disease research.
Researchers often utilize various tools and techniques to study and work with tissues, such as TRIzol reagent, TRIzol, RNeasy Mini Kit, DNeasy Blood and Tissue Kit, and FBS (fetal bovine serum) for cell culture.
The DNeasy Blood & Tissue Kit is a commonly used tool for extracting high-quality genomic DNA from a variety of tissue types.
The PrimeScript RT reagent kit is used for reverse transcription of RNA into cDNA, which can then be analyzed using techniques like qPCR or RNA-seq.
PVDF (polyvinylidene fluoride) membranes are often used in Western blotting to detect and quantify proteins extracted from tissue samples.
Utilizing the High-Capacity cDNA Reverse Transcription Kit, researchers can efficiently convert RNA into cDNA, which can be further analyzed using various molecular biology techniques.
Additionally, DMEM (Dulbecco's Modified Eagle Medium) is a widely used cell culture medium that supports the growth and maintenance of a variety of cell types, including those derived from tissues.
By leveraging the latest insights and protocols available, researchers can optimize their tissue-based studies and elevate their research outcomes.
Discover the power of AI-driven tissue comparison and optimization capabilities with PubCompare.ai to enhance your research reproducibility and accuracy.