The largest database of trusted experimental protocols
> Chemicals & Drugs > Amino Acid > A-A-1 antibiotic

A-A-1 antibiotic

A-A-1 antibiotics are a class of antimicrobial agents that have been extensively researched for their potential to treat a variety of bacterial infections.
These compounds typically target specific cellular processes or structures within bacteria, disrupting their ability to survive and replicate.
Researchers studying A-A-1 antibiotics often face challenges in identifying the most effective protocols and products for their research, which can impact the reproducibility and accuracy of their findings.
PubCompare.ai, an AI-driven platform, aims to address these challenges by helping researchers locate and compare relevant protocols from literature, pre-prints, and patents.
By leveraging powerful comparisons, researchers can optimize their A-A-1 antibiotic studies and ensure their findings are both reproducible and accruate.

Most cited protocols related to «A-A-1 antibiotic»

We used the summary statistics results of a large whole-exome sequencing
(WES) study of LOAD, the Alzheimer’s Disease Sequencing Project (ADSP)
case-control study (n = 5,740 LOAD cases and 5,096 cognitively
normal controls of NHW ancestry) to identify genes within our genome-wide loci
that may contribute to the association signal through rare deleterious coding,
splicing or LOF variants. The individuals in the ADSP study largely overlap with
individuals in the ADGC and CHARGE cohorts included in our Stage 1
meta-analysis. All 400 protein-coding genes within our LD-defined genome-wide
loci were annotated with the gene-based results from this study, and the results
were corrected using a 1% FDR P as a cutoff for significance.
Complete details of the analysis can be found in Bis et al.49 (link) and the Supplementary Note.
Publication 2019
A-A-1 antibiotic Alzheimer's Disease Gene Products, Protein Genes Genome
BS-C-1 cells (ATCC) were fixed, immunostained with rabbit anti-Tom20 (Santa Cruz Biotech) and/or mouse anti-β-tubulin (TUB2.1, Cytoskeleton) (See Supplementary Methods online for the detailed immunostaining procedure). The stained cells were imaged in PBS with the addition of 100 mM mercaptoethylamine at pH 8.5, 5% glucose (w/v) and oxygen scavenging enzymes (0.5 mg/mL glucose oxidase (Sigma-Aldrich), and 40 μg/mL catalase (Roche Applied Science)), unless otherwise mentioned. This above imaging buffer has a refractive index of 1.34. Media with higher refractive index (1.45) based on 80% (v/v) glycerol and 5% (w/v) glucose, or 60% (w/w) sucrose solution and 5% (w/w) glucose, were used in some experiments, both with the same amount of mercaptoethylamine and oxygen scavenging enzymes as described above. The slight mismatch between the medium refractive index and coverglass is needed for focus locking during imaging. Although a high concentration of mercaptoethylamine and oxygen scavenging system were used here for fixed cell imaging, the cyanine dyes also switch in buffers with lower concentrations of thiol and oxygen scavenger system compatible with live cell imaging12 (link).
Data acquisition was performed on a fluorescence microscope as described in the Supplementary Methods online. Specifically for 3D imaging, a cylindrical lens with a focal length of 1 m was inserted into the imaging optical path for 3D localization8 (link). To stabilize the microscope focusing during data acquisition, the reflected excitation laser from the coverglass-medium interface was directed to a quadrant photodiode. The position read out of the quadrant photodiode, which was sensitive to the distance between the coverglass and the objective focal plane, was used to provide feedback to a piezo objective positioner (Nano-F100, MadCity Labs), allowing compensation for the focus drift. The residual drift, < 40 nm (Supplementary Fig. 7 online), was corrected during data analysis. For whole cell imaging in an aqueous medium, the objective positioner was stepped in 300 nm intervals, which corresponds to a focal plane displacement of 216 nm after correcting for the refractive index mismatch at the glass-medium interface. Molecules within 270 nm below the focal plane were accepted for image reconstruction. Whole cell images were obtained from 9 partially overlapped z-slices. For imaging in media with a refractive index of 1.45, the positioner was stepped in 650 nm intervals, corresponding to an actual focal plane displacement of 580 nm. Molecules within 360 nm above and below the focal plane are accepted and whole cell images were obtained from 4 partially overlapped z-slices.
For single color imaging, the A405-Cy5 labeled sample was continuously illuminated with a 657 nm imaging laser (~30 mW). A low intensity 405 nm laser was used to activate the probes, with intensity adjusted such that only an optically resolved subset of the probes were activated at any given time. In certain cases, the 405 nm laser can be omitted because the 657 nm laser can also activate Cy5, albeit at a low rate. Emission from the fluorophores were recorded by the camera at a frame rate of 20 Hz. 3D localization of individual molecules was performed as described previously8 (link) and described in the Supplementary Methods online. Multicolor imaging was performed by illuminating the sample repetitively with each frame of an activation laser followed by 3 frames of the 657 nm imaging laser. An alternating sequence of two activation lasers was used for two-color imaging. The 405 nm, 460 nm and 532 nm lasers were used to activated A405-Cy5, A488-Cy5, and A555-Cy5, respectively. Subtraction of crosstalk between different color channels were performed during data analysis as described in the Supplementary Methods online.
Publication 2008
A-A-1 antibiotic Buffers Catalase Cells Cross Reactions Cysteamine Cytoskeleton Dyes Enzymes Gas Scavengers Glucose Glycerin Lens, Crystalline Microscopy Microscopy, Fluorescence Mus Oxidase, Glucose Oxygen Rabbits Reading Frames Sucrose Sulfhydryl Compounds Tubulin
All MD simulations were
performed with NAMD40 (link) employing CHARMM-formatted
parameter files41 (link) for all force fields
tested, which are provided in the Supporting Information. For all simulations, a temperature of 300 K and pressure of 1 atm
were maintained with a Nose–Hoover Langevin piston barostat
with a piston period of 100 fs and a piston dampening time scale of
50 fs and a Langevin thermostat with a damping coefficient of 1 ps–1. Nonbonded cutoffs were employed at 11 Å with
a smoothing function starting at 9 Å, with particle mesh Ewald
used to treat long-range electrostatics. The systems were solvated
in cubic water boxes with edge lengths ranging from 25 to 58 Å.
Sodium and chloride ions were added to neutralize the charges in the
system and provide approximately a 150 mM concentration of salt. A
2 fs time step was employed with the use of SHAKE and SETTLE.
Triplicate 205 ns simulations were run for an unblocked alanine pentapeptide
(Ala5) with and glycine tripeptide (Gly3) with
protonated C-termini with the first 5 ns discarded as equilibration.
The remaining amino acids, with the exception of proline, were simulated
for 205 ns as blocked dipeptides, again in triplicate with the first
5 ns discarded as equilibration. Values and error bars throughout
the paper represent the mean and standard deviation of the calculated
quantities from the triplicate runs. Ala5 and Gly3 simulations were run with each of the four weighting temperatures
examined in this work, as well as the previous OPLS-AA and OPLS-AA/L
force field. Dipeptide simulations were performed with OPLS-AA, OPLS-AA/L,
and the new parameters optimized at 2000 K. As each system was studied
for 600 ns with at least three different force fields, over 50 μs
of validating simulations have been executed. In analyzing the molecular
dynamics simulations for the short alanine and glycine peptides, the
definitions of secondary structure, the three sets of Karplus parameters
for calculating J couplings, and the experimental
error values used to calculate χ2 from Best et al.42 (link) were employed. For the dipeptide simulations,
only the first set of Karplus parameters, that of Hu and Bax,43 was employed. χ1 rotamer populations
were determined by dividing the range of χ1 values
into three equal sized bins, corresponding to the p (+60°), t
(180°) and m (−60°) conformers. Definitions of p,
t, and m for valine, isoleucine, and threonine were adopted from the
work of Dunbrak and co-workers27 (link) and are
depicted in Figure 1.
The proteins ubiquitin and GB3 were started from the PDB
structures 1UBQ(44 (link)) and 1P7E(45 (link)) and gradually
heated to 300 K over
400 ps before 205 ns simulations were run. Both the heating period
and the first 5 ns were discarded as equilibration, and simulations
were performed in triplicate for each protein. All other simulation
parameters were identical to those used for the dipeptides. For calculation
of backbone J couplings of the full protein, both
the 1997 empirical Karplus parameters43 used for the dipeptides and another empirical model developed from
work with GB346 (link) are employed. Side chain J couplings were calculated for couplings to methyl side
chains with the set of Karplus parameters developed by Vögeli
et al.,46 (link) while all other couplings employed
Karplus parameters from Perez et al.48 (link)
Publication 2015
A-A-1 antibiotic A 300 Alanine Amino Acids Chlorides Cuboid Bone Dipeptides Electrostatics Glycine Ions Isoleucine Nose Peptides Pressure Proline Proteins Sodium Sodium Chloride Threonine Tremor Ubiquitin Valine Vertebral Column

Protocol full text hidden due to copyright restrictions

Open the protocol to access the free full text link

Publication 2007
A-A-1 antibiotic Acer Cardiac Arrest Epistropheus Fluorescence Microscopy Pulses Radionuclide Imaging Sapphire Submersion Tsunamis

Protocol full text hidden due to copyright restrictions

Open the protocol to access the free full text link

Publication 2009
A-A-1 antibiotic Cattle Chimera DNA, Complementary Embryo Embryonic Stem Cells Fetus Hepatocyte IL2RG protein, human Immune System Diseases Institutional Animal Care and Use Committees Internal Ribosome Entry Sites Liver Mice, Knockout Mice, Laboratory Mice, Transgenic Polyadenylation PTEN protein, human RAG2 protein, human Specific Pathogen Free Strains Tissue Specificity

Most recents protocols related to «A-A-1 antibiotic»

Example 1

In a 2 L stainless steel container, 730 g of aluminum hydroxide powder (commercially available from KANTO CHEMICAL CO., INC., Cica special grade) were added into 1110 mL of 48% sodium hydroxide solution (commercially available from KANTO CHEMICAL CO., INC., Cica special grade), and they were stirred at 124° C. for 1 hour to give a sodium aluminate solution (First Step).

After the sodium aluminate solution was cooled to 80° C., ion exchange water was added into the sodium aluminate solution to achieve a total amount of 1500 mL.

After 96 mL of the sodium aluminate solution were separated into a 1 L stainless steel container, pure water was added into the solution to achieve a total amount of 730 mL (concentration of the sodium aluminate solution: 0.8 mol/L). The solution was stirred with keeping a temperature thereof at 25° C., and the solution was aerated with carbon dioxide in an aeration amount of 0.7 L/min. for 60 minutes to give adjusted aluminum hydroxide slurry (low-crystallinity aluminum compound=pseudo-boehmite) (Second Step).

Separately, 49.5 g of magnesium oxide powder (commercially available from KANTO CHEMICAL CO., INC., special grade) were added to 327 mL of pure water, and they were stirred for 1 hour to give magnesium oxide slurry.

In a 1.5 L stainless steel container, the magnesium oxide slurry and the adjusted aluminum hydroxide slurry were added into 257 mL of pure water, and they were stirred at 55° C. for 90 minutes to cause a first-order reaction. As a result, a reactant containing hydrotalcite nuclear particles was prepared (Third Step).

Then, pure water was added to the reactant to give a solution in a total amount of 1 L. The solution was put into a 2 L autoclave, and a hydrothermal synthesis was performed at 160° C. for 7 hours. As a result, hydrotalcite particles slurry was synthesized (Fourth Step).

To the hydrotalcite particles slurry were added 4.3 g of stearic acid (3 parts by mass with respect to 100 parts by mass of hydrotalcite particles) with keeping a temperature of the hydrotalcite particles slurry at 95° C. to perform a surface treatment on particles (Fifth Step). After the hydrotalcite particles slurry of which particles were surface treated was filtered and washed, a drying treatment was performed at 100° C. to give solid products of hydrotalcite particles. The produced hydrotalcite particles were subjected to an elemental analysis, resulting in that Mg/Al (molar ratio)=2.1.

In accordance with a method of Example 1 described in Japanese Laid-Open Patent Publication No. 2003-048712, hydrotalcite particles were synthesized.

In 150 g/L of NaOH solution in an amount of 3 L were dissolved 90 g of metal aluminum to give a solution. After 399 g of MgO were added to the solution, 174 g of Na2CO3 were added thereto and they were reacted with each other for 6 hours with stirring at 95° C. As a result, hydrotalcite particles slurry was synthesized.

To the hydrotalcite particles slurry were added 30 g of stearic acid (3 parts by mass with respect to 100 parts by mass of hydrotalcite particles) with keeping a temperature of the hydrotalcite particles slurry at 95° C. to perform a surface treatment on particles. After the hydrotalcite particles slurry of which particles were surface treated was cooled, filtered and washed to give solid matters, a drying treatment was performed on the solid matters at 100° C. to give solid products of hydrotalcite particles.

Example 2

In a 2 L stainless steel container, 730 g of aluminum hydroxide powder (commercially available from KANTO CHEMICAL CO., INC., Cica special grade) were added into 1110 mL of 48% sodium hydroxide solution (commercially available from KANTO CHEMICAL CO., INC., Cica special grade), and they were stirred at 124° C. for 1 hour to give a sodium aluminate solution (First Step).

After the sodium aluminate solution was cooled to 80° C., ion exchange water was added into the sodium aluminate solution to achieve a total amount of 1500 mL.

After 96 mL of the sodium aluminate solution were separated into a 1 L stainless steel container, pure water was added into the solution to achieve a total amount of 730 mL (concentration of the sodium aluminate solution: 0.8 mol/L). The solution was stirred with keeping a temperature thereof at 30° C., and the solution was aerated with carbon dioxide in an aeration amount of 0.7 L/min. for 90 minutes to give adjusted aluminum hydroxide slurry (low-crystallinity aluminum compound=pseudo-boehmite) (Second Step).

Separately, 49.5 g of magnesium oxide powder (commercially available from KANTO CHEMICAL CO., INC., special grade) were added to 327 mL of pure water, and they were stirred for 1 hour to give magnesium oxide slurry.

In a 1.5 L stainless steel container, the magnesium oxide slurry and the adjusted aluminum hydroxide slurry were added into 257 mL of pure water, and they were stirred at 55° C. for 90 minutes to cause a first-order reaction. As a result, a reactant containing hydrotalcite nuclear particles was prepared (Third Step).

Then, pure water was added to the reactant to give a solution in a total amount of 1 L. The solution was put into a 2 L autoclave, and a hydrothermal synthesis was performed at 160° C. for 7 hours. As a result, hydrotalcite particles slurry was synthesized (Fourth Step).

To the hydrotalcite particles slurry were added 4.3 g of stearic acid (3 parts by mass with respect to 100 parts by mass of hydrotalcite particles) with keeping a temperature of the hydrotalcite particles slurry at 95° C. to perform a surface treatment on particles (Fifth Step). After the hydrotalcite particles slurry of which particles were surface treated was filtered and washed, a drying treatment was performed at 100° C. to give solid products of hydrotalcite particles.

Solid products of hydrotalcite particles were produced in a same manner as in Comparative Example 1 except that reaction conditions of 95° C. and 6 hours for synthesis of the hydrotalcite particles slurry in Comparative Example 1 were changed to hydrothermal reaction conditions of 170° C. and 6 hours.

Example 3

In a 2 L stainless steel container, 730 g of aluminum hydroxide powder (commercially available from KANTO CHEMICAL CO., INC., Cica special grade) were added into 1110 mL of 48% sodium hydroxide solution (commercially available from KANTO CHEMICAL CO., INC., Cica special grade), and they were stirred at 124° C. for 1 hour to give a sodium aluminate solution (First Step).

After the sodium aluminate solution was cooled to 80° C., ion exchange water was added into the sodium aluminate solution to achieve a total amount of 1500 mL.

After 96 mL of the sodium aluminate solution were separated into a 1 L stainless steel container, pure water was added into the solution to achieve a total amount of 730 mL (concentration of the sodium aluminate solution: 0.8 mol/L). The solution was stirred with keeping a temperature thereof at 60° C., and the solution was aerated with carbon dioxide in an aeration amount of 0.7 L/min. for 60 minutes to give adjusted aluminum hydroxide slurry (low-crystallinity aluminum compound=pseudo-boehmite) (Second Step).

Separately, 49.5 g of magnesium oxide powder (commercially available from KANTO CHEMICAL CO., INC., special grade) were added to 327 mL of pure water, and they were stirred for 1 hour to give magnesium oxide slurry.

In a 1.5 L stainless steel container, the magnesium oxide slurry and the adjusted aluminum hydroxide slurry were added into 257 mL of pure water, and they were stirred at 55° C. for 90 minutes to cause a first-order reaction. As a result, a reactant containing hydrotalcite nuclear particles was prepared (Third Step).

Then, pure water was added to the reactant to give a solution in a total amount of 1 L. The solution was put into a 2 L autoclave, and a hydrothermal synthesis was performed at 160° C. for 7 hours. As a result, hydrotalcite particles slurry was synthesized (Fourth Step).

To the hydrotalcite particles slurry were added 4.3 g of stearic acid (3 parts by mass with respect to 100 parts by mass of hydrotalcite particles) with keeping a temperature of the hydrotalcite particles slurry at 95° C. to perform a surface treatment on particles (Fifth Step). After the hydrotalcite particles slurry of which particles were surface treated was filtered and washed, a drying treatment was performed at 100° C. to give solid products of hydrotalcite particles.

In accordance with a method of Example 1 described in Japanese Laid-Open Patent Publication No. 2013-103854, hydrotalcite particles were synthesized.

Into a 5 L container were added 447.3 g of magnesium hydroxide (d50=4.0 μm) and 299.2 g of aluminum hydroxide (d50=8.0 μm), and water was added thereto to achieve a total amount of 3 L. They were stirred for 10 minutes to prepare slurry. The slurry had physical properties of d50=10 μm and d90=75 μm. Then, the slurry was subjected to wet grinding for 18 minutes (residence time) by using Dinomill MULTILAB (wet grinding apparatus) with controlling a slurry temperature during grinding by using a cooling unit so as not to exceed 40° C. As a result, ground slurry had physical properties of d50=1.0 μm, d90=3.5 μm, and slurry viscosity=5000 cP. Then, sodium hydrogen carbonate was added to 2 L of the ground slurry such that an amount of the sodium hydrogen carbonate was ½ mole with respect to 1 mole of the magnesium hydroxide. Water was added thereto to achieve a total amount of 8 L, and they were stirred for 10 minutes to give slurry. Into an autoclave was put 3 L of the slurry, and a hydrothermal reaction was caused at 170° C. for 2 hours. As a result, hydrotalcite particles slurry was synthesized.

To the hydrotalcite particles slum were added 6.8 g of stearic acid (3 parts by mass with respect to 100 parts by mass of hydrotalcite particles) with keeping a temperature of the hydrotalcite particles slurry at 95° C. to perform a surface treatment on particles. After solids were filtered by filtration, the filtrated cake was washed with 9 L of ion exchange water at 35° C. The filtrated cake was further washed with 100 mL of ion exchange water, and a conductance of water used for washing was measured. As a result, the conductance of this water was 50 μS/sm (25° C.). The water-washed cake was dried at 100° C. for 24 hours and was ground to give solid products of hydrotalcite particles.

Example 5

In a 2 L stainless steel container, 730 g of aluminum hydroxide powder (commercially available from KANTO CHEMICAL CO., INC., Cica special grade) were added into 1110 mL of 48% sodium hydroxide solution (commercially available from KANTO CHEMICAL CO., INC., Cica special grade), and they were stirred at 124° C. for 1 hour to give a sodium aluminate solution (First Step).

After the sodium aluminate solution was cooled to 80° C., ion exchange water was added into the sodium aluminate solution to achieve a total amount of 1500 mL.

After 192 mL of the sodium aluminate solution were separated into a 1 L stainless steel container, pure water was added into the solution to achieve a total amount of 730 mL (concentration of the sodium aluminate solution: 1.6 mol/L). The solution was stirred with keeping a temperature thereof at 30° C., and the solution was aerated with carbon dioxide in an aeration amount of 0.7 L/min. for 90 minutes to give adjusted aluminum hydroxide slurry (low-crystallinity aluminum compound=pseudo-boehmite) (Second Step).

Separately, 49.5 g of magnesium oxide powder (commercially available from KANTO CHEMICAL CO., INC., special grade) were added to 327 mL of pure water, and they were stirred for 1 hour to give magnesium oxide slurry.

In a 1.5 L stainless steel container, the magnesium oxide slurry and the adjusted aluminum hydroxide slurry were added into 257 mL of pure water, and they were stirred at 55° C. for 90 minutes to cause a first-order reaction. As a result, a reactant containing hydrotalcite nuclear particles was prepared (Third Step).

Then, pure water was added to the reactant to give a solution in a total amount of 1 L. The solution was put into a 2 L autoclave, and a hydrothermal synthesis was performed at 160° C. for 7 hours. As a result, hydrotalcite particles slurry was synthesized (Fourth Step).

To the hydrotalcite particles slurry were added 4.3 g of stearic acid (3 parts by mass with respect to 100 parts by mass of hydrotalcite particles) with keeping a temperature of the hydrotalcite particles slurry at 95° C. to perform a surface treatment on particles (Fifth Step). After the hydrotalcite particles slurry of which particles were surface treated was filtered and washed, a drying treatment was performed at 100° C. to give solid products of hydrotalcite particles.

In accordance with a method of Example 1 described in Japanese Laid-Open Patent Publication No. H06-136179, hydrotalcite particles were synthesized.

To 1 L of water were added 39.17 g of sodium hydroxide and 11.16 g of sodium carbonate with stirring, and they were heated to 40° C. Then, to 500 mL of distilled water were added 61.28 g of magnesium chloride (19.7% as MgO), 37.33 g of aluminum chloride (20.5% as Al2O3), and 2.84 g of ammonium chloride (31.5% as NH3) such that a molar ratio of Mg to Al, Mg/Al, was 2.0 and a molar ratio of NH3 to Al, NH3/Al, was 0.35. As a result, an aqueous solution A was prepared. The aqueous solution A was gradually poured into a reaction system of the sodium hydroxide and the sodium carbonate. The reaction system after pouring had pH of 10.2. Moreover, a reaction of the reaction system was caused at 90° C. for about 20 hours with stirring to give hydrotalcite particles slurry.

To the hydrotalcite particles slurry were added 1.1 g of stearic acid, and a surface treatment was performed on particles with stirring to give a reacted suspension. The reacted suspension was subjected to filtration and water washing, and then the reacted suspension was subjected to drying at 70° C. The dried suspension was ground by a compact sample mill to give solid products of hydrotalcite particles.

Full text: Click here
Patent 2024
A-A-1 antibiotic Aluminum Aluminum Chloride aluminum oxide hydroxide Anabolism Bicarbonate, Sodium Carbon dioxide Chloride, Ammonium Filtration hydrotalcite Hydroxide, Aluminum Ion Exchange Japanese Magnesium Chloride Magnesium Hydroxide Molar Oxide, Magnesium Physical Processes Powder Resins, Plant sodium aluminate sodium carbonate Sodium Hydroxide Stainless Steel stearic acid Suby's G solution Viscosity

Example 1

119 Dicty strains were screened for their ability to feed on Dickeya (Dd) or Pectobacterium (Pcc) at 10° C. This assay was performed by inoculating Dd or Pcc on a low nutrient medium (SM2 agar) that supports both bacterial and Dicty growth. Dicty spores from individual strains were then inoculated on top of the bacterial growth and incubated at 10° C. to mimic potato storage temperatures. Dicty strains that successfully fed on Dd or Pcc created visible clearings in the lawn of bacterial growth and ultimately produced sporangia (fruiting bodies) that rose from the agar surface. An example of the phenotype that was considered successful clearing of bacteria is shown in FIG. 3A. From this initial screen, 36 Dicty strains that were capable of feeding on both Dd and Pcc at 10° C. were identified (FIG. 1B).

Of the 36 strains capable of feeding on both Dd and Pcc, 34 came from the Group 4 Dictyostelids (FIG. 1). This group includes D. discoideum, D. giganteum, D. minutum, D. mucoroides, D. purpureum, and D. sphaerocephalum (72). The results indicate that this group is particularly enriched in Dd and Pcc-feeding strains.

A further experiment was performed to identify Dicty species capable of feeding on biofilms of Dd and Pcc. Microporous polycarbonate membranes (MPMs) are widely reported to support biofilm formation of numerous Enterobacteriaceae species (2, 63, 70, 71). It was determined if Dd and Pcc formed biofilms on MPMs and determined if Dicty strains were capable of feeding on these biofilms. Membranes were placed on top of SM2 agar to provide Dd and Pcc with nutrients for growth. Bacteria were then inoculated on the surface of the MPMs and growth was monitored over the course of 1 week by washing bacteria off the membranes and performing dilution plating for colony counting. Growth of both bacterial strains plateaued around 4 dpi (FIG. 2).

From these results, it was determined that the best time to collect inoculated MPMs for biofilm analysis was at 2 dpi. Scanning electron microscopy (SEM) is commonly used to confirm biofilm formation by detecting extracellular polymeric substance (EPS) that forms the biofilm matrix (2). Samples of Dd and Pcc after 2 days of growth on MPMs in the presence and absence of Dicty are analyzed using SEM.

19 Dicty strains identified as active were tested for their ability to feed on Dd and Pcc growing on MPMs. These experiments were performed by establishing Dd and Pcc growth on MPMs overlaid on SM2 agar at 37° C. for 24 hr. Dicty spores were then applied to the center of bacterial growth in a 5 uL drop containing 1000 spores. Bacteria and Dicty were incubated at 10° C. for 2 weeks before remaining bacteria were washed off and colonies were counted. Representative images of Dicty growing on Dd and Pcc on MPMs are shown in FIG. 3A.

No Dicty strains produced a statistically significant reduction in Dd viability compared to the non-treated control. However, treating Dd lawns with Cohen 36, Cohen 9, WS-15, WS-20, and WS-69 consistently reduced the number of viable bacteria by approximately 100,000-fold compared to the non-treated control (FIG. 3B). Cohen 9 was the only Dicty strain that produced a statistically significant reduction in viability of Pcc compared to the non-treated control (FIG. 3C). Other Dicty strains capable of reducing the number of viable Pcc by at least 100,000-fold were Cohen 35, Cohen 36, WS-647, and WS-69 (FIG. 3C).

It was observed that Dicty strains Cohen 9, Cohen 36, and WS-69 were capable of feeding on both Dd and Pcc when these bacteria were cultured on SM2 agar and MPMs (FIGS. 1 and 3). These strains were also particularly effective feeders as all three reduced the number of viable Dd and Pcc on MPMs at 10° C. by 100,000-fold compared to the non-treated control (FIGS. 3B and 3C).

To determine if these strains could suppress soft rot development on seed potato tubers, tubers were tab-inoculated with Dd or Pcc and treated with spores from each Dicty strain. Seed potatoes were surface-sterilized and punctured using a sterile screw to a depth of 1.5 mm. Overnight cultures of Dd and Pcc were suspended in 10 mM potassium phosphate buffer, diluted to an OD600 of approximately 0.003, and administered as a 5 μL drop into the wound. Next, 5 of a Dicty spore suspension (100,000 spores) was added to the wound. Inoculated seed potatoes were placed in a plastic container with moist paper towels and were misted with water twice a day to maintain a high humidity. After 3 days at room temperature, seed potatoes were sliced in half and the area of macerated tissue was quantified using ImageJ.

All three strains reduced the severity of soft rot caused by Dd and Pcc (FIG. 4). Cohen 36 was the most effective strain on both Dd and Pcc: reducing the area of tissue maceration by 60% and 35%, respectively (FIG. 4B). Treating seed potatoes with WS-69 reduced the area of tissue maceration by 50% and 30% for Dd and Pcc, respectively (FIG. 4B). Finally, Cohen 9 was the least effective, but still able to reduce tissue maceration caused by Dd and Pcc by 25% and 20%, respectively (FIG. 4B).

FIG. 7 shows that three Dicty isolates control Dd and Pcc in seed tubers (at 25° C.). Two sets of data from different weeks were normalized to the Dickeya or Pectobacterium only bacterial control. The average area of macerated potato tissue measured in mm2 was set as “1” or “100%”. The average of all the other treatments including Dicty were divided by bacteria only control and multiplied by 100 to obtain a percentage. Each set contained 5 tubers per treatment.

Dicty should be capable of sporulating at temperatures as cold as 10° C. on a potato surface if they are applied as a one-time pre-planting or post-harvest treatment. Sporulation was assessed by inoculating small potato discs (5×6 mm) with 10 μL of Dd or Pcc suspensions at an OD600 of 3×10−5 and Dicty spores at a concentration of 1×107 spores/mL. Potato discs were kept in a covered 96-well plate for two weeks at 10° C. followed by visual inspection for son using a dissecting microscope. Representative images of a strain producing many sori (WS-517) and a strain producing few sori (WS-69) are shown in FIG. 5. Of the 11 strains evaluated, only Cohen 9 and WS-20 were unable to sporulate in the presence of both pathogens (Table 1).

TABLE 1
Assessment of Dicty sporulation at 10° C. on potato
in the presence of Dd or Pcc. A (✓) indicates sori
have been observed while a ( [Figure (not displayed)]  ) means they have not.
Dicty strainDdPcc
Cohen 9[Figure (not displayed)]
Cohen 36
WS-69
WS-517
WS-588
WS-606
WS-15
WS-20[Figure (not displayed)]
DC-7
DC-61
WS-116d

Example 2

This example describes the use of a high throughput screening assay to identify Dicty strains from Alaska (e.g., BAC10A, BAF6A, BAC3A, NW2, KB4A (ATCC® MYA-4262™) SO8B, SO3A, BAF9B, IC2A (ATCC® MYA-4259™), AK1A1 (ATCC® MYA-4272™) PBF4B (ATCC® MYA-4263), PBF8B, BSB1A, SO5B (ATCC® MYA-4249), PBF3C, PBF6B, NW2B, NW10B (ATCC® MYA-4271™), PBF9A, IC5A (ATCC® MYA-4256TH), ABC8A (ATCC® MYA-4260), NW16B, ABC10B, ABB6B (ATCC® MYA-4261), BA4A (ATCC® MYA-4252), AKK5A, AKK52C, HP4 (ATCC® MYA-4286), HP8 (ATCC® MYA-4284), or NW9A) that feed on Dd and Pcc at 10° C. on potatoes.

Results from 11 Dicty strains screened against Dd at 10° C. are presented in FIG. 6. Data was analyzed for significance using a one-way analysis of variance (ANOVA; alpha =0.05) with Tukey's honest significant difference (HSD) test to compare means between the treatments and the No Dicty control. A reduction in Dd proliferation when potato discs were treated with Dicty strains Cohen 9, Cohen 36, WS-15, Maryland 18a, BAF6A, NW2, and SO3A.

The Alaskan Dicty strains, and those identified in Example 1, are further tested against coinfections of Dd and Pcc. It is useful to identify Dicty strains that can suppress Dd and Pcc coinfections as these two pathogens have been isolated together from diseased potatoes (15). The ability of Dicty strains with different feeding preferences (Dd vs. Pcc) to complement each other when administered as a cotreatment is assayed.

Full text: Click here
Patent 2024
A-A-1 antibiotic Agar Amoeba Bacteria Biofilms Buffers Coinfection Cold Temperature Combined Modality Therapy Dickeya Dictyosteliida Enterobacteriaceae Extracellular Polymeric Substance Matrix Extracellular Polymeric Substances High-Throughput Screening Assays Human Body Humidity Microscopy neuro-oncological ventral antigen 2, human Nutrients Pathogenicity Pectobacterium Phenotype Plant Tubers polycarbonate potassium phosphate Scanning Electron Microscopy Solanum tuberosum Sporangia Spores Sterility, Reproductive Strains Technique, Dilution Tissue, Membrane Tissues Wounds
Not available on PMC !

Example 1

The respective ingredients shown in Table 1 were used and added to a beaker such that blending ratios are 29.97% of a sulfur-containing ester compound (A-1a), 0.03% of a sulfur-containing ester compound (A-1b), 45% of a modified silicone (C-1), and 25% of a surfactant (L-1). These were mixed well by stirring. While continuing to stir, ion exchanged water was added gradually to achieve a solids concentration of 25% and thereby prepare a 25% aqueous liquid of a carbon fiber precursor treatment agent of Example 1.

Full text: Click here
Patent 2024
A-A-1 antibiotic Carbon Fiber Silicones Sulfuric Acid Esters Surface-Active Agents

Example 1

According to a first example, the object of the trigger condition Cnd of an alert Al is the detection of ignition problems on a device D constituted by a domestic boiler.

Thus, the trigger condition Cnd can be defined as.

Na>NaT

With

Na: Number of consecutive attempts required for the combustion to start during the last ignition.

NaT: alert threshold, for example equal to 3.

This condition Cnd defines that if the value of Na exceeds the threshold NaT, the alert Al is triggered.

This type of condition Cnd allows detecting failed ignitions on the boiler, indicating a wear of the ignition system requiring a replacement before worsening and total failure.

Example 2

According to a second example, the object of the trigger condition Cnd of an alert Al is the follow-up of the operation of a device D constituted by a domestic boiler.

Thus, the trigger condition Cnd can be defined as:

T>Tmax for a period P

with

T: Temperature of the heating body. This temperature is a state variable or parameter of the device whose value is refreshed every minute.

$TMax: Threshold temperature. This threshold value is an external variable which can for example be defined by default at a value of 90° C. by the manufacturer's recommendations.

P: time period, for example 10 minutes.

The above condition uses a «hysteresis» for a period of time P. Thus, if the value of T exceeds $TMax over an uninterrupted period of at least P, the alert is triggered.

Full text: Click here
Patent 2024
A-A-1 antibiotic Medical Devices
Not available on PMC !

Example 20

The spfash mutant mice were injected intravenously with a single dose of human OTC mRNA (either construct OTC-07 (SEQ ID NO:35) or OTC-12 (SEQ ID NO:40)) at either 0.5 mg/kg or 1.0 mg/kg, or a control mRNA encoding eGFP at a dose of 1 mg/kg, via tail vein injection. The mRNA was formulated in lipid nanoparticles (Compound II) for delivery into the mice. Urine was collected from mice 48 hours and 24 hours prior to mRNA injection for urinary orotic acid/creatinine analysis. All mice urine was collected for urinary orotic acid/creatinine levels 24 hours, 48 hours, 72 hours, 7 days, 14 days, or 21 days after dosing for each injected human OTC mRNA and for the injected eGFP control. FIG. 5 shows that administering a single dose of mRNA encoding human OTC (either construct OTC-07 or OTC-12) to spfash mice led to a substantial and sustained decrease in orotic acid levels for at least 21 days following the mRNA injection.

Full text: Click here
Patent 2024
A-A-1 antibiotic Animal Model Creatinine Homo sapiens Lipid Nanoparticles Mus Obstetric Delivery Orotic Acid RNA, Messenger Tail Urinalysis Urine Veins

Top products related to «A-A-1 antibiotic»

Sourced in Japan, United States, Italy, Germany, United Kingdom, Canada, France
The J-810 spectropolarimeter is a laboratory instrument designed for the measurement of circular dichroism (CD) and other optical rotatory properties of samples. It provides accurate and reliable data on the secondary structure and conformational changes of biological macromolecules such as proteins, nucleic acids, and other chiral compounds.
Sourced in Japan, United States, United Kingdom, Germany, Canada, Brazil
The J-815 CD spectrometer is a laboratory instrument designed to measure the circular dichroism (CD) spectrum of samples. It is capable of analyzing the interactions between light and optically active molecules, providing information about the structural and conformational properties of the sample. The J-815 CD spectrometer operates within a specified wavelength range and can be used to study a variety of biomolecules, such as proteins, nucleic acids, and small organic compounds.
Sourced in United States, China, United Kingdom, Germany, Australia, Japan, Canada, Italy, France, Switzerland, New Zealand, Brazil, Belgium, India, Spain, Israel, Austria, Poland, Ireland, Sweden, Macao, Netherlands, Denmark, Cameroon, Singapore, Portugal, Argentina, Holy See (Vatican City State), Morocco, Uruguay, Mexico, Thailand, Sao Tome and Principe, Hungary, Panama, Hong Kong, Norway, United Arab Emirates, Czechia, Russian Federation, Chile, Moldova, Republic of, Gabon, Palestine, State of, Saudi Arabia, Senegal
Fetal Bovine Serum (FBS) is a cell culture supplement derived from the blood of bovine fetuses. FBS provides a source of proteins, growth factors, and other components that support the growth and maintenance of various cell types in in vitro cell culture applications.
Sourced in United States, United Kingdom, Germany, Canada, Japan, Sweden, Austria, Morocco, Switzerland, Australia, Belgium, Italy, Netherlands, China, France, Denmark, Norway, Hungary, Malaysia, Israel, Finland, Spain
MATLAB is a high-performance programming language and numerical computing environment used for scientific and engineering calculations, data analysis, and visualization. It provides a comprehensive set of tools for solving complex mathematical and computational problems.
Sourced in Japan, United States, Germany, United Kingdom, Italy, Canada
The J-815 spectropolarimeter is a laboratory instrument used for the measurement of circular dichroism (CD) spectra. It is designed to analyze the interaction between polarized light and chiral molecules or structures. The J-815 spectropolarimeter provides accurate and reliable data on the secondary structure and conformational changes of biological macromolecules such as proteins, nucleic acids, and other chiral compounds.
Sourced in Germany, United States, United Kingdom, Japan, Switzerland, France, China, Canada, Italy, Spain, Singapore, Austria, Hungary, Australia
The LSM 710 is a laser scanning microscope developed by Zeiss. It is designed for high-resolution imaging and analysis of biological and materials samples. The LSM 710 utilizes a laser excitation source and a scanning system to capture detailed images of specimens at the microscopic level. The specific capabilities and technical details of the LSM 710 are not provided in this response to maintain an unbiased and factual approach.
Sourced in Germany, United States, United Kingdom, Japan, China, Switzerland, France, Austria, Canada, Australia
The LSM 880 is a laser scanning confocal microscope designed by Zeiss. It is a versatile instrument that provides high-resolution imaging capabilities for a wide range of applications in life science research.
Sourced in United States, China, United Kingdom, Germany, France, Australia, Canada, Japan, Italy, Switzerland, Belgium, Austria, Spain, Israel, New Zealand, Ireland, Denmark, India, Poland, Sweden, Argentina, Netherlands, Brazil, Macao, Singapore, Sao Tome and Principe, Cameroon, Hong Kong, Portugal, Morocco, Hungary, Finland, Puerto Rico, Holy See (Vatican City State), Gabon, Bulgaria, Norway, Jamaica
DMEM (Dulbecco's Modified Eagle's Medium) is a cell culture medium formulated to support the growth and maintenance of a variety of cell types, including mammalian cells. It provides essential nutrients, amino acids, vitamins, and other components necessary for cell proliferation and survival in an in vitro environment.
Sourced in United States, China, Germany, United Kingdom, Canada, Japan, France, Italy, Switzerland, Australia, Spain, Belgium, Denmark, Singapore, India, Netherlands, Sweden, New Zealand, Portugal, Poland, Israel, Lithuania, Hong Kong, Argentina, Ireland, Austria, Czechia, Cameroon, Taiwan, Province of China, Morocco
Lipofectamine 2000 is a cationic lipid-based transfection reagent designed for efficient and reliable delivery of nucleic acids, such as plasmid DNA and small interfering RNA (siRNA), into a wide range of eukaryotic cell types. It facilitates the formation of complexes between the nucleic acid and the lipid components, which can then be introduced into cells to enable gene expression or gene silencing studies.
Sourced in Germany, United States, Japan, Italy, France, United Kingdom, China, Switzerland, Canada, Portugal
The Leica SP8 confocal microscope is a high-performance imaging system designed for advanced microscopy applications. It features a state-of-the-art confocal architecture that enables high-resolution, real-time imaging of fluorescently labeled samples. The SP8 offers precise control over laser excitation, detector settings, and optical parameters to optimize image quality and data acquisition.

More about "A-A-1 antibiotic"

A-A-1 antibiotics, also known as antimicrobial agents or antibacterial compounds, are a class of drugs that have been extensively studied for their potential to treat a variety of bacterial infections.
These compounds typically target specific cellular processes or structures within bacteria, disrupting their ability to survive and replicate.
Researchers studying A-A-1 antibiotics often face challenges in identifying the most effective protocols and products for their research, which can impact the reproducibility and accuracy of their findings.
PubCompare.ai, an AI-driven platform, aims to address these challenges by helping researchers locate and compare relevant protocols from literature, pre-prints, and patents.
By leveraging powerful comparisons, researchers can optimize their A-A-1 antibiotic studies and ensure their findings are both reproducible and accruate.
This can be particularly useful when utilizing various analytical techniques, such as J-810 spectropolarimeter, J-815 CD spectrometer, or the LSM 710 and LSM 880 confocal microscopes.
Researchers may also benefit from the use of cell culture media like DMEM, as well as transfection reagents like Lipofectamine 2000, to study the effects of A-A-1 antibiotics on bacterial cells.
Additionally, the use of MATLAB software can assist in the analysis and interpretation of data obtained from these experiments.
Overall, the optimization of A-A-1 antibiotic research through the use of AI-driven platforms like PubCompare.ai, along with various analytical tools and techniques, can help ensure the reproducibility and accuracy of findings, ultimately contributing to the development of more effective treatments for bacterial infections.