Injections were made using an image-guided stereotaxic system (Brainsight Frameless, Rogue Research, Montreal, Canada). The target area was identified on the monkey’s magnetic resonance imaging (MRI) using sulcal landmarks in a 3D reconstruction of the monkey brain and a coronal, parasagittal, or horizontal plane (Frey et al., 2004 (
link)). The Brainsight system monitors injection position online and to within a few millimeters range. Injections of the fluorescent Fast blue and Diamidino yellow tracers (0.2–0.3 μl) spanning the full depth of the cortex were made into V1, V2, V4, TEO, TEpd, MT, 7a, STPc, DP, 8m, and 8L. Injection sites can be viewed in Markov et al. (2013 ).
The spatial extent of labeling and the percentages of double-labeled neurons in supragranular vs. infragranular layers (in V2, V3, MT, TEO, and TE) were computed after paired parallel longitudinal injection of 3–5 μl of the two tracers in V1 in one brain and in V4 in another brain. These paired injections, 2–3 mm apart, were used to quantify the divergence of terminal arbors and the degree of scatter in projection topology, and were made at a shallow angle to the cortical surface spanning the entire thickness of the cortical sheet. The tracer was injected while the Hamilton microsyringe was withdrawn from the cortex so as to form parallel longitudinal injection sites restricted to the cortical gray matter.
In order to quantify the frequency of single neurons sending projections to both V1 and V4, simultaneous injections were made in these two areas. In one animal, massive injections were made by multiple injection of Diamidino yellow in the opercular part of V1 and, in the same hemisphere, Fast blue was massively injected in V4 between the lunate sulcus and the superior temporal sulcus. Both sets of injections involved corresponding regions representing the lower part of the central visual field (Gattass et al., 1987 (
link), 1988 (
link)).
Following a 10–13 day survival period, to allow retrograde transport of the tracers, the animals were deeply anesthetized and perfused through the heart with 2.7% saline, followed by 4–8% paraformaldehyde, 0.05% glutaraldehyde in 0.1 M phosphate buffer (PB) (pH 7.4), and 10–30% sucrose in PB. The brains were then blocked in the coronal, sagittal, or horizontal plane, and 40-μm-thick sections were cut on a freezing microtome. One in three sections was immediately mounted from saline solution onto 3% gelatin-coated slides. Selected sections at regular intervals from those not used for counting were reacted for cytochrome oxidase, acetylcholinesterase (AChE) activity (Barone et al., 2000 (
link)), and SMI-32 (Hof et al., 1996 (
link)). Sections were observed with a Leitz or Leica DMRE fluorescence microscope equipped with a D-filter set (355–425 nm). A computer-assisted program (ExploraNova) was used with a motorized microscope stage so as to trace out sections electronically and record neuron positions with high precision (±10 μm).
Markov N.T., Vezoli J., Chameau P., Falchier A., Quilodran R., Huissoud C., Lamy C., Misery P., Giroud P., Ullman S., Barone P., Dehay C., Knoblauch K, & Kennedy H. (2013). Anatomy of hierarchy: Feedforward and feedback pathways in macaque visual cortex. The Journal of Comparative Neurology, 522(1), 225-259.