The largest database of trusted experimental protocols
> Chemicals & Drugs > Amino Acid > Activating transcription factor 6, human

Activating transcription factor 6, human

Activating transcription factor 6 (ATF6) is a key regulator of the unfolded protein response in humans.
It serves as a sensor for endoplasmic reticulum stress, triggering adaptive signaling pathways that promote cell survival and homeostasis.
ATF6 plays a central role in maintaining proteostasis and modulating various cellular processes, including metabolism, inflammation, and apoptosis.
Disregulation of ATF6 activity has been implicated in the pathogenesis of diverse human diseases, such as neurodegenerative disorders, cardiovascular disease, and metabolic syndromes.
Exploring the power of ATF6 activation in humans can provide valuable insights into disease mechanisms and potential therapeutic targets.
PubCompare.ai's AI-driven approach can help researchers discover protocols from literature, preprints, and patents, while providing AI-powered comparisons to enhance research reproducibility and accuracy.
This single, typo-free platform can uncover the best protocols and products for your ATF6-related studies.

Most cited protocols related to «Activating transcription factor 6, human»

Protein extracts (100 μg) were subjected to immunoprecipitation using a protein A/G agarose column (Amicogen, Korea). Protein A/G agarose columns were separately pre-incubated with 1 μg of 216 different antisera for; growth and proliferation-related proteins (n = 10), cMyc/MAX/MAD signaling proteins (n = 3), p53/Rb/E2F signaling proteins (n = 5), epigenetic modification-related proteins (n = 6), protein translation-related proteins (n = 5), RAS signaling proteins (n = 17), growth factor-related proteins (n = 16), NFkB signaling proteins (n = 12), cellular protection-related proteins (n = 15), upregulated inflammatory proteins (n = 26), downregulated inflammatory proteins (n = 13), p53-mediated apoptosis-related proteins (n = 17), FAS-mediated apoptosis-related proteins (n = 8), angiogenesis-related proteins (n = 20), osteogenesis-related proteins (n = 12), antioxidant-related proteins (n = 8), oncogenic proteins (n = 15), and control housekeeping proteins (n = 3) (Table 2).

Antibodies used in the study.

Signaling proteinsNo.Antibodies
Cellular proliferation10Ki-67*, PCNA*, CDK4*, PLK4*, lamin A/C, MPM2*, p14*, p16*, p21*, p27*
cMyc/MAX/MAD signaling3cMyc*, MAX*, MAD*
p53/Rb/E2F signaling5 (2)p53, Rb-1#, E2F-1*, (p21, CDK4)
Wnt/β-catenin signaling5Wnt1*, β-catenin*, APC*, snail*, TCF-1*
Epigenetic modification6DMAP1*, histone H1*, KDM4D$, HDAC-10$, MBD4*, DNMT1*
Protein translation signaling5DOHH*, DHS*, elF5A-1$, elF5A-2$, eIF2AK3*
RAS signaling17NRAS$, KRAS$, STAT3*, SOS-1*, SOS-2*, RAF-B*, JAK2$, JNK-1*, ERK1*, Rab*, p-ERK$, AP-1@, SP-1@, SP-3@, AMPK@, (PKC*, p-PKC@)
Growth factor signaling16FGF-1*, FGF-2*, HGF*, TGF-β1#, TGF-β2, SMAD4*, PDGF-A*, IGF-1*, IGFIIR*, GH*, GHRH*, HER1*, HER2*, ERβ*, insulin@, Met*
NFkB signaling12 (3)NFkB*, IKK*, GADD45*, MDR, mTOR@, p38*, p-p38*, NRF-2*, IL-1*, (ERK1*, p-ERK*, AMPK)
Upregulated inflammatory proteins26 (2)IL-12*, CD3*, CD28*, CD31*, CD34*, CD40*, CD56*, CD68*, CD80*, CD99*, LL-37*, M-CSF*, MMP-1$, -2$, -3$, -9$, -10$, -12$, TIMP-1&, TIMP-2&, CXCR4*, COX1*, COX2*, integrin- α5*, (TGF- β1#, TGF- β2*)
Downregulated inflammatory proteins13 (1)TNFα@, IL-1*, IL-6*, IL-8*, IL-10*, IL-28*, LTA4H&, α1- antitrypsin &, lysozyme*, CD20$, cathepsin C*, cathepsin G*, cathepsin K*,
Cellular protection-related15 (2)LC3, PLC- β2, PI3K, PKC*, p-PKC*, FAK*, caveolin-1*, PGC-1α*, HSP-27*, HSP-70*, HSP-90*, TGase 2$, p63$, (pAKT1/2/3*, HO-1)
Antioxidant-related8 (3)HO-1*, SOD-1*, GST-1*, SVCT2&, NOS-1$, (PGC-1α $, LC3*, NRF-2)
p53-mediated cellular apoptosis17 (1)(p53*), PUMA*, NOXA*, MDM2*, BCL2*, BAX*, BAD*, BAK*, BID*, AIF*, APAF-1*, caspase 9*, c-caspase 9*, caspase 3*, c-caspase 3*, PARP*, c-PARP*
FAS-mediated cellular apoptosis8 (3)FASL*, FAS*, FADD*, FLIP*, caspase 8*, (BID*, caspase 3*, c-caspase 3*)
Oncogenic proteins15 (2)PTEN&, MUC1, MUC4, maspin*, BRCA1&, BRCA2&, NF-1*, ATM*, CEA$, 14-3-3*, survivin@, DMBT1*, TERT*, (pAKT1/2/3*, MBD4)
Angiogenesis-related proteins20 (7)HIF&, VEGF-A*, VEGF-C*, angiogenin$, LYVE-1*, CMG2$, vWF$, FLT-4$, ET-1*, PAI-1*, VEGFR*00, plasminogen*, leptin*, (CD31, MMP-2, MMP-9, MMP-10, FGF-1, FGF-2, PDGF-A)
Osteogenesis-related proteins12 (2)OPG*, RANKL*, BMP-2*, BMP-4*, ALP*, osteocalcin*, osteopontin*, osteonectin*, RUNX2*, osterix*, (HSP-90, cathepsin K)
Control housekeeping proteins3α-tubulin*, β-actin*, GAPDH*
Total216 (28)

*Santa Cruz Biotechnology, USA; #DAKO, Denmark; $Neomarkers, CA, USA; @ZYMED, CA, USA; &Abcam, Cambridge, UK; the number of antibodies overlapped; ().

Abbreviations: AMPK; AMP-activated protein kinase, pAKT; v-akt murine thymoma viral oncogene homolog, p-Akt1/2/3 phosphorylated (p-Akt, Thr 308), APAF-1; apoptotic protease-activating factor 1, AP-1; activating protein-1, BAD; BCL2 associated death promoter, BAK; BCL2 antagonist/killer, BAX; BCL2 associated X, BCL-2; B-cell leukemia/lymphoma-2, BID; BH3 interacting-domain death agonist, c-caspase 3; cleaved-caspase 3, CD3; cluster of differentiation 3, CDK4; cyclin dependent kinase 4, CEA; carcinoembryonic antigen, CMG2: capillary morphogenesis protein 2, COX-1; cyclooxygenase-2, COX-2; cyclooxygenase-2, c-PARP; cleaved- PARP (poly-ADP ribose polymerase), DMAP1; DNA methyltransferase 1 associated protein, DMBT1; deleted in malignant brain tumors 1, DOHH; deoxyhypusine hydroxylase, DHS; deoxyhypusine synthase, E2F-1; transcription factor, eIF2AK3 (PERK); eukaryotic translation initiation factor 2 (protein kinase R (PKR)-like endoplasmic reticulum kinase), elF5A-1; eukaryotic translation initiation factor 5A-1, elF5A-2; eukaryotic translation initiation factor 5A-2, ERβ; estrogen receptor beta, ERK; extracellular signal-regulated protein kinases, ET-1: endothelin-1, FAS; CD95/Apo1, FASL; FAS ligand, FADD; FAS associated via death domain, FGF-1; fibroblast growth factor-1, FLIP; FLICE-like inhibitory protein, FLT-4; Fms-related tyrosine kinase 4, GADD45; growth arrest and DNA-damage-inducible 45, GAPDH; glyceraldehyde 3-phosphate dehydrogenase, GH; growth hormone, GHRH; growth hormone-releasing hormone, GST-1; glutathione S-transferase ω 1, HDAC-10; histone deacetylase 10, HIF-1α: hypoxia inducible factor-1α, HO-1; heme oxygenase 1, HER1; human epidermal growth factor receptor 1, HGFα; hepatocyte growth factor α, HSP-70; heat shock protein-70, IKK; ikappaB kinase, IGF-1; insulin-like growth factor 1, IGFIIR; insulin-like growth factor 2 receptor, IgK; immunoglobulin kappa (light chain), IL-1; interleukin-1, KDM4D; Lysine-specific demethylase 4D, JNK-1; Jun N-terminal protein kinase, KRAS; V-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog, LC3; microtubule-associated protein 1 A/1B-light chain 3, LYVE-1: lymphatic vessel endothelial hyaluronan receptor 1, MAX; myc-associated factor X, MBD4; methyl-CpG-binding domain protein 4, M-CSF; macrophage colony-stimulating factor, MDM2; mouse double minute 2 homolog, MDR; multiple drug resistance, MMP-1; matrix metalloprotease-1, MPM2; mitotic protein monoclonal 2, mTOR; mammalian target of rapamycin, cMyc; V-myc myelocytomatosis viral oncogene homolog, NFkB; nuclear factor kappa-light-chain-enhancer of activated B cells, NOS-1; nitric oxide synthase 1, NRAS; neuroblastoma RAS Viral Oncogene homolog, NRF2; nuclear factor (erythroid-derived)-like 2, p14, p16, p21, p27, p38, PAI-1; plasminogen activator inhibitor-1, PARP; poly-ADP ribose polymerase, PCNA; proliferating cell nuclear antigen, PDGF-A: platelet-derived growth factor-A, PLC-β2; 1-phosphatidylinositol-4,5-bisphosphate phosphodiesterse β-2, PI3K; phosphatidylinositol-3-kinase, PLK4; polo like kinase 4 or serine/threonine-protein kinase, PKC; protein kinase C, p-p38; phosphor-p38, PTEN; phosphatase and tensin homolog, RANKL; receptor activator of nuclear factor kappa-B ligand, Rb-1; retinoblastoma-1, RUNX2; Runt-related transcription factor-2, SMAD4; mothers against decapentaplegic, drosophila homolog 4, SOD-1; superoxide dismutase-1, SP-1; specificity protein 1, STAT3; signal transducer and activator of transcription-3, TGF-β1; transforming growth factor-β1, TERT; human telomerase reverse transcriptase, TNFα; tumor necrosis factor-α, β-actin, 14-3-3, VEGF vascular endothelial growth factor, VEGFR2: vascular endothelial growth factor receptor 2, p-VEGFR2: vascular endothelial growth factor receptor 2 (Y951), vWF: von Willebrand factor.

Briefly, protein samples were mixed with 5 mL of binding buffer (150 mM NaCl, 10 mM Tris pH 7.4, 1 mM EDTA, 1 mM EGTA, 0.2 mM sodium vanadate, 0.2 mM PMSF and 0.5% NP-40) and incubated in protein A/G agarose (Amicogen, Korea) columns at 4 °C for 1 hour (columns were placed on a rotating stirrer during incubation). After washing each column with sufficient phosphate buffered saline solution, target proteins were eluted with 150 μL of IgG elution buffer (Pierce, USA). Immunoprecipitated proteins were analyzed using a HPLC unit (1100 series, Agilent, USA) equipped with a reverse phase column and a micro-analytical detector system (SG Highteco, Korea). Elution was performed using 0.15 M NaCl/20% acetonitrile solution at 0.4 mL/min for 30 min, and proteins were detected by UV spectroscopy at 280 nm. Control and experimental samples were run sequentially to allow comparisons12 (link),30 ,31 . For IP-HPLC, whole protein peak areas (mAU*s) were calculated after subtracting negative control antibody peak areas, and the square roots of protein peak areas were calculated to normalize concentrations (Supplementary Fig. 2). Protein percentages in total proteins in experimental and control groups were plotted. Analyses were repeated two to six times to achieve mean standard deviations of ≤±5%. Results were analyzed using the Chi-squared test.
The expressions of housekeeping proteins, that is, β-actin, α-tubulin, and glyceraldehyde 3-phosphate dehydrogenase (GAPDH) were used as internal controls. Expressional changes of housekeeping proteins were adjusted to <±5% using a proportional basal line algorithm. To describe protein expressional changes, we tentatively defined a ≤±5% change as minimal, ±5–10% as slight, ±10–20% as meaningful, and a ≥±20% change as marked.
Full text: Click here
Publication 2019
Protein extracts (~ 100 μg) were immunoprecipitated using protein A/G agarose columns (Amicogen, South Korea), which were separately pre-incubated with 1 μg of 197 different antisera, including proliferation-related proteins (n = 11), cMyc/MAX/MAD network proteins (n = 3), p53/Rb/E2F signaling proteins (n = 5 (1)), epigenetic modification proteins (n = 6), protein translation proteins (n = 5), growth factors (n = 16), RAS signaling proteins (n = 12), NFkB signaling proteins (n = 12 (2)), cellular stress and adaptation proteins (16 (8)), cellular differentiation proteins (n = 11), inflammatory proteins upregulated (n = 13 (2)), inflammatory proteins downregulated (n = 17), cell protection-related proteins (n = 19), antioxidant-related proteins (n = 6), p53-mediated apoptosis proteins (n = 13 (2)), FAS-mediated apoptosis proteins (n = 9 (1)), angiogenesis-related proteins (n = 17 (4)), antioxidant and protection-related (11 (2)), oncogenic proteins (n = 12 (4)), and cytoplasmic housekeeping proteins (n = 3) (Table 2). All antibodies were acquired commercially and were suitable for IP and specific for proteins of mouse origin.

Antibodies used in the study

Signaling proteinsNo.Antibodies
Proliferation-related proteins11Ki-67*, PCNAa, CDK4a, PLK4a, lamin A/C, MPM2a, cyclin D2, p14, p16a, p21a, p27a
cMyc/MAX/MAD network proteins3cMyca, MAXa, MADa
p53/Rb/E2F signaling proteins5 (1)p53, Rb-1#, E2F-1a, MDM2a, (CDK4)
Wnt/β-catenin signaling proteins5Wnt1a, β-catenina, APCa, snaila, TCF-1a
Epigenetic modification proteins6DMAP1a, histone H1a, KDM4D$, HDAC-10$, MBD4a, DNMT1a
Protein translation proteins5DOHHa, DHSa, elF5A-1$, elF5A-2$, eIF2AK3a
Growth factor proteins16FGF-1a, FGF-2a, HGF-1a, TGF-β1#, TGF-β2, SMAD4a, IGF-1a, IGFIIRa, GHa, GHRHa, HER1a, HER2a, Erβa, insulin@, Meta, CTGFa
RAS signaling proteins12NRAS$, KRAS$, STAT3a, SOS-1a, SOS-2a, RAF-Ba, JNK-1a, ERK1a, p-ERK$, MEKKa, pAKT1/2/3, PI3Ka
NFkB signaling proteins12 (2)NFkBa, IKKa, GADD45a, GADD153, MDRa, mTOR@, p38a, p-p38a, AMPK, PGC-1α, (ERK1a, p-ERKa)
Cellular stress and adaptation proteins16 (8)LC3a, PLC-β2a, PKCa, p-PKCa, AKAPa, NFAT5a, leptina, HXK IIa, (pAKT1/2/3a, p38a, GADD45a, PI3Ka, MDM2a, mTORa, ERK-1a, MDRa)
Inflammatory proteins upregulated13 (2)IL-8, IL-12a, CD31a, COX1, α1-AT, LL-37, hepcidina, (TGF- β1#, TGF- β2), MMP-1a, MMP-3a, MMP-9a, MMP-10a
Inflammation proteins downregulated17TNFα@, IL-1a, IL-6a, IL-10a, IL-28a, M-CSFa, lysozymea, COX-2a, CD56a, CD68a, CD99a, cathepsin Ca, cathepsin Ga, CRP-1a, lactoferrina, MMP-2a, MMP-12a
Cellular differentiation proteins11TGase-2$, p63$, caveolina, Jagged2a, Notch 1a, GLI-1a, Muc1a, Muc4a, AP-1a, SP-1a, SP-3a
Antioxidant and protection-related11 (2)HO-1a, SOD-1a, GST-1a, NOS-1$, LC3a, HSP-27a, HSP-70a, HSP-90a, (leptina, hepcidin), NRF2a
p53-mediated apoptosis proteins13 (2)BCL2a, BAXa, BADa, BAKa, BIDa, AIFa, APAF-1a, caspase 9a, c-caspase 9a, PARPa, c-PARPa(p53a, MDM2a)
FAS-mediated apoptosis proteins9 (1)FASLa, FASa, FADDa, FLIPa, caspase 8a, caspase 3a, c-caspase 3a, (BID)
Oncogenic proteins12 (4)PTEN&, DMBT-1a, CEAa, 14–3-3a, survivin@, YAPa 1, TERTa, (pAKT1/2/3a, MBD4a, Muc1a, Muc4a), ATMa
Angiogenesis-related proteins17 (4)HIF&, VEGF-Aa, VEGF-Ca, angiogenin$, LYVE-1a, CMG2$, vWF$, FLT-4$, ET-1a, PAI-1a, plasminogen, PDGF-Aa, VCAMa, (COX-1a, leptina, CD31, FGF-2a)
Control housekeeping proteins3α-tubulina, β-actina, GAPDHa
Total223 (26)tTotal 197 antibodies

The number inside the parenthesis represents the antibodies overlapped

aSanta Cruz Biotechnology, USA

#DAKO, Denmark

$Neomarkers, CA, USA

@ZYMED, CA, USA

&Abcam, Cambridge, UK

Abbreviations: α1-AT α-1 antitrypsin; AMPK AMP-activated protein kinase; p-AKT1/2/3 phosphorylated (p-Akt, Thr 308); APAF-1 apoptotic protease-activating factor 1; AP-1 activating protein-1; BAD BCL2 associated death promoter; BAK BCL2 antagonist/killer; BAX BCL2-associated X; BCL-2 B-cell leukemia/lymphoma-2; BID BH3 interacting-domain death agonist; c-caspase 3 cleaved-caspase 3, caveolin; CD31/56/68/99 cluster of differentiation 31/56/68/99; CDK4 cyclin-dependent kinase 4; CEA carcinoembryonic antigen; CMG2 capillary morphogenesis protein 2; COX-1 cyclooxygenase-2; COX-2 cyclooxygenase-2; c-PARP cleaved-PARP (poly-ADP ribose polymerase); CTGF connective tissue growth factor, cyclin D2; DMAP1 DNA methyltransferase 1-associated protein; DMBT1 deleted in malignant brain tumors 1; DOHH deoxyhypusine hydroxylase; DHS deoxyhypusine synthase; E2F-1 transcription factor; eIF2AK3 (PERK) eukaryotic translation initiation factor 2 (protein kinase R (PKR)-like endoplasmic reticulum kinase); elF5A-1 eukaryotic translation initiation factor 5A-1; elF5A-2 eukaryotic translation initiation factor 5A-2; ERβ estrogen receptor beta; ERK extracellular signal-regulated protein kinases; ET-1 endothelin-1; FAS; CD95/Apo1; FASL FAS ligand; FADD FAS associated via death domain; FGF-1 fibroblast growth factor-1; FLIP FLICE-like inhibitory protein; FLT-4 Fms-related tyrosine kinase 4; GADD45 growth arrest and DNA-damage-inducible 45; GAPDH glyceraldehyde 3-phosphate dehydrogenase; GH growth hormone; GHRH growth hormone-releasing hormone; GST-1 glutathione S-transferase-1; HDAC-10 hepcidin; HIF hypoxia inducible factor-1α; HO-1 heme oxygenase 1; HER2 human epidermal growth factor receptor 2; HGF hepatocyte growth factor; HSP-27/70/90 heat shock protein-27/70/90; HXK II hexokinase II; IKK IkappaB kinase, IGF-1, IGFIIR; IL-1/6/8/12/28 interleukin-1/6/8/12/28, Jagged2; JNK-1 Jun N-terminal protein kinase; KRAS V-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog; LC3 microtubule-associated protein 1A/1B-light chain 3, leptin; LYVE-1 lymphatic vessel endothelial hyaluronan receptor 1, MAX Myc-associated factor X; MBD4 methyl-CpG-binding domain protein 4; M-CSF macrophage colony-stimulating factor; MEKK MEK kinase; MDM2 mouse double minute 2 homolog; MDR multiple drug resistance; MPM2 mitotic protein monoclonal 2; mTOR mammalian target of rapamycin; cMyc V-myc myelocytomatosis viral oncogene homolog; NOS-1 nitric oxide synthase 1; NRAS neuroblastoma RAS viral oncogene homolog, Notch 1, p16, p21, p27, p38, p53, p63, PAI plasminogen activator inhibitor-1; PARP poly-ADP ribose polymerase; PCNA proliferating cell nuclear antigen, PDGF-A platelet-derived growth factor-A; PLC-β2 1-phosphatidylinositol-4,5-bisphosphate phosphodiesterse β-2; PI3K phosphatidylinositol-3-kinases; PLK4 polo-like kinase 4 or serine/threonine-protein kinase; PKC protein kinase C, p-p38 phosphor-p38; PTEN phosphatase and tensin homolog; Rb-1 retinoblastoma-1; SMAD4 mothers against decapentaplegic; drosophila homolog 4; SOD-1 superoxide dismutase-1; SP-1 specificity protein 1; STAT3 signal transducer and activator of transcription-3; TGF-β1 transforming growth factor-β1; TERT human telomerase reverse transcriptase; TNF-α tumor necrosis factor-α, β-actin, 14-3-3; VEGF vascular endothelial growth factor; VCAM vascular cell adhesion, vWF Von Willebrand factor; YAP 1 yes-associated protein

Briefly, protein samples were mixed with 5 mL of binding buffer (150 mM NaCl, 10 mM Tris-HCl pH 7.4, 1 mM EDTA, 1 mM EGTA, 0.2 mM sodium vanadate, 0.2 mM phenylmethylsulfonyl fluoride (PMSF) and 0.5% Tergitol-type NP-40 (nonyl phenoxypolyethoxylethanol) and incubated in protein A/G agarose columns at 4 °C for 1 h (columns were placed on a rotating stirrer during the incubation). After washing each column with sufficient PBS (phosphate-buffered saline), target proteins were eluted using 150 μL of IgG elution buffer (Pierce, USA). Immunoprecipitated proteins were analyzed using a HPLC unit (1100 series, Agilent, USA) equipped with a reverse phase column and a micro-analytical detector system (SG Highteco, South Korea). Elution was performed using 0.15 M NaCl containing 20% acetonitrile at 0.4 mL/min for 30 min, and detection by UV spectroscopy at 280 nm. Control and experimental samples were run sequentially to allow comparisons. For IP-HPLC, whole protein peak areas (mAU*s) were calculated by subtracting the antibody peak areas of negative controls, and experimental protein peak area square roots were compared with control one (Additional file 2) [16 (link)].
When IP-HPLC results were compared with western blot data for cytoplasmic housekeeping protein (β-actin), IP-HPLC errors were < ± 5%, whereas western blot errors exceeded ± 20% and were not suitable for statistical analysis (Additional file 3) [16 (link)]. In particular, repeat IP-HPLC runs (4–10 runs) to determine errors associated with protein expression revealed errors were ± 5% (Additional file 4) [16 (link)]. Based on these findings, IP-HPLC was used rather than western blot to analyze protein expressional changes.
Full text: Click here
Publication 2018
Human and rat tissues were sectioned at 5 μm for either hematoxylin and eosin staining or immunohistochemical staining. Activation of UPR was assessed by antibody reactivity to activating transcription factor 6 (ATF6, Imgenex-273 1:100) and C/EBP homologous protein (CHOP, Abcam Ab11419 1:100). Apoptotic cells were identified by immunoreactivity to cleaved caspase-3 antibody (Abcam Ab47131 1:200). The cleaved caspase-3-positive cells were counted and divided by the total number of cells in three randomly chosen high-power field (×400) for each section from each of three animals per group. The mean percentage of caspase-3+ cells for each animal was then obtained by averaging the results of the countings. Macrophages were identified by staining with antibodies against CD68 (AbBiotec 250594 1:200). Secondary antibodies conjugated to fluorescent dyes (Invitrogen), or biotin combined with immunoperoxidase/avidin-biotin, were as per the manufacturer protocol (Vectastain ABC kit, Vector Labs), and either hematoxylin or Nuclear Fast Red (Vector Labs) was used as a counterstain. Avidin/biotin blocking kits (Vector Labs) were used to block endogenous enzyme activity. Antibody isotype negative controls were included with each sample group. Images were acquired at room temperature using a Zeiss Axiovert S100 fitted with Zeiss 20×0.4 numerical aperture (n.a.) and 10×0.3 n.a. objectives and Axiocam camera. Acquisition of images was by Axiovision 4.6 software (Zeiss).
Publication 2012
activating transcription factor 6, human Animals Antibodies Apoptosis Avidin Biotin Cardiac Arrest Caspase 3 Cloning Vectors DDIT3 protein, human enzyme activity Eosin Fever Fluorescent Dyes Hematoxylin Homo sapiens Immunoglobulin Isotypes Immunoglobulins Immunoperoxidase Techniques Macrophage S100 Proteins Tissues
The traditional Y2H screening method involves the reconstitution of the GAL4 transcription factor through the interaction of a bait protein fused to the GAL4 DNA binding domain and a prey protein (from a fetal brain cDNA library) fused to the transcriptional activating domain of GAL4 [21] (link). This method is biased for cytosolic and nuclear proteins, as the protein complex must be imported into the nucleus to activate transcription. Therefore, only the cytosolic portion of integral membrane proteins is usually employed in this type of screen. Traditional Y2H screens in this study were performed as previously described [22] , [23] using the second intracellular loop (IL2; amino acids 166–187) of the MOR as bait to screen a fetal human brain cDNA library. The MOR-IL2 was cloned into the yeast GAL4 DNA binding domain expression vector pAS2-1 (Clontech, Palo Alto, CA), while the human fetal brain cDNA library was provided in the GAL4 activation domain vector pACT2 (Clonetech). Bait and prey plasmids were successively transformed into yeast strain MaV103 [22] . Transformation of yeast with the fetal human brain library produced ∼2×106 transformants/µg of DNA on quadruple dropout plates (-Leu/−Trp/−His/−Ura; Clonetech) containing 3-amino-1,2,4-triazol (3AT). Interactions were assayed for β-galactosidase (β-gal) activity via the nitrocellulose lift method [22] . cDNAs were extracted from yeast colonies, sequenced, and subjected to Basic Local Alignment Search Tool (BLAST) analysis to determine their identities.
To identify additional MOR interacting proteins (MORIPs), a modified split-ubiquitin membrane yeast two-hybrid (MYTH) screen was performed as previously described [24] (link). The MYTH system uses the split-ubiquitin method, in which the reconstitution of ubiquitin is mediated by a specific protein-protein interaction. Ubiquitin-specific proteases cleave at the C-terminus of ubiquitin, which releases a transcription factor that can translocate to the nucleus and activate transcription of a reporter gene [25] (link). The unique advantage of MYTH is that full-length integral membrane proteins can be used as bait and are amenable to protein-protein interaction analyses in their natural membrane environment [26] (link), [27] (link). For this study, full-length human MOR cDNA in the bait vector pCCW-STE (Dualsystems Biotech AG, Switzerland) and a human fetal brain library in the prey vector pPR3-N (Dualsystems) were sequentially transformed into S. cerevisiae reporter strain THY.AP4. Transformation of yeast with the human brain library yielded 6×106 transformants/µg DNA on quadruple drop out plates (−Trp/−Leu/−His/−Ade; Clonetech) containing 3AT. Fifty transformants were positive for β-gal activity. These colonies were picked and their cDNAs extracted, sequenced and subjected to BLAST analysis. From this screen we identified four novel MORIPs (Table 1) that were subjected to further biochemical analysis.
To map sites of interaction between the MOR and the newly identified MORIPs, each MOR intracellular loop (IL) was tested for interaction with individual MORIPs using the traditional Y2H method. MOR-IL domains (IL1, amino acids 97–102; IL2, amino acids 166–187; IL3, amino acids 259–282; and C-tail residues 361–420) were separately ligated into pAS2-1 and assayed for interaction with candidate MORIP cDNA clones in pACT2. Bait and prey plasmids were simultaneously co-transformed into S. cerevisiae strain MaV103 and interactions assayed for β-gal activity as described above.
Full text: Click here
Publication 2013
We downloaded clinical metadata and RNA sequencing (RNAseq)-based mRNA expression data for 41 pediatric DMG patients (mean age at diagnosis in months = 7.02 ± 0.44; median = 6; range = 2–14) and 116 pediatric GBM patients (mean age at diagnosis in months = 60.01 ± 1.24; median = 60.4; range = 21–89.3) regarding TGFB isoforms TGFB1, TGFB2, and TGFB3 from the genomic data set repository stored in the cBioPortal for Cancer Genomics (https://pedcbioportal.kidsfirstdrc.org/ (accessed on 4 November 2022)) using the interactive web interface with full filtering functionality provided by the portal [41 (link),42 (link)]. By utilizing the cBioPortal database and an archived dataset that was compiled from harmonized and annotated across multiple data consortiums, such as the open Pediatric Brain Tumor Atlas (PBTA) Project (Project ID = openpbta) and the Pacific Pediatric Neuro-Oncology Consortium Clinical Genomics Atlas (Project ID = pbta_pnoc) [10 (link),43 (link),44 (link),45 (link)], we examined the effect of TGFB2 mRNA expression levels on PFS and OS outcomes. The general treatment strategies are outlined in the clinical trials associated with the treatment of DIPG patients (https://clinicaltrials.gov/ct2/show/NCT02274987 (accessed on 1 January 2023)) that included standard radiation therapy followed by biomarker-guided specialized therapy with FDA-approved targeted therapeutics drugs, which was guided by gene expression analysis, whole exome-sequencing (WES), and predictive modeling. As a limitation of this study, patient-specific treatment information was not available through the cBioPortal database.
The downloaded mRNA expression levels of TGFB1, TGFB2, TGFB3, Transforming Growth Factor Beta Receptor 1 (TGFBR1), Transforming Growth Factor Beta Receptor 2 (TGFBR2) and Transforming Growth Factor Beta Receptor 3 (TGFBR3) were reported using the RNAseq V2 values (datafiles for the expression profiles appended with “mRNA_expression_(RNA_Seq_V2_RSEM).txt”) normalized to “transcripts per million” (“TPM”) values calculated using RSEM, which is a software package for estimating gene and isoform expression levels from RNAseq data [46 (link)]. The RSEM-based process consists of two main steps: 1. A set of reference transcript sequences are generated for gene level mRNA abundance assessment; 2. A set of RNAseq reads are aligned to these reference transcripts for TPM abundance estimations. This process allows for a direct comparison of mRNA abundance and ranking across samples.
The Kaplan–Meier (KM) method, log-rank chi-square test, and the software packages survival_3.2-13, survminer_0.4.9 and survMisc_0.5.5 operated in the R environment were used to compare the PFS and OS outcomes of patient subsets. Graphical representations of the treatment outcomes were generated using graph drawing packages implemented in the R programming environment: dplyr_1.0.7, ggplot2_3.3.5, and ggthemes_4.2.4. The statistical significance of differences in the outcomes of the compared patient subsets was examined using the log-rank chi-square test and p-values less than 0.05 were deemed significant.
TBFB1, TGFB2, and TGFB3 mRNA expression values for normal pons specimens measured by RNAseq (rna_tissue_hpa.tsv.zip) were downloaded from https://www.proteinatlas.org/about/download accessed on 19 December 2022. We compiled the mRNA expression values (in TPM) for 29 distinct pons regions of the brain by filtering the “Tissue Group” annotations the accompanying description file (“rna_tissue_hpa_description.tsv.zip”). A two-way analysis of variance (ANOVA) model was used to compare the TGFB1/TGFB2/TGFB3 mRNA expression levels for the normal pons specimens with the TGFB1/TGFB2/TGFB3 mRNA expression levels in brain tumor specimens from 41 DIPG patients. Contrasts were performed between normal pons and DIPG samples for each of the transcripts and p-values were false discovery rate (FDR)-adjusted. Calculations were performed using multcomp_1.4-17 and emmeans_1.7.0 statistical packages in R version 4.1.2 (1 November 2021) with RStudio front end (RStudio 2021.09.0 + 351 “Ghost Orchid” Release)). Bar chart graphics were constructed using the ggplot2_3.3.5 R package.
mRNA expression levels of TGFB2 in log2 TPM were correlated with the mRNA expression levels for 11 transcription factors known to augment TGFB2 expression, namely activating transcription factor 1 (ATF1), activating transcription factor 2 (ATF2), cyclic AMP-responsive element binding protein 1 (CREB1), E1A binding protein P300 (EP300), forkhead box protein O3 (FOXO3), polymerase II subunit A (POLR2A), regulatory factor X1 (RFX1), specificity protein 1 transcription factor (SP1), TATA-box-binding protein (TBP), upstream transcription factor 1 (USF1), and upstream transcription factor 2 (USF2) across 41 DIPG patients. Pairwise correlation coefficients were determined for all transcript combinations and visualized on a heatmap which was color-coded from positive correlations (red = +1) to negative correlations (blue = −1). The clustering algorithm identified the co-regulated sets of genes using the statistical package ggcorrplot_0.1.3 implemented in R. T-test was used to test the null hypothesis that the Pearson correlation coefficient was equal to zero. Significant correlations were identified for p-values less than 0.05 and FDR less than 0.10.
Normalized archived transcriptome profiling datasets acquired from the Gene Expression Omnibus web portal (https://www.ncbi.nlm.nih.gov/geo/ accessed 23 November 2021), including raw CEL files obtained using the Human Genome U133 Plus 2.0 Array platform for DIPG (N = 29; GSE26576), normal control samples (N = 2; GSE26576), and pediatric GBM patients harboring H3K27M mutations (N = 5, GSE34824; N = 7, GSE49822) [39 ] were also utilized as an independent validation dataset to compare the mRNA expression levels of TGFB1, TGFB2, and TGFB3 in normal control samples vs. brain tumor specimens from 41 patients with pediatric DIPG or H3K27M-mutant pediatric GBM. The normalization procedure to determine log2-transformed mRNA expression levels employed the method of Robust Multi-array Averaging (RMA), as previously described [39 ]. mRNA expression levels were calculated using Aroma Affymetrix statistical packages (aroma.affymetrix_3.2.0, aroma.core_3.2.2 and aroma.light_3.24.0) run in the RStudio environment (R version 4.1.2 (1 November 2021), RStudio 2021.09.0 Build 351). Statistical comparisons were performed using an ANOVA statistical model. FDR-adjusted p-values less than 0.05 were deemed significant. mRNA expression levels in DIPG/H3K27M-mutant GBM patients for TGFB1, TGFB2, and TGFB3 were visualized using heatmaps, as described [39 ]. Expression levels of TGFB2 mRNA (log2 RMA) were correlated to mRNA a two-way ANOVA model: expression levels for 11 transcription factor genes known to augment TGFB2 expression; ATF1, ATF2, CREB1, EP300, FOXO3, POLR2A, RFX1, SP1, TBP, USF1, and USF2.
Full text: Click here
Publication 2023

Most recents protocols related to «Activating transcription factor 6, human»

Example 3

Since the data establish a link between Se-induced GPX4 transcription and protection from neuronal ferroptosis, we examined the GPX4 promoter and upstream region to better understand how transcription of GPX4 (and other genes in the protective selenome) are induced by Se. Transcription assays using a transiently transfected reporter construct containing the 4 kb region upstream from the GPX4 translation start site showed significant induction of GPX4 promoter activity in neurons exposed to protective Se concentrations. Targeted deletions of this upstream region revealed that the −1189 bp and −1467 bp sub-region was critical for Se-induced promoter activity (FIGS. 4A, 40, and 41). Analysis of this critical sub-region identified five motifs with similarity to Transcription Factor AP-2 family binding sites (5′-GCCNNN(NN)GGC-3′; (SEQ ID NO:27), FIG. 4B) (where sequences 1 to 5 are SEQ ID NOS:22, 23, 24, 25 and 26, respectively) (See Williamson et al., Genomics 35(1):262-4 (1996)). Mutation of three of these motifs blocked Se-induced GPX4 promoter activity (FIG. 4C). The TFAP-2 family is highly conserved in mice and humans and is represented by five isoforms (TFAP2A-E) (See Eckert et al., Genome Biol 6(13): 246 (2005)). Since TFAP2C was the only isoform we detected in mouse primary neurons (FIG. 11 (panels A and B), FIG. 42, FIG. 67A, and FIG. 67B), we focused on this isoform. Chromatin immunoprecipitation (ChIP) assays showed that Se exposure significantly increased TFAP2C occupancy on the Se-responsive region of GPX4 (FIGS. 4D and 43). This binding to the upstream region was significantly stronger at 4 vs. 6 hours post-Se treatment (FIG. 4D). Since GPX4 expression levels are elevated longer than 4 hours following Se exposure, additional transcription factors likely sustain the activation of GPX4 transcription. TFAP2C binding overlaps with Sp1 in other gene promoters (See Orso et al., BMC Genomics 11: 355 (2010); Yang et al., J Biol Chem 270(15): 8514-20 (1995)), and our lab previously showed that Sp1 DNA binding is significantly induced by ferroptotic oxidative stress (See Ryu et al., J Neurosci 23(9): 3597-606 (2003)). Thus, we examined whether Se exposure induced Sp1 binding to the Se-responsive region of the GPX4 upstream region. ChIP studies showed that Se exposure induced the Sp1 occupancy of this region, but unlike TFAP2C, this occupancy was significantly greater at 6 vs 4 hours post Se treatment (FIGS. 4E and 4F, 11 (panels C and D), and 43). To confirm that the Se-responsive region of GPX4 could mediate TFAP2C and Sp1 dependent regulation, human TFAP2C or Sp1 were overexpressed with either a wild-type GPX4 reporter or a mutant reporter lacking the TFAP2C binding sites. These studies showed that TFAP2C and Sp1 activated only wild-type reporter, which suggests that TFAP2C and Sp1 act via the same DNA binding site(s) (FIGS. 4G and 4H). In addition, over-expression of TFAP2C or Sp1 drove mRNA expression for several ferroptotic-stress response genes and protected neurons from hemin or HCA-induced ferroptosis (FIGS. 4I, 4J, 44A, and 44B). By contrast, overexpression of a mutant Sp1 protein with a zinc-finger DNA binding domain deletion (FIG. 45) did not induce expression of ferroptotic-stress response genes or provide protection from HCA (FIGS. 41, 4J, 44A, 44B, and 46). Overexpression of the mutant Sp1 protein also reduced protection mediated by Se treatment in primary neurons or HT1080 fibrosarcoma cells (FIGS. 4J, 4K, and 47). Together, these findings indicate that Se provides protection from ferroptosis, at least in part, by activating gene expression regulated by TFAP2C and Sp1.

Full text: Click here
Patent 2024
For IHC staining, paraffin-embedded tissues were cut into 4-µm-thick sections and transferred onto microscope slides using a semi-automated rotary microtome (Leica Biosystems, Wetzlar, Germany). Each microscope slide was evaluated under the BX41 light microscope (Olympus Co., Tokyo, Japan) to confirm the presence of all tissue structures. Antibodies involved in the UPR, inflammatory signaling, programmed cell death, angiogenesis, or epithelial–mesenchymal transition were selected for IHC analysis, as shown in Table 1.

Antibodies used in this study for immunohistochemistry analysis.

Pathways/signalingNumberAntibodies
Unfolded protein response3PERK, ATF6, XBP1
Inflammatory related1NFκB
Programmed cell death
 Apoptosis1CHOP/GADD153
 Necroptosis1MLKL
 Autophagy1LC3
Angiogenesis2IL-8, HIF-1
Epithelial-mesenchymal transition3TGF-β, αSMA, E-cadherin
Total12

All antibodies were obtained from Santa Cruz Biotechnology, USA.

*αSMA, α-smooth muscle actin; ATF6, activating transcription factor 6; CHOP/GADD153, CCAAT-enhancer-binding protein homologous protein/growth arrest-and DNA damage-inducible gene 153; E-cadherin, epithelial cadherin; HIF-1, hypoxia-inducible factor 1; IL-8, interleukin 8; LC3, microtubule-associated protein 1 light chain 3; MLKL. Mixed lineage kinase domain-like protein; NFκB, nuclear factor kappa-light-chain-enhance of activated B cells; PERK, protein kinase RNA activated (PKR-like ER kinase); TGFβ, transforming growth factor beta; XBP1, xbox-binding protein 1.

In the IHC protocol, paraffin-embedded tissue sections underwent paraffin removal, which involved drying in the oven for 1 h, sequential immersion in xylene and ethanol with concentration reduction from 100 to 50%, and a final distilled water rinse. Antigen retrieval was achieved through Proteinase K treatment and washing with phosphate-buffered saline. Endogenous peroxidase activity was blocked with 3% H2O2 for 30 min to remove the blood cells and avoid false-positive results, followed by background blocking using 10% donkey serum. Primary antibodies were applied and incubated overnight at refrigerated temperatures. Slides were then left at room temperature for 2 h. Universal secondary antibodies were applied, followed by avidin–biotin complex reagent and diaminobenzidine (DAB) substrate application for 5 min, with monitoring for brown coloration. Hematoxylin staining was performed, followed by cover glass application.
For quantitative IHC analysis, we employed an open-source digital pathology software program (QuPath®; Northern Ireland Molecular Pathology Lab., Centre for Cancer Research and Cell Biology, Queen’s University, Belfast, UK) as a fundamental component of our materials and methods33 (link). QuPath® has proven to be an indispensable tool for research, providing a comprehensive platform for the accurate and efficient assessment of IHC staining patterns and biomarker expression within tissue samples34 (link)–36 (link). Automated IHC measurements offer a solution to the challenges associated with subjective visual scoring by pathologists. Whole-slide imaging systems readily transform glass slides into high-quality digital images. These automated measurements demonstrate precision, especially in detecting subtle staining that may be difficult for the human eye to discern. Additionally, they generate continuous and reliable data. When integrated into the visual scoring process, computer-aided IHC analysis significantly enhances both intra- and inter-observer agreement among pathologists37 (link),38 (link).
The analysis process involved importing IHC images into QuPath® and creating a structured project workspace. Within this workspace, we established representative brightfield H-DAB stain vectors encompassing the representative area consisting of representative hematoxylin and DAB stains and a background area set to auto. Subsequently, we defined regions of interest (ROIs) using QuPath®’s “create thresholder” annotation tool, enabling precise localization of target tissue regions. For angiogenesis using interleukin-8 and HIF antibodies, the reticulum dermis with abundant blood vessels was selected as an ROI using the rectangle annotation. To quantify staining characteristics, we used QuPath®’s positive cell-detection algorithms to automatically identify and classify cells within the ROIs, facilitating the calculation of quantitative data for each cell (Supplementary Table S2). The Histoscore (H-score) of the positive slide was generated and subjected to further statistical analysis (Supplementary Fig. S3). The H-score serves as a quantitative metric for the transformation of traditional IHC into a more objective range. It is determined considering both the intensity of staining and the proportion of stained cells within a given sample37 (link). In our study, H-scores were interpreted as < 10 points (negative), 10–100 points (low), 101–200 points (moderate), and > 200 points (intense), as described in previous literature39 (link).
Full text: Click here
Publication 2024

Example 8

In a second screening with 6088 antigens, the antigens which differentiate between healthy controls and donors with rheumatoid arthritis were tested on patients with early rheumatoid arthritis, SSc and SPA., This is of importance in particular since patients with collagenoses and mixed collagenoses have an overlapping autoantibody profile and therefore are difficult to diagnose, particularly in the early phase

FIG. 3 shows a volcano plot of the antigen reactivities of SLE patients against a combined group of patients with various autoimmune diseases, such as SSc, SPA, early rheumatoid arthritis, and SPA.

Following univariate statistical evaluation, a threshold value of p<0.05 and a 1.5 times modified reactivity compared with the control group were applied. A final list of antigen reactivities over both screens was established (Table 2).

In order to analyse the frequency of the newly identified antigens in comparison with, known antigens, a threshold value of 3 standard deviations (SD) above the mean value of the healthy samples was defined.

Astonishingly, at least 4 additional antigens were identified of which the frequency in SLE patients lies above 15%. These include TMPO (19%) (SEQ ID No. 13), HNRNPA1 (26%) (SEQ ID No. 5), XRCC5 (15%) (SEQ ID No. 22) and MVP (15%) (SEQ ID No. 7).

FIG. 4 shows the frequency of 23 antigens in comparison to the healthy controls.

Table 2 summarises the identified antigen reactivities and different group comparisons.

TABLE 2
List of all antigen reactivities
Statistical Test
SEQGeneGeneGenePanelSLEENA-4 negL. Nephr.SLE
ID No.IDSymbolNameGroupSLEL. Nephr.Clustervs HVvs SLEvs control
11629DBTdihydrolipoamide1xxSLE
branched chainvs
transacylase E2AID
21737DLATdihydrolipoamide S-1xSLE
acetyltransferasevs
AID
37430EZRezrin1xxxSLE
vs
AID
43017HIST1H2BDhistone cluster 1,1xxSLE
H2bdvs
AID
53178HNRNPA1heterogeneous1xxSLE
nuclearvs
ribonucleoprotein A1AID
63181HNRNPA2B1heterogeneous1xxSLE
nuclearvs
ribonucleoproteinAID
A2/B1
79961MVPmajor vault protein1xxxxSLE
vs
AID
86175RPLP0ribosomal protein,1xxxSLE
large, P0vs
AID
96176RPLP1ribosomal protein,1xxxxSLE
large, P1vs
AID
106181RPLP2ribosomal protein,1xxxSLE
large, P2vs
AID
1130011SH3KBP1SH3-domain kinase1xxSLE
binding protein 1vs
AID
126625SNRNP70small nuclear1xSLE
ribonucleoproteinvs
70 kDa (U1)AID
136628SNRPBsmall nuclear1xxxSLE
ribonucleoproteinvs
polypeptides B andAID
B1
146638SNRPNsmall nuclear1xSLE
ribonucleoproteinvs
polypeptide NAID
156672SP100SP100 nuclear1xxSLE
antigenvs
AID
166710SPTBspectrin, beta,1xxSLE
erythrocyticvs
AID
176741SSBSjogren syndrome1xxSLE
antigen Bvs
(autoantigen La)AID
187112TMPOthymopoietin1xxxSLE
vs
AID
196737TRIM21tripartite motif-1xxxSLE
containing 21vs
AID
206738TROVE2TROVE domain family,1xxSLE
member 2vs
RA
217431VIMvimentin1xxSLE
vs
AID
227520XRCC5X-ray repair1xxSLE
complementingvs
defective repair inAID
Chinese hamster
cells 5 (double-
strand-break
re joining)
237764ZNF217zinc finger protein1xxSLE
217vs
AID
2464763ZNF574zinc finger protein1xxSLE
574vs
AID
25148741ANKRD35ankyrin repeat2xxSLE
domain 35vs
HV
2684779ARD1BARD1 homolog B2xxSLE
(S. cerevisiae)vs
AID
27672BRCA1breast cancer 1,2xxSLE
early onsetvs
HV
28134359C5orf37chromosome 5 open2xxxSLE
reading frame 37vs
HV
299478CABP1calcium binding2xxSLE
protein 1vs
HV
3090557CCDC74Acoiled-coil domain2xxSLE
containing 74Avs
HV
319973CCScopper chaperone for2xxxxSLE
superoxide dismutasevs
AID
321410CRYABcrystallin, alpha B2xxSLE
vs
HV
3355802DCP1ADCP1 decapping2xxSLE
enzyme homolog Avs
(S. cerevisiae)HV
3479147FKRPfukutin related2xSLE
proteinvs
HV
3526128KIAA1279KIAA12792xxSLE
vs
HV
3657608KIAA1462KIAA14622xxSLE
vs
HV
371939LGTNligatin2xxSLE
vs
HV
3884298LLPHLLP homolog, long-2xxSLE
term synapticvs
facilitationHV
(Aplysia)
3911253MAN1B1mannosidase, alpha,2xxSLE
class 1B, member 1vs
HV
4084930MASTLmicrotubule2xxSLE
associatedvs
serine/threonineHV
kinase-like
4154531MIER2mesorm induction2xxxxSLE
early response 1,vs
family member 2RA
424594MUTmethylmalonyl2xxSLE
Coenzyme A mutasevs
HV
43399687myO18Amyosin XVIIIA2xxSLE
vs
HV
448883NAE1NEDD8 activating2xxSLE
enzyme E1 andvs
subunit 1HV
4510458BAIAP2BAI1-associated2xxSLE
protein 2vs
HV
464869NPM1nucleophosim2xxSLE
(nucleolarvs
phosphoprotein B23,HV
numatrin)
475223PGAM1phosphoglycerate2xxSLE
mutase 1 (brain)vs
HV
4811040PIM2pim-2 oncogene2xxSLE
vs
HV
4954517PUS7pseudouridylate2xxSLE
synthase 7 homologvs
(S. cerevisiae)HV
506605SMARCE1SWI/snf related,2xxSLE
matrix associated,vs
actin dependentAID
regulator of
chromatin,
subfamily e, member
1
5123635SSBP2single-stranded DNA2xxxSLE
binding protein 2vs
HV
5283660TLN2talin 22xxSLE
vs
HV
5351673TPPP3tubulin2xxSLE
polymerization-vs
promoting proteinHV
family member 3
547265TTC1tetratricopeptide2xxSLE
repeat domain 1vs
HV
55124930ANKRD13Bankyrin repeat3xSLE
domain 13Bvs
HV
56160AP2A1adaptor-related3xSLE
protein complex 2,vs
alpha 1 subunitHV
5753335BCL11AB-cell CLL/lymphoma3xx
11A (zinc finger
protein)
5879959CEP76centrosomal protein3x
76 kDA
591153CIRBPcold inducible RNA3xSLE
binding proteinvs
HV
6051084CRYL1crystallin, lambda 13x
6155827DCAF6DDB1 and CUL43xxxSLE
associated factor 6vs
AID
626993DYNLT1dynein, light chain,3xSLE
Tctex-type 1vs
HV
63283991FAM100Bfamily with sequence3xSLE
similarity 100,vs
member BHV
649815GIT2G protein-coupled3xSLE
receptor kinasevs
interacting ArfGAP 2HV
6584706GPT2glutamic pyruvate3x
transaminase
(alanine
aminotransferase) 2
663059HCLS1hematopoieti cell-3xxSLE
specific Lynvs
substrate 1AID
673329HSPD1heat shock 60 kDa3x
protein 1
(chaperonin)
683490IGFBP7insulin-like growth3xSLE
factor bindingvs
protein 7HV
6923392KIAA0368KIAA03683x
7084695LOXL3lysyl oxidase-like3x
3
714133MAP2microtubule-3xSLE
associated proteinvs
2HV
726837MED22mediator complex3x
subunit 22
7329079MED4mediator complex3xx
subunit 4
7410933MORF4L1mortality factor 43x
like 1
7564963MRPS11mitochondrial3xxSLE
ribosomal proteinvs
HV
7681565NDEL1nudE nuclear3x
distribution gene E
homolog
(A. nidulans)-like 1
7757447NDRG2NDRG family member3xSLE
2vs
HV
784744NEFHneurofilament, heavy3x
polypeptide
79153478PLEKHG4Bpleckstrin homology3x
domain containing,
family G (with
RhoGef domain)
member 4B [homo
sapiena (human)]
8011054OGFRopioid growth factor3xxSLE
receptorvs
AID
8156122PCDHB14protocadherin beta3xSLE
14vs
HV
822923PDIA3protein disulfide3xSLE
isomerase family A,vs
member 3HV
8323646PLD3phospholipase D3xSLE
family, member 3vs
HV
8423759PPIL2peptdylprolyl3xx
isomerase
(cyclophilin)-like
2
855557PRIM1primase, DNA,3xSLE
polypeptide 1vs
(49 kDa)HV
865682PSMA1proteasome (prosome,3xSLE
macropain) subunit,vs
alpha type, 1HV
875802PTPRSprotein tyrosine3xSLE
phosphatase,vs
receptor type, SHV
8881890QTRT1queuine tRNA-3xSLE
ribosyltransferase 1vs
HV
89116362RBP7retinol binding3xSLE
protein 7, cellularvs
HV
9010287RGS19regulator of G-3xx
protein signaling 19
9183642RP3-402G11.5selenoprotein O3xSLE
vs
HV
926389SDHAsuccinate3xxSLE
dehydrogenasevs
complex, subunit A,AID
flavoprotein (Fp)
9354437SEMA5Bsema domain, seven3x
thrombospondin
repeats (type 1 and
type 1-like),
transmembrane
domain (TM) and
short cytoplasmic
domain,
(semaphorin) 5B
9459343SENP2SUMO1/sentrin/SMT33xSLE
specific peptidasevs
2HV
956629SNRPB2small nuclear3xSLE
ribonucleoproteinvs
polypeptide B″AID
9627131SNX5sorting nexin 53xSLE
vs
HV
979021SOCS3suppressor of3xxSLE
cytokine signalingvs
3HV
983925STMN1stathmin 13xSLE
vs
HV
9981551STMN4stathmin-like 43xSLE
vs
HV
10027097TAFSLTAF5-like RNA3xSLE
polymerase II,vs
p300/CBP-associatedHV
factor (PCAF)-
associated factor,
65 kDa
10179521TCEAL4transcription3xSLE
elongation factor Avs
(SII)-like 4HV
10210040TOM1L1target of mybl3xSLE
(chicken)-like 1vs
HV
10322974TPX2TPX2, microtubule-3xSLE
associated, homologvs
(Xenopus laevis)HV
10451567TTRAPTRAF and TNF3x
receptor associated
protein
1058615USO1US01 homolog,3xx
vescicle docking
protein (yeast)
10610869USP19ubiquitin specific3xSLE
peptidase 19vs
RA
10729761USP25ubiquitin specific3x
peptidase 25
108375690WASH5PWAS protein family3xxSLE
homolog 5vs
pseudogeneHV
10910413YAP1Yes-associated3x
protein 1, 65 kDa
110653121ZBTB8Azinc finger and BTB3xxSLE
domain containingvs
BAHV
11155311ZNF444zinc finger protein3x
444
11229ABRactive BCR-related4xSLE
genevs
AID
113118ADD1adducin 1 (alpha)4xSLE
vs
AID
11455256ADI1acireductone4xSLE
dioxygenase 1vs
HV
1159255AIMP1aminoacyl tRNA4x
synthetase complex-
interacting
multifunctional
protein 1
11654522ANKRD16ankyrin repeat4xSLE
domain 16vs
HV
117348APOEapolipoprotein E4xSLE
vs
HV
11864333ARHGAP9Rho GTPase4xSLE
activating proteinvs
9HV
11922994AZI15-azacytidine4SLE
induced 1vs
HV
12055971BAIAP2L1BAI1-associated4x
protein 2-like 1
1217919BAT1HLA-B associated4xSLE
transcript 1vs
RA
1226046BRD2bromodomain4x
containing 2
12356912C11orf60chromosome 11 open4x
reading frame 60
12479415C17orf62chromosome 17 open4x
reading frame 62
12551300C3orf1chromosome 3 open4xSLE
reading frame 1vs
RA
126128866CHMP4Bchromatin modifying4xSLE
protein 4Bvs
AID
12723122CICcapicua homolog4xSLE
(Drosophila)vs
AID
12810970CKAP4cytoskeleton-4xSLE
associated proteinvs
4HV
12923122CLASP2cytoplasmic linker4x
associated protein
2
1301311COMPcartilage4x
oligomeric matrix
protein
1317812CSDE1cold shock domain4xSLE
containing E1, RNA-vs
bindingHV
1328642DCHS1dachsous 14xSLE
(Drosophila)vs
AID
1339909DENND4BDENN/MADD domain4xx
containing 4B
1341743DLSTdihydrolipoamide S-4x
succinyltransferase
(E2 component of 2-
oxo-glutarate
complex)
13584444DOT1LDOT1-like, histone4x
H3 methyltransferase
(S. cerevisiae)
13651143DYNC1LI1dynein, cytoplasmic4xSLE
1, lightvs
intermediate chain 1HV
13751011FAHD2Afumarylacetoacetate4x
hydrolase domain
containing 2A
13892689FAM114A1family with sequence4x
similarity 114,
member A1
13954463FAM134Bfamily with sequence4x
similarity 134,
member B
140100129583FAM47Efamily with sequence4xSLE
similarity 47,vs
member EHV
14193611FBXO44F-box protein 444x
14260681FKBP10FK506 binding4xSLE
protein 10, 65 kDavs
AID
14323360FNBP4formin binding4x
protein 4
1442300FOXL1forkhead box L14xSLE
vs
HV
14564689GORASP1golgi reassembly4xSLE
stacking protein 1,vs
65 kDaAID
1462934GSNgelsolin4xSLE
(amyloidosis,vs
Finnish type)HV
1473039HBA1hemoglobin, alpha4x
1483040HBA2hemoglobin, alpha 24x
14938858HES5hairy and enhancer4x
of split 5
(Drosophilia)
15010525HYOU1hypoxia up-regulated4x
1
1513608ILF2interleukin enhancer4xSLE
binding factor 2,vs
45 kDaRA
15223135KDM6Blysine (K)-specific4xSLE
demethylasae 6Bvs
AID
15356243KIAA1217KIAA12174xSLE
vs
HV
15457662KIAA1543KIAA15434x
15557498KIDINS220kinase D-interacting4x
substrate, 220 kDA
1563855KRT7keratin 74xSLE
vs
HV
157729970LOC729970similar to4x
hCG2028352
1589935MAFBv-maf4x
musculoaponeurotic
fibrosarcoma
oncogene homolog B
(avian)
15923764MAFFv-maf4xSLE
musculoaponeuroticvs
fibrosarcomaHV
oncogene homolog F
(avian)
16022924MAPRE3microtubule-4x
associated protein,
RP/EB family, member
3
1618079MLF2myeloid leukemia4x
factor 2
1624676NAP1L4nucleosome assembly4x
protein 1-like 4
1634688NCF2neutrophil cytosolic4xSLE
factor 2vs
HV
1644780NFE2L2nuclear factor4x
(erythroid-derived
2)-like 2
16579840NHEJ1nonhomologous end-4xx
joining factor 1
16622861NLRP1NLR family, pyrin4xSLE
domain containing 1vs
HV
16765009NDRG4NDRG family member 44xSLE
vs
HV
1684841NONOnon-POU domain4xSLE
containing, octamer-vs
bindingAID
16929982NRBF2nuclear receptor4xSLE
binding factor 2vs
AID
1708439NSMAFneutral4xSLE
sphingomyelinase (N-vs
SMase)activationHV
associated factor
1714926NUMA1nuclear mitotic4xSLE
apparatus protein 1vs
RA
17284759PCGF1polycomb group ring4x
finger 1
17384306PDCD2Lprogrammed cell4xSLE
death 2-likevs
HV
1745195PEX14peroxisomal4xSLE
biogenesis factor 14vs
HV
1759091PIGQphosphatidylinositol4xSLE
glycan anchorvs
biosynthesis, classRA
Q
176100137049PLA2G4Bphospholipase A2,4xSLE
group IVBvs
(cytosolic)RA
17710226PLIN3perilipin 34x
1785373PMM2phosphomannomutase 24x
17910450PPIEpeptidylprolyl4x
isomerase E
(cyclophilin E)
1805694PSMB6proteasome (prosome,4x
macropain) subunit,
beta type, 6
18122913RALYRNA binding protein,4xSLE
autoantigenicvs
(hnRNP-associatedHV
with lethal yellow
homolog (mouse))
1828241RBM10RNA binding motif4x
protein 10
1839904RBM19RNA binding motif4xSLE
protein 19vs
HV
1849743RICSRho GTPase-4x
activating protein
1858780RIOK3RIO kinase 3 (yeast)4x
1868578SCARF1scavenger receptor4xSLE
class 4, member 1vs
AID
18723513SCRIBscribbled homolog4xSLE
(Drosophila)vs
HV
188644096SDHAF1succinate4xSLE
dehydrogenasevs
complex assemblyRA
factor 1
18957794SF4splicing factor 44xSLE
vs
RA
1909814SFI1Sfi1 homolog,4x
spindle assembly
associated (yeast)
1916421SFPQsplicing factor4xSLE
proline/glutamine-vs
rich (polypyrimidineAID
tract binding
protein associated)
19283442SH3BGRL3SH3 domain binding4x
glutamic acid-rich
protein like 3
1936461SHBSrc homology 24xSLE
domain containingvs
adaptor protein BAID
19423381SMG5Smg-5 homolog,4xSLE
nonsense mediatedvs
mRNA decay factorHV
(C. elegans)
195112574SNX18sorting nexin 184xSLE
vs
HV
19684501SPIRE2spire homolog 24xSLE
(Drosophila)vs
HV
19754961SSH3slingshot homolog 34xSLE
(Drosophila)vs
AID
1989263STK17Aserine/threonine4x
kinase 17a
19951111SUV420H1suppressor of4x
variegation 4-20
homolog 1
(Drosophila)
2006902TBCAtubulin folding4x
cofactor A
2017024TFCP2transcription factor4xSLE
CP2vs
HV
2027030TFE3transcription factor4xSLE
binding to IGHMvs
enhancer 3HV
20390326THAP3THAP domain4xSLE
containing,vs
apoptosis associatedAID
protein 3
20410043TOM1target of myb14x
(chicken)
2057168TPM1tropomyosin 14xSLE
(alpha)vs
HV
20654952TRNAU1APtRNA selenocysteine4x
1 associated protein
1
20726140TTLL3tubulin tyrosine4x
ligase-like family,
member 3
2087371UCK2uridine-cytidine4xSLE
kinase 2vs
HV
2099277WDR46WD repeat domain 464xSLE
vs
HV
21055100WDR70WD repeat domain 704xSLE
vs
AID
21123038WDTC1WD and4xSLE
tetratricopeptidevs
repeats 1HV
2129831ZNF623zinc finger protein4x
623
21379364ZXDCZXD family zinc4xxSLE
finger Cvs
AID
2147791ZYXzyxin4xSLE
vs
AID
21555964SEPT3septin 35X
2165413SEPT5septin 55x
21726574AATFapoptosis5x
antagonizing
transcription factor
21891703ACY3aspartoacylase5x
(aminocyclase) 3
2199509ADAMTS2ADAM6SLE
metallopeptidasevs
with thrombospondinRA
type 1 motif, 2
22010939AFG3L2AFG3 ATPase family6SLE
gene 3-like 2vs
(yeast)HV
2211646AKR1C2aldo-keto reductase6SLE
family 1, member C2vs
(dihydrodiolRA
dehydrogenase 2;
bile acid binding
protein; 3-alpha
hydroxysteroid
dehydrogenase, type
III)
222267AMFRautocrine motility6SLE
factor receptorvs
RA
22310777ARPP-21cyclic AMP-regulated6SLE
phosphoprotein, 21vs
kDRA
224421ARVCFarmadillo repeat6SLE
gene deletes invs
velocardiofacialRA
syndrome
22580150ASRGL1asparaginase like 16SLE
vs
RA
226539ATP50ATP synthase, H+6SLE
transporting,vs
mitochondrial F1RA
complex, O subunit
22779870BAALCbrain and acute6SLE
leukemia,vs
cytoplasmicRA
2289531BAG3BCL2-associated5x
athanogene 3
2299275BCL7BB-cell CLL/lymphoma6SLE
7Bvs
HV
23055108BSDC1BSD domain6SLE
containing 1vs
AID
23154934C12orf41chromosome 12 open6SLE
reading frame 41vs
RA
23255049C19orf60chromosome 19 open6SLE
reading frame 60vs
RA
233388799C20orf107chromosome 20 open5x
reading frame 107
234149840C20orf196chromosome 20 open6SLE
reading frame 196vs
RA
23551507C20orf43chromosome 20 open6SLE
reading frame 43vs
RA
23655684C9orf86chromosome 9 open6SLE
reading frame 86vs
HV
23723523CABIN1calcineurin binding6SLE
protein 1vs
RA
238157922CAMSAP1calmodulin regulated6SLE
spectrin-associatedvs
protein 1RA
23923624CBLCCas-Br-M (murine)6SLE
ecotropic retroviralvs
transformingHV
sequence c
240124808CCDC43coiled-coil domain6SLE
containing 43vs
RA
241100133941CD24CD24 molecule5x
24211140CDC37cell division cycle6SLE
37 homologvs
(S. cerevisiae)RA
24310153CEBPZCCAAT/enhancer6SLE
binding proteinvs
(C/EBP), zetaRA
24451510CHMP5chromatin modifying6SLE
protein 5vs
RA
24563922CHTF18CTF18, chromosome5x
transmission
fidelity factor 18
homolog
(S. cerevisiae)
24651727CMPK1cytidine6SLE
monophosphate (UMP-vs
CMP) kinase 1,AID
cytosolic
24764708COPS7BCOP9 constitutive5x
photomorphogenic
homolog subunit 7B
(Arabidopsis)
24851117COQ4coenzyme Q4 homolog6SLE
(S. cerevisiae)vs
RA
24927254CSDC2cold shock domain5x
containing C2, RNA
binding
250162989DEDD2death effector6SLE
domain containing 2vs
RA
2519704DHX34DEAH (Asp-Glu-Ala-6SLE
His) box polypeptidevs
34RA
25255837EAPPE2F-associated6SLE
phosphoproteinvs
RA
2531915EEF1A1eukaryotic6SLE
translationvs
elongation factor 1RA
alpha 1
2541936EEF1Deukaryotic6SLE
translationvs
elongation factor 1RA
delta (guanine
nucleotide exchange
protein)
2558669EIF3Jeukaryotic6SLE
translationvs
initiation factor 3,RA
subunit J
25655740ENAHenabled homolog6SLE
(Drosophila)vs
HV
2572023ENO1enolase 1, (alpha)6SLE
vs
HV
25811124FAF1Fas (TNFRSF6)5x
associated factor 1
25911170FAM107Afamily with sequence6SLE
similarity 107,vs
member AHV
26084908FAM136Afamily with sequence6SLE
similarity 136,vs
member ARA
26110144FAM13Afamily with sequence6SLE
similarity 13,vs
member ARA
26226017FAM32Afamily with sequence6SLE
similarity 32,vs
member AHV
26364762FAM59Afamily with sequence6SLE
similarity 59,vs
member ARA
264150946FAM59Bfamily with sequence6SLE
similarity 59,vs
member BHV
26583706FERMT3fermitin family6SLE
homolog 3vs
(Drosophila)RA
26623307FKBP15FK506 binding6SLE
protein 15, 133 kDavs
HV
2672670GFAPglial fibrillary6SLE
acidic proteinvs
RA
26851031GLOD4glyoxalase domain6SLE
containing 4vs
AID
26981488GRINL1Aglutamate receptor,6SLE
ionotropic, N-methylvs
D-aspartate-like 1ARA
2702922GRPgastrin-releasing6SLE
peptidevs
RA
2712935GSPT1G1 to S phase6SLE
transition 1vs
RA
27293323HAUS8HAUS augmin-like6SLE
complex, subunit 8vs
HV
2733054HCFC1host cell factor C16SLE
(VP16-accessoryvs
protein)AID
2743069HDLBPhigh density6SLE
lipoprotein bindingvs
proteinRA
2753184HNRNPDheterogenous nuclear6SLE
ribonucleoprotein Dvs
(AU-rich element RNAHV
binding protein 1,
37 kDa)
2763320HSP90AA1heat shock protein6SLE
90 kDa alphavs
(cytosolic), class ARA
member 1
2777184HSP90B1heat shock protein6SLE
90 kDa beta (Grp94),vs
member 1RA
2783304HSPA1Bheat shock 70 kDa6SLE
protein 1Bvs
RA
2793315HSPB1heat shock 27 kDa4xxSLE
protein 1vs
RA
2805654HTRA1HtrA serine6SLE
peptidase 1vs
RA
2813382ICA1islet cell6SLE
autoantigen 1, 69 kDavs
RA
2823550IKIK cytokine, down-6SLE
regulator of HLA IIvs
HV
28380895ILKAPintegrin-linked6SLE
kinase-associatedvs
serine/threonineRA
phosphatase 2C
28484162KIAA1109KIAA11096SLE
vs
AID
2853856KRT8keratin 86SLE
vs
RA
28623367LARP1La ribonucleoprotein6SLE
domain family,vs
member 1AID
2874001LMNB1lamin B16SLE
vs
RA
28879888LPCAT1lysophosphatidylcholine5xSLE
acyltransferasevs
1HV
28910916MAGED2melanoma antigen5x
family D, 2
29055700MAP7D1MAP7 domain6SLE
containing 1vs
RA
2915602MAPK10mitogen-activated6SLE
protein kinase 10vs
HV
29222919MAPRE1microtubule-6SLE
associated protein,vs
RP/EB family, memberAID
1
2934137MAPTmicrotubule-6SLE
associated protein,vs
tauRA
29423139MAST2microtubule6SLE
associatedvs
serine/threonineRA
kinase 2
29553615MBD3methyl-CpG binding6SLE
domain protein 3vs
RA
29656922MCCC1methylcrotonoyl-6SLE
Coenzyme Avs
carboxylase 1HV
(alpha)
2971953MEGF6multiple EGF-like-6SLE
domains 6vs
RA
2984302MLLT6myeloid/lymphoid or6SLE
mixed-lineagevs
leukemia (trithoraxRA
homolog,
Drosophila);
translocated to, 6
29910200MPHOSPH6M-phase6SLE
phosphoprotein 6vs
RA
30010240MRPS31mitochondrial6SLE
ribosomal proteinvs
S31HV
30184939MUM1melanoma associated5x
antigen (mutated) 1
3024599MX1myxovirus (influenza6SLE
virus) resistance 1,vs
interferon-inducibleRA
protein p78 (mouse)
3034716NDUFB10NADH dehydrogenase6SLE
(ubiquinone) 1 betavs
subcomplex, 10,RA
22 kDa
3044796NFKBIL2nuclear factor of6SLE
kappa lightvs
polypeptide geneHV
enhancer in B-cells
inhibitor-like 2
30511188NISCHnischarin6SLE
vs
RA
30610381TUBB3tubulin, beta 36SLE
class IIIvs
RA
3078602NOP14NOP14 nucleolar6SLE
protein homologvs
(yeast)RA
3089722NOS1APnitric oxice6
synthase 1
(neuronal) adaptor
protein
30929959NRBP1nuclear receptor5x
binding protein 1
310142PARP1poly (ADP-ribose)6SLE
polymerase 1vs
RA
3115091PCpyruvate6SLE
carboxylasevs
RA
31223024PDZRN3PDZ domain6SLE
containing ringvs
finger 3RA
3138682PEA15phosphoprotein6SLE
enriched invs
astrocytes 15RA
3145187PER1period homolog 16SLE
(Drosophila)vs
HV
31557649PHF12PHD finger protein5x
12
31626227PHGDHphosphoglycerate5x
dehydrogenase
3171263PLK3polo-like kinase 36SLE
(Drosophila)vs
RA
31823654PLXNB2plexin B26SLE
vs
RA
31956902PNO1partner of NOB16SLE
homologvs
(S. cerevisiae)RA
3205479PPIBpeptidylprolyl6SLE
isomerase Bvs
(cyclophilin B)HV
32156978PRDM8PR domain6SLE
containing 8vs
HV
32255119PRPF38BPRP38 pre-mRNA6SLE
processing factorvs
38 (yeast) domainRA
containing B
3235764PTNpleiotrophin6SLE
vs
HV
3245819PVRL2poliovirus5x
receptor-related 2
(herpesvirus entry
mediator B)
3255831PYCR1pyrroline-5-6SLE
carboxylatevs
reductase 1RA
32665997RASL11BRAS-like, family6SLE
11, member Bvs
RA
32755658RNF126ring finger protein6SLE
126vs
AID
328115992RNF166ring finger protein6SLE
166vs
HV
3299025RNF8ring finger protein6SLE
8vs
HV
3306092ROBO2roundabout, axon5x
guidance receptor,
homolog 2
(Drosophila)
33164221ROBO3roundabout, axonx
guidance receptor,
homolog 3
(Drosophila)
3324736RPL10Aribosomal protein6SLE
L10avs
RA
3336152RPL24robosomal protein6SLE
L24vs
RA
334148418SAMD13sterile alpha motif6SLE
domain containingvs
13HV
33557147SCYL3SCY1-like 36SLE
(S. cerevisiae)vs
AID
3366382SDC1syndecan 16SLE
vs
RA
33791461SGK493protein kinase-like5x
protein SgK493
3386449SGTAsmall glutamine-6SLE
richvs
tetratricopeptideHV
repeat (TPR)-
containing, alpha
3399627SNCAIPsynuclein, alpha5x
interacting protein
3409552SPAG7sperm associated6SLE
antigen 7vs
RA
34157522SRGAP1SLIT-ROBO Rho6SLE
GTPase activatingvs
protein 1RA
3426744SSFA2sperm specific6SLE
antigen 2vs
RA
3436487ST3GAL3ST3 beta-6SLE
galactoside alpa-vs
2,3-RA
sialyltransferase 3
34423345SYNE1spectrin repeat6SLE
containing, nuclearvs
envelope 1AID
3456879TAF7TAF7 RNA polymerase6SLE
II, TATA boxvs
binding proteinHV
(TBF)-associated
factor, 55 kDa
3466895TARBP2TAR (HIV-1) RNA6SLE
binding protein 2vs
RA
3476949TCOF1Treacher Collins-6SLE
Franceschettivs
syndrome 1RA
3487980TFPI2tissue factor5x
pathway inhibitor 2
34956674TMEM9BTMEM9 domain6SLE
family, member Bvs
RA
35011189TNRC4trinucleotide5x
repeat containing 4
35110155TRIM28tripartite motif-6SLE
containing 28vs
HV
3527204TRIOtriple functional6SLE
domain (PTPRFvs
interacting)RA
353203068TUBBtubulin, beta6SLE
vs
RA
3547280TUBB2Atubulin, beta 2ASLE
vs
RA
35527229TUBGCP4tubulin, gamma6SLE
complex associatedvs
protein 4RA
35610422UBAC1UBA domain6SLE
containing 1vs
RA
3577316UBCubiquitin C6SLE
vs
RA
35855585UBE2Q1ubiquitin-6SLE
conjugating enzymevs
E2Q familiy member 1HV
35965109UPF3BUPF3 regulator of5x
nonsense
transcripts homolog
B (yeast)
3607378UPP1uridine6SLE
phosphorylase 1vs
AID
36164856VWA1von Willebrand6SLE
factor A domainvs
containing 1RA
36255884WSB2WD repeat and SOCS5x
box-containing 2
3639877ZC3H11Azinc finger CCCH-5x
type containing 11A
36455854ZC3H15zinc finger CCCH-6SLE
type containing 15vs
HV
3657592ZNF41zinc finger protein6SLE
41vs
RA
366170959ZNF431zinc finger protein6SLE
431vs
RA
367146542ZNF688zinc finger protein6SLE
688vs
RA
3684670HNRNPMheterogeneous7SLE
nuclearvs
ribonucleoprotein MHV
36910540DCTN2dynactin 2 (p50)7SLE
vs
HV
37010938EHD1EH-domain7SLE
containing 1vs
HV
37138ACAT1Acetyl-Coenzyme A7SLE
acetyltransferase 1vs
(acetoacetylHV
Coenzyme A
thiolase)
372684BST2bone marrow stromal7SLE
cell antigen 2vs
HV
3731058CENPAcentromere protein A7SLE
vs
HV
3741665DHX15DEAH (Asp-Glu-Ala-7SLE
His) box polypeptidevs
15HV
3753092HIP1Huntingtin7SLE
interacting proteinvs
1HV
3763336HSPE1heating shock 10 kDa7SLE
protein 1vs
(chaperonin 10)HV
3775455POU3F3POU class 3 homeobox7SLE
3vs
HV
3785918RARRES1retinoic acid7SLE
receptor respondervs
(tazarotene induced)HV
1
3796136RPL12ribosomalprotein L127SLE
vs
HV
3806626SNRPAsmall nuclear7SLE
ribonucleoproteinvs
polypeptide AHV
3816631SNRPCsmall nuclear7SLE
ribonucleoproteinvs
polypeptide CHV
3826757SSX2synovial sarcoma, X7SLE
breakpoint 2vs
HV
3839788MTSS1metastasis7SLE
suppressor 1vs
HV
38410134BCAP31B-cell receptor-7SLE
associated proteinvs
31HV
38510522DEAFldeformed epidermal7SLE
autoregulatoryvs
factor 1HV
(Drosophila)
38610633RASLl0ARAS-like, family 10,7SLE
member Avs
HV
38754795TRPM4transient receptor7SLE
potential cationvs
channel, subfamilyHV
M, member 4
38854913RPP25ribonuclease P/MRP7SLE
25 kDa subunitvs
HV
38954994C20orf11chromosome 20 open7SLE
reading frame 11vs
HV
39055727BTBD7BTB (POZ) domain7SLE
containing 7vs
HV
39179140CCDC28Bcoiled-coil domain7SLE
containing 28Bvs
HV
39279613TMCO7transmembrane and7SLE
coiled-coil domainsvs
7HV
3935504PPP1R2protein phosphatase7SLE
1, regulatoryvs
(inhibitor subunit 2HV
3948349HIST2H2BEhistone cluster 2,7SLE
H2bevs
HV
39511168PSIPlPC4 and SFRS17SLE
interacting proteinvs
1HV
396149986LSM14BLSM14B, SCD6 homolog7SLE
B (S. cerevisiae)vs
HV
397655BMP7Bone morphogenetic7SLE
protein 7vs
(osteogenic proteinHV
1)
3981676DFFADNA fragmentation7SLE
factor, 45 kDa, alphavs
polypeptideHV
3993071NCKAPlLNCK-associated7SLE
protein 1-likevs
HV
4003727JUNDjun D proto-oncogene7SLE
vs
HV
4013960LGALS4lectin, galactoside-7SLE
binding, soluble, 4vs
HV
4024920ROR2Receptor tyrosine7SLE
kinase-like orphanvs
receptor 2HV
4037424VEGFCvascular endothelial7SLE
growth factor Cvs
HV
4048906AP1G2adaptor-related7SLE
protein complex 1,vs
gamma 2 subunitHV
40510297APC2adenomatosis7SLE
polyposis coli 2vs
HV
40610841FTCDFormiminotransferase7SLE
cyclodeaminasevs
HV
40711066SNRNP35small nuclear7SLE
ribonucleoproteinvs
35 kDa (Ull/U12)HV
40811345GABARAPL2GABA(A)receptor-7SLE
associated protein-vs
like 2HV
40925854FAM149Afamily with sequence7SLE
similarity 149,vs
member AHV
41026065LSM14ALSM14A, SCD6 homolog7SLE
A (S. cerevisiae)vs
HV
41128998MRPL13mitochondrial7SLE
ribosomal proteinvs
L13HV
41251520LARSleucyl-tRNA7SLE
systhetasevs
HV
41355747FAM21Bfamily with sequence7SLE
similarity 21,vs
member BHV
41464841GNPNAT1glucosamine-7SLE
phosphate N-vs
acetyltransferase 1HV
41583483PLVAPPlasmalemma vesicle7SLE
associated proteinvs
HV
41684968PNMA6Aparaneoplastic7SLE
antigen like 6Avs
HV
417118430MUCLlMucin-like 17SLE
vs
HV
418122830NAT12N-acetyltransferase7SLE
12vs
HV
419221092HNRNPUL2heterogeneous7SLE
nuclearvs
ribonucleoprotein U-HV
like 2
420388962BOLA3bolA homolog 37SLE
(E. coli)vs
HV
421729230FLJ78302Similar to c-c7SLE
chemokine receptorvs
type 2 (C-C CKR-2)HV
(CC-CKR-2) (CCR-2)
(CCR2) (Monocyte
chemoattractant
protein 1 receptor)
(MCP-1-R) (CD192
antigen)
422729447GAGE2AG antigen 2A7SLE
vs
HV
4231152CKBNo Gene Name;7SLE
creatine kinase,vs
brainHV
424972CD74CD74 molecule, major7SLE
histocompatibilityvs
complex, class IIHV
invariant chain
4251397CRIP2cysteine-rich7SLE
protein 2vs
HV
4262040STOMstomatin7SLE
vs
HV
4272316FLNAfilamin A, alpha7SLE
vs
HV
4284000LMNAlamin A/C7SLE
vs
HV
4294582MUClmucin 1, cell7SLE
surface associatedvs
HV
4305230PGKlPhosphoglycerate7SLE
kinase 1vs
HV
4315340PLGplasminogen7SLE
vs
HV
4326525SMTNsmoothelin7SLE
vs
HV
4338936WASFlWAS protein family,7SLE
member 1vs
HV
43423647ARFIP2ADP-ribosylation7SLE
factor interactingvs
protein 2HV
4356712SPTBN2spectrin, beta, non-7SLE
erythrocytic 2vs
HV
4366729SRP54signal recognition7SLE
particle 54 kDavs
HV
4379987HNRPDLheterogeneous7SLE
nuclearvs
ribonucleoprotein D-HV
like
438337APOA4Apolipoprotein A-IV7SLE
vs
HV
439950SCARB2scavenger receptor
class B, member 2
4403183HNRNPCheterogeneous7SLE
nuclearvs
ribonucleoprotein CHV
(Cl/C2)
4413185HNRPFHeterogeneous7SLE
nuclearvs
ribonucleoprotein FHV
4423313HSPA9heat shock 70 kDa7SLE
protein 9 (mortalin)vs
HV
4433467IFNWlInterferon, omega 17SLE
vs
HV
4443799KIF5Bkinesin family7SLE
member 5Bvs
HV
4457918BAT4HLA-B associated7SLE
transcript 4vs
HV
4468337HIST2H2AA3histone cluster 2,7SLE
H2aa3vs
HV
44710195ALG3asparagine-linked7SLE
glycosylation 3,vs
alpha-1,3-HV
mannosyltransferase
homolog
(S. cerevisiae)
44823299BICD2bicaudal D homolog 27SLE
(Drosophila)vs
HV
44980184CEP290centrosomal protein7SLE
290 kDavs
HV
45090861HNlLhematological and7SLE
neurologicalvs
expressed 1-likeHV
451349136WDR86WD repeat domain 867SLE
vs
HV
452no Gene IDdsDNAdsDNA7SLE
vs
HV
45360ACTBactin, beta8SLE
vs
HV
454498ATP4A1ATP synthase, H+8SLE
transporting,vs
mitochondrial FlHV
complex, alpha
subunit 1, cardiac
muscle
455506ATP5BATP synthase, H+8SLE
transporting,vs
mitochondrial FlHV
complex, beta
polypeptide
456563AZGPlalpha-2-8SLE
glycoprotein 1,vs
zinc-bindingHV
457602BCL3B-cell CLL/lymphoma8SLE
3vs
HV
4581729DIAPHldiaphanous-related8SLE
formin 1vs
HV
4591937EEFlGeukaryotic8SLE
translationvs
elongation factor 1HV
gamma
4601973EIF4Aleukaryotic8SLE
translationvs
initiation factorHV
4A1
4612280FKBPlAFK506 binding8SLE
protein lA, 12 kDavs
HV
4622495FTHlferritin, heavy8SLE
polypeptide 1vs
HV
4632597GAPDHglyceraldehyde-3-8SLE
phosphatevs
dehydrogenaseHV
4642819GPDlglycerol-3-8SLE
phosphatevs
dehydrogenase 1HV
(soluble)
4653295HSD17B4hydroxysteroid 17-8SLE
beta) dehydrogenasevs
4HV
4663305HSPAlLheat shock 70 kDa8SLE
protein 1-likevs
HV
4673312HSPA8heat shock 70 kDa8SLE
protein 8vs
HV
4684174MCM5minichromosome8SLE
maintenance complexvs
component 5HV
4694215MAP3K3mitogen-activated8SLE
protein kinasevs
kinase kinase 3HV
4704591TRIM37tripartite motif8SLE
containing 37vs
HV
4714691NCLnucleolin8SLE
vs
HV
4724898NRDlnardilysin (N-8SLE
arginine dibasicvs
convertase)HV
4734904YBXlY box binding8SLE
protein 1vs
HV
4745037PEBPlphosphatidylethanol8SLE
amine bindingvs
protein 1HV
4755315PKM2pyruvate kinase,8SLE
musclevs
HV
4765481PPIDpeptidylprolyl8SLE
isomerase Dvs
HV
4775684PSMA3proteasome8SLE
(prosome,vs
macropain)subunit,HV
alpha type, 3
4786128RPL6ribosomal protein L68SLE
vs
HV
4796129RPL7ribosomal protein L78SLE
vs
HV
4806130RPL7Aribosomal protein8SLE
L7avs
HV
4816132RPL8ribosomal protein LB8SLE
vs
HV
4826187RPS2ribosomal protein S28SLE
vs
HV
4836189RPS3Aribosomal protein8SLE
S3Avs
HV
4846249CLIPlCAP-GLY domain8SLE
containing linkervs
protein 1HV
4856793STKl0serine/threonine8SLE
kinase 10vs
HV
4866880TAF9TAF9 RNA polymerase8SLE
II, TATA box bindingvs
protein (TBP)-HV
associated factor,
32 kDa
4877001PRDX2peroxiredoxin 28SLE
vs
HV
4887552ZNF711zinc finger protein8SLE
711vs
HV
4898260ARDlAN(alpha)-8SLE
acetyltransferasevs
10, NatA catalyticHV
subunit
4908317CDC7cell division cycle8SLE
7vs
HV
4918667EIF3Heukaryotic8SLE
translationvs
initiation factorHV
subunit H
4929223MAGilmembrane associated8SLE
guanylate kinase, WWvs
and PDZ domainHV
containing 1
4939230RABllBRABllB, member RAS8SLE
oncogene familyvs
HV
4949425CDYLchromodomain8SLE
protein, Y-likevs
HV
4959694EMC2ER membrane protein8SLE
complex subunit 2vs
HV
49610075HUWElHECT, UBA and WWE8SLE
domain containing 1,vs
E3 ubiquitin proteinHV
ligase
49710109ARPC2actin related8SLE
protein 2/3 complex,vs
subunit 2, 34 kDaHV
49810180RBM6RNA binding motif8SLE
protein 6vs
HV
49910273STUBlSTIPl homology and8SLE
U-box containingvs
protein 1, E3HV
ubiquitin protein
ligase
50010432RBM14RNA binding motif8SLE
protein 14vs
HV
50110539GLRX3glutaredoxin 38SLE
vs
HV
50210806SDCCAG8serologically8SLE
defined colon cancervs
antigen 8HV
50311108PRDM4PR domain containing8SLE
4vs
HV
50423002DAAMldishevelled8SLE
associated activatorvs
of morphogenesis 1HV
50523351KHNYNKH and NYN domain8SLE
containingvs
HV
50623589CARHSP1calcium regulated8SLE
heat stable proteinvs
1, 24 kDaHV
50726986PABPClpoly (A) binding8SLE
protein, cytoplasmicvs
1HV
50827072VPS41vacuolar protein8SLE
sorting 41 homologvs
(S. cerevisiae)HV
50930836DNTTIP2deoxynucleotidyltransferase,8SLE
terminal,vs
interacting proteinHV
2
51051028VPS36vacuolar protein8SLE
sorting 36 homologvs
(S. cerevisiae)HV
51151082POLRlDpolymerase (RNA) I8SLE
polypeptide D, 16 kDavs
HV
51251138COPS4COP9 signalosome8SLE
subunit 4vs
HV
51351466EVLEnah/Vasp-like8SLE
vs
HV
51454869EPS8LlEPS8-like 18SLE
vs
HV
51554903MKSlMeckel syndrome,8SLE
type 1vs
HV
51657017COQ9coenzyme Q98SLE
vs
HV
51757026PDXPpyridoxal8SLE
(pyridoxine, vitaminvs
B6) phosphataseHV
51857221ARFGEF3ARFGEF family8SLE
member 3vs
HV
51964753CCDC136coiled-coil domain8SLE
containing 136vs
HV
52080208SPGllspastic paraplegia8SLE
11 (autosomalvs
recessive)HV
52183858ATAD3BATPase family, AAA8SLE
domain containing 3Bvs
HV
52284893FBXO18F-box protein,8SLE
helicase, 18vs
HV
523129563DIS3L2DIS3 like 3′-5′8SLE
exoribonuclease 2vs
HV
524144097Cllorf84chromosome 11 open8SLE
reading frame 84vs
HV
525256364EML3echinorm microtubule8SLE
associated proteinvs
like 3HV
526347733TUBB2Btubulin, beta 2B8SLE
class IIbvs
HV
5273303HSPAlAheat shock 70 kDa8SLE
protein 1Avs
HV
5285163PDKlpyruvate8SLE
dehydrogenasevs
kinase, isozyme 1HV
5291001CDH3cadherin 3, type 1,8SLE
P-cadherinvs
(placental)HV

Full text: Click here
Patent 2024

Example 8

1. Preparation of Lgr5-Negative Adherent Cells by Irinotecan Treatment

Using a stem cell medium, Lgr5-positive adherent cells were seeded at 3×105 cells/well in a 6-well plate (BD, Cat. No. 353046). On the following day, irinotecan (Hospira, 61703-349-09) was added to cells at a final concentration of 10 μg/ml. After three-day culture, irinotecan-resistant cells were detected. The cells were harvested using Accutase, and suspended in FACS buffer. Then, the cells were incubated at 4° C. for 30 minutes with 7-AAD Viability Dye as dead cell staining and each of the following antibodies as cancer stem cell markers:

FITC-labeled mouse mAb to human CD326 (EpCAM), PE-labeled mouse mAb to human CD133/1 (AC133), PE-labeled mouse mAb to human CD44, PE-labeled mouse mAb to human CD166, PE-labeled mouse mAb to human CD24, PE-labeled mouse mAb to human CD26, or PE-labeled mouse mAb to human CD29. To detect Lgr5, the cells were incubated with the mouse mAb to human Lgr5 at 4° C. for 30 minutes. After washing once with FACS buffer, the cells were incubated with the PE-labeled goat Ab to mouse IgG2a at 4° C. for 30 minutes. Then, after washing once with FACS buffer, the cells were subjected to flow cytometry analysis. The ALDH activity was detected using AldeFluor Kit according to the procedure recommended by the manufacturer. Flow cytometry analysis was performed using EPICS ALTRA. Cells negative for 7-AAD Viability Dye were analyzed for cancer stem cell markers. The irinotecan-resistant cells were demonstrated to change from positive to negative for Lgr5.

2. Identification of Molecules Specifically Expressed in Cancer Stem Cells

Primary cells from PLR59 and PLR123, high proliferative Lgr5-positive cancer stem cells prepared by adherent culture of primary cells, and low proliferative Lgr5-negative cancer stem cells prepared by irinotecan treatment of the cells as described above were homogenized mechanically with QIAshredder (Qiagen, Cat. No. 79654), and RNAs were extracted from them using RNeasy Mini Kit (Qiagen, Cat. No. 74104) and RNase-Free DNase Set (Qiagen, Cat. No. 79254) according to the procedure recommended by the manufacturer. The extracted RNAs were analyzed for the purity and quality using Agilent 2100 Bioanalyzer. Following cRNA synthesis, gene expression information was obtained using GeneChip (HG-U133 plus2) of Affymetrix. Data analysis was performed with Microsoft Excel and Statistics software R. The three types of cells (primary cells, Lgr5-positive cells, and Lgr5-negative cells) were compared to each other to make a list of genes whose expression levels are significantly increased in each cell type. Specifically, raw data from GeneChip were normalized and log 2 transformed by GCRMA to calculate differences in the expression level between distinct sample types (three types: primary cells and Lgr5-positive cells, Lgr5-positive cells and Lgr5-negative cells, and Lgr5-negative cells and primary cells). The criteria used for selecting differently expressed genes were:

    • (1) genes showing a twofold or more change in Lgr5-positive cells as compared to primary cells and a twofold or more change in Lgr5-negative cells as compared to primary cells (expressed at high levels in both Lgr5-positive and -negative cancer stem cells) (Table 6-1 to 6-10) (partial amino acid sequences of proteins encoded by the genes are shown in SEQ ID NOs: 1 to 7);
    • (2) genes showing a twofold or more change in Lgr5-positive cells as compared to primary cells and a less than twofold change in Lgr5-negative cells as compared to primary cells and (expressed at a high level in Lgr5-positive cancer stem cells alone) (Table 7-1 to 7-5);
    • (3) genes showing a less than twofold change in Lgr5-positive cells as compared to primary cells and a twofold or more change in Lgr5-negative cells as compared to primary cells (expressed at a high level in Lgr5-negative cancer stem cells alone) (Table 8-1 and 8-2) (partial amino acid sequences of proteins encoded by the genes are shown in SEQ ID NOs: 8 and 9).

Furthermore, to identify genes encoding proteins that are presented specifically on cell membrane of cancer stem cells, genes of GO:0005886 [plasma membrane] were extracted from GeneOntology (GO). Then, the present inventors extracted genes with GO:0005576 [extracellular region], GO:0009986 [cell surface], and GO:0016020 [membrane], or genes which are predicted to have a transmembrane region by membrane protein prediction software TMHMM and to have a signal peptide by signal peptide prediction software SignalP, and which do not have GO:0031090 [organelle membrane]. Furthermore, with the aid of GeneChip data from normal colorectal tissues, the present inventors exclude genes whose expression levels are relatively high in normal tissues or primary cells as well as gene only showing a small fold-change in Lgr5-positive or Lgr5-negative cells.

TABLE 6-1
DB PLR59PLR123PLR59PLR123SEQ
accessionprimaryprimaryprimaryprimary-ID
NO.AbbreviationMolecule nameLgr5+Lgr5+Lgr5−Lgr5−NO.
NP_036438.2FAIM2Fas apoptotic inhibitory molecule 28.47.05.44.1
NP_116265.1JUBjub, ajuba homolog (Xenopus laevis)5.85.76.25.5
NP_116281.2FRMD5FERM domain containing 54.06.72.54.8
NP_071731.1EDARectodysplasin A receptor7.07.65.34.61
NP_001240622.1MCOLN3mucolipin 33.75.10.82.5
NP_001007098.1NTRK2neurotrophic tyrosine kinase, receptor, type 23.65.21.02.6
NP_001243.1CD70CD70 molecule4.04.94.14.72
NP_062818.1SLCO1B3solute carrier organic anion transporter family, member 1B34.94.43.03.9
NP_003606.3SLC4A7solute carrier family 4, sodium bicarbonate2.94.01.63.2
cotransporter, member 7
NP_005836.2ABCC4ATP-binding cassette, sub-family C (CFTR/MRP),4.04.01.82.4
member 4
NP_003920.1RAB7L1RAB7, member RAS oncogene family-like 15.55.35.66.0
NP_009162.1SLC6A14solute carrier family 6 (amino acid transporter), member1.93.74.76.3
14
NP_872631.1EFNA4ephrin-A42.63.61.42.5
NP_001423.1EREGepiregulin2.53.32.63.13
NP_001127839.1SLC6A6solute carrier family 6 (neurotransmitter transporter,3.33.30.81.6
taurine), member 6
NP_003497.2FZD6frizzled homolog 6 (Drosophila)3.73.24.64.0
NP_003264.2TM7SF2transmembrane 7 superfamily member 24.04.26.86.2
NP_001172024.1AIF1Lallograft inflammatory factor 1-like3.52.92.32.0
NP_060033.3IL17RDinterleukin 17 receptor D3.12.82.43.0
NP_000013.2ADAadenosine deaminase2.12.72.82.9
NP_004834.1IL27RAinterleukin 27 receptor, alpha3.62.62.21.8

Table 6-2 is a continuation of Table 6-1.

TABLE 6-2
DB PLR59PLR123PLR59PLR123SEQ
accessionprimaryprimaryprimaryprimaryID
NO.AbbreviationMolecule nameLgr5+Lgr5+Lgr5−Lgr5−NO
NP_001731.2CALB2calbindin 23.82.52.40.5
NP_065209.2ANK1ankyrin 1, erythrocytic5.82.54.92.4
NP_001157412.1PYGLphosphorylase, glycogen, liver1.22.51.72.1
NP_001097.2ACVR2Bactivin A receptor, type IIB2.42.51.51.2
NP_001129141.1XPR1xenotropic and polytropic retrovirus receptor 13.42.53.52.4
NP_001523.2SLC29A2solute carrier family 29 (nucleoside transporters),1.62.40.51.7
member 2
NP_563615.3DCBLD2discoidin, CUB and LCCL domain containing 22.95.35.24.9
NP_689522.2PIK3AP1phosphoinositide-3-kinase adaptor protein 13.52.41.31.0
NP_054772.1FLVCR1feline leukemia virus subgroup C cellular receptor 13.52.41.71.2
NP_006849.1TMED1transmembrane emp24 protein transport domain2.62.32.41.9
containing 1
NP_116254.4TNS4tensin 41.92.31.91.5
NP_001193874.1CSPG5chondroitin sulfate proteoglycan 5 (neuroglycan C)3.92.21.50.5
NP_000667.1ADORA2Badenosine A2b receptor1.52.10.71.5
NP_064423.2ACCN2amiloride-sensitive cation channel 2, neuronal1.81.91.71.3
NP_001018000.1KAZkazrin2.51.82.01.8
NP_004773.1SNAP29synaptosomal-associated protein, 29 kDa0.31.70.81.9
NP_066292.2KCNJ12potassium inwardly-rectifying channel, 3.43.54.03.4
subfamily J, member 12
NP_938205.1FLRT3fibronectin leucine rich transmembrane protein 32.81.57.15.0
NP_115899.1PARD6Gpar-6 partitioning defective 6 homolog gamma (C.1.81.02.71.9
elegans)
NP_066924.1CLDN1claudin 11.40.73.43.5
NP_066939.1ADCY1adenylate cyclase 1 (brain)2.92.22.11.4

Table 6-3 is a continuation of Table 6-2.

TABLE 6-3
DB PLR59PLR123PLR59PLR123SEQ
accessionprimaryprimaryprimaryprimaryID
NO.AbbreviationMolecule nameLgr5+Lgr5+Lgr5−Lgr5−NO
NP_001127807.1AIMP2aminoacyl tRNA synthetase complex-interacting1.00.61.20.7
multifunctional protein 2
NP_619539.1AKAP7A kinase (PRKA) anchor protein 72.01.31.41.2
NP_064715.1ANKMY2ankyrin repeat and MYND domain containing 22.72.53.23.4
NP_112591.2APH1Banterior pharynx defective 1 homolog B (C. elegans)0.81.61.13.1
NP_658985.2AP0A1BPapolipoprotein A-I binding protein1.81.32.21.6
NP_940852.3APOOLapolipoprotein O-like1.61.62.32.3
NP_647537.1ATRNattractin1.52.11.11.8
NP_001193.2BMP4bone morphogenetic protein 42.94.21.92.84
NP_001720.1BTCbetacellulin1.42.51.73.2
NP_001224.1CAV2caveolin 21.92.93.74.2
NP_001788.2CDH11cadherin 11, type 2, OB-cadherin (osteoblast)6.22.43.80.6
NP_857592.1CKLFchemokine-like factor0.91.6-0.81.1
NP_612419.1CMTM7CKLF-like MARVEL transmembrane domain 2.84.22.33.2
containing 7
NP_054860.1CNTNAP2contactin associated protein-like 24.64.33.83.7
NP_004738.3DLG5discs, large homolog 5 (Drosophila)1.51.01.51.2
NP_001926.2DPP4dipeptidyl-peptidase 40.11.32.03.8
NP_690611.1FASFas (TNF receptor superfamily, member 6)1.40.13.42.1
NP_001099043.1FBX045F-box protein 451.01.30.31.2
NP_001138390.1FGFR2fibroblast growth factor receptor 23.91.73.01.0
NP_001457.1FZD2frizzled homolog 2 (Drosophila)5.25.42.62.9
NP_031379.2GNA12guanine nucleotide binding protein (G protein) alpha 121.20.51.10.3

Table 6-4 is a continuation of Table 6-3.

TABLE 6-4
DB PLR59PLR123PLR59PLR123SEQ
accessionprimaryprimaryprimaryprimaryID
NO.AbbreviationMolecule nameLgr5+Lgr5+Lgr5−Lgr5−NO
NP_001243343.1GNAI1guanine nucleotide binding protein (G protein), alpha4.04.67.68.2
inhibiting activity polypeptide 1
NP_002766.1HTRA1HtrA serine peptidase 15.17.05.06.3
NP_001543.2IGEBP4insulin-like growth factor binding protein 43.42.70.51.1
NP_001002915.2IGFL2IGF-like family member 23.03.32.32.5
NP_001034659.2KREMEN1kringle containing transmembrane protein 13.03.71.32.3
NP_005597.3LGMNlegumain1.11.80.51.4
NP_002303.2LIG4ligase IV, DNA, ATP-dependent3.73.75.65.4
NP_006024.1LIPGlipase, endothelial2.12.60.11.1
NP_001392.2LPAR1lysophosphatidic acid receptor 12.93.41.32.4
NP_036284.1LPAR3lysophosphatidic acid receptor 36.74.93.72.9
NP_002327.2LRP6low density lipoprotein receptor-related protein 62.81.81.50.6
NP_055414.2MAGED2melanoma antigen family D, 21.11.82.72.9
NP_005922.2MICBMHC class I polypeptide-reiated sequence B2.63.62.33.7
NP_001182555.1MLLT10myeloid/lymphoid or mixed-lineage leukemia (trithorax2.52.01.01.3
homolog, Drosophila); translocated to, 10
NP_002435,1MSNmoesin3.01.72.20.0
NP_001018169.1NAE1NEDD8 activating enzyme El subunit 11.81.71.21.8
NP_056146.1NCSTNnicastrin1.50.42.30.8
NP_060562.3NETO2neuropilin (NRP) and tolloid (TLL)-like 27.36.18.06.9
NP_009014.2NUDT6nudix (nucleoside diphosphate linked moiety X)-type3.21.94.22.9
motif 6
NP_689501.1ORAI3ORAI calcium release-activated calcium modulator 31.51.14.32.2
NP_002605.2PDZK1PDZ domain containing 18.18.34.93.6

Table 6-5 is a continuation of Table 6-4.

TABLE 6-5
DBPLR59PLR123PLR59PLR123SEQ
accessionprimaryprimaryprimaryprimaryID
NO.AbbreviationMolecule nameLgr5+Lgr5+Lgr5−Lgr5−NO
NP_055824.1PDZRN3PDZ domain containing ring finger 32.62.51.40.6
phospholipase A2, group IVA (cytosolic, calcium-
NP_077734.1PLA2G4Adependent)7.78.25.05.9
NP_001123508.1PLEKHB1pleckstrin homology domain containing, family B4.05.35.16.3
(evectins) member 1
NP_079501.2PNPLA3patatin-like phospholipase domain containing 34.44.91.73.5
NP_004641.1PNPLA4patatin-like phospholipase domain containing 42.31.92.82.2
NP_006395.2PROCRprotein C receptor, endothelial1.31.54.23.65
NP_001159449.1PROM2prominin 25.44.610.510.46
NP_077748.3PSTPIP2proline-serine-threonine phosphatase interacting protein2.22.75.14.9
2
NP_002834.3PTPRJprotein tyrosine phosphatase, receptor type, J2.93.01.52.2
NP_002861.1RAB13RAB13, member RAS oncogene family1.30.92.01.4
NP_066361.1RAP2ARAP2A, member of RAS oncogene family2.01.72.41.7
NP_001094058.1RC3H2ring finger and CCCH-type zinc finger domains 21.20.32.00.0
NP_002897.1RDXradixin4.75.34.54.6
NP_006502.1RSC1A1regulatory solute carrier protein, family 1, member 11.10.01.20.4
(DDI2)(DNA-damage inducible 1 homolog 2)
NP_004162.2SLC1A2solute carrier family 1 (glial high affinity7.47.32.11.9
glutamate transporter), member 2
NP_006349.1SLC25A17solute carrier family 25 (mitochondrial2.41.92.41.5
carrier; peroxisomal membrane protein, 34 kDa), member 17
NP_075053.2SLC30A5solute carrier family 30 (zinc transporter), member 51.30.91.20.8
NP_001070253.1SLC7A6solute carrier family 7 (cationic amino acid transporter,1.00.21.50.8
y+ system), member 6
NP_071420.1SMOC1SPARC related modular calcium binding 12.65.4-0.12.4
NP_001159884.1SMOC2SPARC related modular calcium binding 27.28.4-0.92.2
NP_054730.1SOCS5suppressor of cytokine signaling 52.31.72.51.9

Table 6-6 is a continuation of Table 6-5.

TABLE 6-6
DBPLR59PLR123PLR59PLR123SEQ
accessionprimaryprimaryprimaryprimaryID
NO.AbbreviationMolecule nameLgr5+Lgr5+Lgr5−Lgr5−NO
NP_001030127.1SORBS1sorbin and SH3 domain containing 16.44.31.1−0.2
NP_003095.2SORDsorbitol dehydrogenase1.51.81.02.1
NP_003705.1STC2stanniocalcin 23.63.11.22.3
NP_005810.1STX6syntaxin 63.42.54.43.2
NP_003229.1TGFB2transforming growth factor, beta 25.35.14.23.6
NP_001124388.1TGFBR1transforming growth factor, beta receptor 11.91.81.51.0
NP_057635.1TM7SF3transmembrane 7 superfamily member 31.91.62.72.2
NP_653233.3TMEM182transmembrane protein 1823.33.44.64.6
NP_003802.1TNFSF9tumor necrosis factor (ligand) superfamiiy, member 94.54.45.24.97
NP_005714.2TSPAN5tetraspanin 51.82.90.01.5
NP_068835.1UTS2urotensin 22.41.72.52.3

Table 6-7 is a continuation of Table 6-6.

TABLE 6-7
PLR59 PLR123 PLR59 PLR123 SEQ
DB accession primaryprimaryprimary primary ID
No.AbbreviationMolecule nameLgr5+Lgr5+Lgr5−Lgr5−NO
NP_056222.2ABHD14Aabhydrolase domain containing 14A1.30.92.71.9
NP_004449.1ACSL4acyl-CoA synthetase long-chain family member 44.54.53.64.2
NP_665812.1AlFM1apoptosis-inducing factor, mitochondrion-associated, 11.91.62.01.9
aldo-keto reductase family 1, member C1 (dihydrodiol
NP_001344.2AKR1C1dehydrogenase 1; 20-alpha (3-alpha)-hydroxysteroid9.47.88.12.7
dehydrogenase)
NP_940683.1ANKRD46ankyrin repeat domain 462.61.83.52.2
NP_077027.1APOOapolipoprotein O1.41.51.21.0
NP_004766.2B4GALT6UDP-Gal:betaGlcNAc beta 1,4-galactosyltransferase,2.01.50.31.1
polypeptide 6
NP_004326.1BST2bone marrow stromal cell antigen 2−3.94.4−3.95.9
NP_001185983.1C16orf5chromosome 16 open reading frame 53.12.66.95.4
NP_115700.1C1orf57chromosome 1 open reading frame 571.51.33.03.0
NP_653181.1C1orf85chromosome 1 open reading frame 851.10.82.92.4
NP_001074293.1C2orf89chromosome 2 open reading frame 891.91.70.81.1
NP_775823.1C3orf58chromosome 3 open reading frame 582.00.31.6−0.4
NP_439896.1C6orf192chromosome 6 open reading frame 1924.02.54.53.3
NP_001135942.1C6orf203chromosome 6 open reading frame 2031.21.02.01.8
NP_620140.1C6orf72chromosome 6 open reading frame 721.31.81.21.7
NP_001243894.1CCDC51coiled-coil domain containing 511.10.93.63.1
NP_001157882.1CDK5cyclin-dependent kinase 51.92.03.53.3
NP_055061.1CELSR1cadherin, EGF LAG seven-pass G-type receptor 10.51.50.61.1
(flamingo homolog, Drosophila)
NP_004077.1COCHcoagulation factor C homolog, cochlin (Limulus2.12.30.52.2
polyphemus)
NP_001896.2CTPSCTP synthase2.01.01.40.7
NP_055191.2CYFIP2cytoplasmic FMR1 interacting protein 22.63.95.05.3
NP_004393.1DFFBDNA fragmentation factor, 40kDa, beta polypeptide2.31.81.71.5
(caspase-activated DNase)
NP_001077058.1E2F5E2F transcription factor 5, p130-binding2.82.22.72.2

Table 6-8 is a continuation of Table 6-7.

TABLE 6-8
PLR59 PLR123 PLR59 PLR123 SEQ
primaryprimaryprimary primary ID
DB accession No.AbbreviationMolecule nameLgr5+Lgr5+Lgr5−Lgr5−NO
NP_056067.2EHBP1EH domain binding protein 12.31.91.10.4
NP_060682.2ENAHenabled homolog (Drosophila)4.43.51.51.2
NP_001180289.1EXD2exonuclease 3′-5′ domain containing 22.31.22.71.9
NP_660323.3FAM119Afamily with sequence similarity 119, member A5.45.13.03.7
NP_620775.2FAM175Afamily with sequence similarity 175, member A3.42.83.82.8
NP_937995.1FAM189Bfamily with sequence similarity 189, member B1.71.71.31.1
NP_055679.1FAM2OBfamily with sequence similarity 20, member B1.60.81.50.8
NP_942600.1FIBPfibroblast growth factor (acidic) intracellular binding protein1.01.22.01.7
NP_000139.1FUT1fucosyltransferase 1 (galactoside 2-alpha-L-7.05.63.14.0
fucosyltransferase, H blood group)
NP_000135.2FXNfrataxin1.71.12.01.6
NP_000393.4G6PDglucose-6-phosphate dehydrogenase0.81.02.01.4
NP_000143.2GAAglucosidase, alpha; acid1.21.43.32.2
NP_000160.1GLAgalactosidase, alpha2.01.11.50.9
NP_002072.2GPC1glypican 11.01.22.60.5
NP_001008398.2GPX8glutathione peroxidase 8 (putative)5.05.57.17.0
NP_005329.3HIP1huntingtin interacting protein 12.62.72.62.5
NP_254274.1IL33interleukin 33−0.51.23.63.4
NP_002262.3IPO5importin 53.62.31.90.4
NP_060573.2LRRC8Dleucine rich repeat containing 8 family, member D2.01.01.91.2
NP_067679.6MFAP3Lmicrofibrillar-associated protein 3-like1.50.23.31.2
NP_612440.1MFSD3major facilitator superfamily domain containing 30.91.32.02.4
NP_066014.1MOV10Mov10, Moloney leukemia virus 10, homolog (mouse)0.51.41.32.0
NP_036351.3MRASmuscle RAS oncogene homolog1.10.64.31.3
NP_057034.2MRPL2mitochondrial ribosomal protein L21.30.80.80.0
NP_065972.3NINninein (GSK3B interacting protein)2.03.12.73.0

Table 6-9 is a continuation of Table 6-8.

TABLE 6-9
PLR59 PLR123 PLR59 PLR123 SEQ
primaryprimaryprimary primary ID
DB accession No.AbbreviationMolecule nameLgr5+Lgr5+Lgr5−Lgr5−NO
NP_065181.1NIPAL3NIPA-like domain containing 31.71.33.02.3
NP_002504.2NME3non-metastatic cells 3, protein expressed in1.12.11.51.9
NP_057672.1NRN1neuritin 18.55.77.76.3
NP_689643.2OR51 Elolfactory receptor, family 51, subfamily E, member 16.99.80.33.0
NP_071748.2OSGEPL1O-sialoglycoprotein endopeptidase-like 14.14.73.14.4
NP_079431.1PAAF1proteasomal ATPase-associated factor 11.92.11.51.9
NP_000523.2PCCBpropionyl CoA carboxylase, beta polypeptide1.41.61.42.0
NP_061757.1PCDHB14protocadherin beta 141.40.51.40.1
NP_002622.2PGDphosphogluconate dehydrogenase1.21.41.21.2
NP_003550.1PIP4K2Bphosphatidylinositol-5-phosphate 4-kinase, type II, beta1.81.31.81.1
NP_056530.2PLA2G3phospholipase A2, group III2.64.30.13.2
NP_005038.1PSMD5proteasome (prosome, macropain) 26S subunit, 1.50.71.70.7
non-ATPase, 5
NP_006255.1PTPN13protein tyrosine phosphatase, non-receptor type 130.11.10.72.2
(APO-1/CD95 (Fas)-associated phosphatase)
NP_057161.1PTRH2peptidyl-tRNA hydrolase 21.41.41.51.8
NP_037390.2PYCARDPYD and CARD domain containing0.21.31.12.1
NP_055113.2QPRTquinolinate phosphoribosyltransferase2.53.63.14.5
NP_060233.3RNF43ring finger protein 432.72.71.21.5
NP_060616.1RNMTL1RNA methyltransferase like 11.50.91.71.1
NP_003698.1RUVBL1RuvB-like 1 (E. coli)1.92.21.32.2
NP_002949.2RYKRYK receptor-like tyrosine kinase1.51.01.21.2
NP_116250.3SERAC1serine active site containing 11.80.82.71.5
NP_005016.1SERPINI1serpin peptidase inhibitor, clade I (neuroserpin), member 15.58.72.14.2
NP_008927.1SLC19A2solute carrier family 19 (thiamine transporter), member 23.82.72.01.2
NP_065075.1SLC39A10solute carrier family 39 (zinc transporter), member 102.93.12.62.7
NP_060306.3SLC41A3solute carrier family 41, member 31.91.51.30.8

Table 6-10 is a continuation of Table 6-9.

TABLE 6-10
PLR59 PLR123 PLR59 PLR123 SEQ
primaryprimaryprimary primary ID
DB accession No.AbbreviationMolecule nameLgr5+Lgr5+Lgr5−Lgr5−NO
NP_005692.1SNUPNsnurportin 12.22.42.32.5
NP_055563.1SNX17sorting nexin 170.81.11.01.0
NP_003156.1STXBP1syntaxin binding protein 14.35.74.95.3
NP_003192.1TFAMtranscription factor A, mitochondrial2.11.61.11.6
NP_444283.2THEM4thioesterase superfamily member 41.6−0.52.80.4
NP_612472.1TLCD1TLC domain containing 12.72.13.94.2
NP_057548,1TMEM138transmembrane protein 1381.82.22.02.7
NP_085054,2TMEM177transmembrane protein 1773.13.23.54.1
NP_056236.2TMEM186transmembrane protein 1862.42.02.02.3
NP_078863.2TMEM53transmembrane protein 531.21.31.21.0
NP_001008495.2TMEM64transmembrane protein 646.75.78.38.0
NP_669630.1TMEM68transmembrane protein 681.81.83.42.9
NP_861448.2TMTC3transmembrane and tetratricopeptide repeat containing 32.51.83.82.3
NP_775107.1TRIM59tripartite motif-containing 593.74.33.04.0
NP_003293.2TRIP6thyroid hormone receptor interactor 62.71.35.13.3
NP_009215.1TWF2twinfilin, actin-binding protein, homolog 2 (Drosophila)0.61.51.41.8
NP_079094.1UBA5ubiquitin-like modifier activating enzyme 51.82.12.42.4
NP_060769.4UBE2Wubiquitin-conjugating enzyme E2W (putative)1.31.72.42.4
NP_001017980.1VMA21VMA21 vacuolar H+-ATPase homolog (S. cerevisiae)3.02.62.92.6
NP_660295.2ZG16Bzymogen granule protein 16 homolog B (rat)1.12.01.41.9
NP_115549.2ZNRF3zinc and ring finger 34.74.12.22.6
(The values in Tables 6-1 to 6-10 shown above represent the expression difference (log 2 ratio).)

TABLE 7-1
PLR59 PLR123 PLR59 PLR123 SEQ
primaryprimaryprimary primary ID
DB accession No.AbbreviationMolecule nameLgr5+Lgr5+Lgr5−Lgr5−NO
NP_003658.1LGR5leucine-rich repeat-containing G protein-coupled receptor 53.03.8−1.50.4
NP_066301.1SNTB1syntrophin, beta 1 (dystrophin-associated protein A1, 3.13.10.00.4
59kDa, basic component 1)
NP_001123575.1COL13A1collagen, type XIII, alpha 12.02.9−0.20.3
NP_001167538.1FGER1fibroblast growth factor receptor 11.32.3−0.70.6
NP_004432.1EPHB1EPH receptor B11.02.3−0.30.7
NP_002002.3FGFR4fibroblast growth factor receptor 42.02.2−1.9-0.5
NP_004622.2LRP8low density lipoprotein receptor-related protein 8,2.32.10.50.7
apolipoprotein e receptor
NP_002832.3PTPRGprotein tyrosine phosphatase, receptor type, G1.82.1−5.0−5.4
NP_004727.2XPR1xenotropic and polytropic retrovirus receptor 11.52.10.70.9
NP_859052.3QSOX2quiescin Q6 sulfhydryl oxidase 21.82.00.70.8
NP_003876.1CDK5R1cyclin-dependent kinase 5, regulatory subunit 1 (p35)3.13.30.32.0
NP_002821.1PTPN4protein tyrosine phosphatase, non-receptor type 41.71.90.30.7
(megakaryocyte)
NP_001457.1FZD2frizzled homolog 2 (Drosophila)5.25.42.62.9
NP_000674.2ADRA2Cadrenergic, alpha-2C-, receptor1.81.60.1−0.1
NP_000334.1SLC5A1solute carrier tam ly 5 (sodium/glucose cotransporter),2.21.60.20.6
member1
NP_005901.2MAPTmicrotubule-associated protein tau1.91.50.40.6
NP_598328.1SYN2synapsin II0.31.70.20.5
NP_005496.4SCARB1scavenger receptor class B, member 11.11.2−0.3−0.3
NP_004434,2EPHB3EPH receptor B30.71.0−0.5−0.4
NP_000259.1NF2neurofibromin 2 (merlin)1.20.90.60.1
NP_003477.4SLC7A5solute carrier family 7 (cationic amino acid transporter,2.00.8−0.4−0.7
y+ system), member 5
NP_054740.3SSX2IPsynovial sarcoma, X breakpoint 2 interacting protein1.80.70.9−0.3
NP_055736.2LPHN1latrophilin 11.40.60.90.3
NP_004435.3EPHB4EPH receptor B41.30.50.7−0.1

Table 7-2 is a continuation of Table 7-1.

TABLE 7-2
PLR59 PLR123 PLR59 PLR123 SEQ
primaryprimaryprimary primary ID
DB accession No.AbbreviationMolecule nameLgr5+Lgr5+Lgr5−Lgr5−NO
NP_116197.4LINGO1leucine rich repeat and Ig domain containing 11.20.00.6−1.3
NP_004987.2ABCC1ATP-binding cassette, sub-family C (CFTR/MRP), 1.10.90.0−0.2
member 1
NP_003174.3ADAM17ADAM metallopeptidase domain 171.00.3−0.3−0.4
NP_620686.1ADAMTS15ADAM metallopeptidase with thrombospondin 6.14.6−3.6−4.2
type 1 motif, 15
NP_005091.2AKAP12A kinase (PRKA) anchor protein 122.43.7−1.20.3
NP_001618.2ALCAMactivated leukocyte cell adhesion molecule1.30.90.30.6
NP_001648.1AREGBamphiregulin B1.70.40.0−0.5
NP_001164.2ARHGAP5Rho GTPase activating protein 51.20.40.80.3
NP_542172.2B3GALT6UDP-Gal:betaGal beta 1,3-galactosyltransferase1.10.60.60.3
polypeptide 6
NP_001711.2BMP8Bbone morphogenetic protein 8b0.91.30.40.3
NP_006560.3CGREF1cell growth regulator with EF-hand domain 10.91.00.30.8
NP_058647.1CKLFchemokine-like factor0.91.5−0.50.9
NP_849199.2CMTM8CKLF-like MARVEL transmembrane domain 1.31.40.60.7
containing 8
NP_001422.1EPB41L2erythrocyte membrane protein band 4.1-like 21.30.9−0.4−0.4
NP_004433.2EPHB2EPH receptor 621.00.5−3.1−2.8
NP_000496.2F12coagulation factor XII (Hageman factor)1.21.60.21.0
NP_057133.2FAM158Afamily with sequence similarity 158, member A0.81.20.10.4
NP_001990.2FBN2fibrillin 22.62.5−0.40.1
NP 068656,21FGGfibrinogen gamma chain1.30.60.60.5
(OSMR)(oncostatin M receptor)
NP_001439.2GPC4glypican 42.02.1−0.90.0
NP_065857.1GPHNgephyrin3.22.9−3.4−2.6
NP_057399.1GULP1GULP, engulfment adaptor PTB domain containing 11.42.00.40.9
NP_036616.2HMMRhyaluronan-mediated motility receptor (RHAMM)5.04.5−1.7−1.5
NP_0008661IGF1Rinsulin-like growth factor 1 receptor0.71.1−1.9−1.2

Table 7-3 is a continuation of Table 7-2.

TABLE 7-3
PLR59 PLR123 PLR59 PLR123 SEQ
primaryprimaryprimary primary ID
DB accession No.AbbreviationMolecule nameLgr5+Lgr5+Lgr5−Lgr5−NO
NP_000588.2IGFBP2insulin-like growth factor binding protein 2, 36kDa1.40.70.3−0.4
NP_0611952IL17RBinterleukin 17 receptor B1.01.2−2.7−1.9
NP_002326.2LRP5low density lipoprotein receptor-related protein 51.21.7−0.8−0.2
NP_006491.21MCAMmelanoma cell adhesion molecule2.11.5−0.2−0.4
NP_055456.2MDC1mediator of DNA-damage checkpoint 12.62.2−1.3−1.7
NP_055606.1MELKmaternal embryonic leucine zipper kinase1.51.6−2.0−1.1
NP_000236.2METmet proto-oncogene (hepatocyte growth factor receptor)1.21.20.60.4
NP_065825.1MIB1mindbomb homolog 1 (Drosophila)1.31.30.70.5
NP_005952.2MUC6mucin 6, oligomeric mucus/gel-forming1.13.0−0.11.0
NP_777596.2PCSK9proprotein convertase subtilisin/kexin type 91.51.8−1.6−0.4
NP_003619.2PKP4plakophilin 41.51.40.0−0.1
NP_003042.3SLC16A1solute carrier family 16, member 1 1.70.60.30.3
(monocarboxylic acid transporter 1)
NP_057438.3SLCO4A1solute carrier organic anion transporter family, 0.51.2−1.4−0.2
member 4A1
NP_003093.2SOD3superoxide dismutase 3, extracellular2.21.70.6−1.2
NP_006425.2SORBS1sorbin and SH3 domain containing 13.23.4−0.90.2
NP_003095.2SORDsorbitol dehydrogenase1.10.70.90.8
NP_000342.2STSsteroid sulfatase (microsomal), isozyme S1.82.2−0.5−0.7
NP_003234.2TGFBR3transforming growth factor, beta receptor III1.41.8−0.2−0.2
NP_055388.2TMEM97transmembrane protein 972.62.11.0−0.3
CAA26435.1TRACT cell receptor alpha constant0.01.10.00.0

Table 7-4 is a continuation of Table 7-3.

TABLE 7-4
PLR59 PLR123 PLR59 PLR123 SEQ
primaryprimaryprimary primary ID
DB accession No.AbbreviationMolecule nameLgr5+Lgr5+Lgr5−Lgr5−NO
NP_076417.2AACSacetoacetyl-CoA synthetase1.11.60.20.6
NP_653191.2ANKRD22ankyrin repeat domain 222.01.5−1.8−1.7
NP_056020.2ATP11AATPase, class VI, type 11A1.31.00.70.6
NP_001159.2BIRC5baculoviral IAP repeat-containing 52.72.4−4.8−4.4
NP_061189.2CDCA7Lcell division cycle associated 7-like2.11.8−0.60.4
NP_005183.2CDKN3cyclin-dependent kinase inhibitor 34.85.3−3.1−1.8
NP_004077.1COCHcoagulation factor C homolog, cochlin (Limulus1.21.2−0.40.7
polyphemus)
NP_0053023GRB10growth factor receptor-bound protein 101.10.4−1.2−1.5
NP_6717043HS6ST2heparan sulfate 6-O-sulfotransferase 21.81.6−1.1−0.2
NP_002262.3IP05importin 52.61.70.5−0.3
NP_114428.1ITFG3integrin alpha FG-GAP repeat containing 31.00.90.0−1.1
NP_002241.1KCNN4potassium intermediate/small conductance calcium-1.20.9−0.7−0.7
activated channel, subfamily N, member 4
NP_061159.1KIAA1199KIAA11991.11.1−1.5−2.4
NP_115940.2KISS1RKISS1 receptor1.11.8−3.00.2
NP_057034.2MRPL2mitochondrial ribosomal protein L21.30.80.80.0
NP_000242.1MSH2mutS homolog 2, colon cancer, nonpolyposis type 1 (E.2.52.8−0.8−0.4
coli)
NP_055452.3MTFR1mitochondrial fission regulator 11.60.90.2−0.1
NP_005947.3MTHFD1methylenetetrahydrofolate dehydrogenase (NADP+1.71.60.30.1
dependent) 1, methenyltetrahydrofolate cyclohydrolase,
formyitetrahydrofolate synthetase
NP_005366.2MYBv-myb myeloblastosis viral oncogene homolog (avian)2.72.3−4.40.2
NP_078938.2NAT10N-acetyltransferase 10 (GCN5-related)1.91.30.1−0.1
NP_777549.1NDUFAF2NADH dehydrogenase (ubiguinone) 1 alpha1.01.4−0.90.1
subcomplex, assembly factor 2
NP_004280.5NFE2L3nuclear factor (erythroid-derived 2)-like 31.21.2−0.9−0.1
NP_006672.1NMUneuromedin U0.21.6−4.70.2
NP_055950.1NUP205nucleoporin 205kDa1.91.7−0.3−0.2

Table 7-5 is a continuation of Table 7-4.

TABLE 7-5
PLR59 PLR123 PLR59 PLR123 SEQ
DB accessionprimaryprimaryprimary primary ID
No.AbbreviationMolecule nameLgr5+Lgr5+Lgr5−Lgr5−NO
NP_942590.1NUP43nucleoporin 43kDa1.30.90.00.0
NP 0554843NUP93nucleoporin 93kDa2.12.40.10.8
NP_006614.2PHGDHphosphoglycerate dehydrogenase3.03.4−2.0−0.4
NP_060904.2RNF130ring finger protein 1300.91.00.40.3
NP_060259.4SEMA4Csema domain, immunoglobulin domain (Ig),1.92.30.20.5
transmembrane domain (TM) and short
cytoplasmic domain, (semaphorin) 40
NP_005857.1SIGMAR1sigma non-opioid intracellular receptor 11.01.10.80.9
NP_055413.1SOCS7suppressor of cytokine signaling 71.00.60.70.1
NP_005554.1STMN1stathmin 11.92.1−3.1−1.4
NP_054897,4STXBP6syntaxin binding protein 6 (amisyn)2.12.1−3.4−0.1
NP_001070884.1TMEM231transmembrane protein 2310.51.5−2.2−0.8
NP_002537.3TNFRSF11Btumor necrosis factor receptor superfamily, 1.76.3−2.9−0.9
member 11b
NP_443195.1TOP1MTtopoisomerase (DNA) I, mitochondrial1.10.40.5−0.1
NP_001058.2TOP2Atopoisomerase (DNA) II alpha 170kDa2.22.7−6.1−3.1
NP_006364.2VAT1vesicle amine transport protein 1 homolog 1.01.50.51.0
(T. californica)
NP_612471.1ZMYND19zinc finger, MYND-type containing 191.20.70.70.3
(The values in Tables 7-1 to 7-5 shown above represent the expression difference (log 2 ratio).)

TABLE 8-1
PLR59 PLR123 PLR59 PLR123 SEQ
primaryprimaryprimary primary ID
DB accession No.AbbreviationMolecule nameLgr5+Lgr5+Lgr5−Lgr5−NO
NP_076404.3GPR87G protein-coupled receptor 870.00.07.17.4
NP_005109.2TNFSF15tumor necrosis factor (ligand) superfamily, member 15−2.4−2.33.53.3
NP_001926.2DPP4dipeptidyl-peptidase 40.11.32.03.8
NP_149017.2BBS4Bardet-Biedl syndrome 40.20.61.72.6
NP_542386.1C9orf30chromosome 9 open reading frame 300.20.21.51.7
NP_001447.2FLNAfilamin A, alpha−0.40.80.71.7
NP_000425.1NEU1sialidase 1 (lysosomal sialidase)0.30.41.91.7
NP_002125.3HMOX2hems oxygenase (decycling) 20.30.41.51.6
NP_001078.2AAMPangio-associated, migratory cell protein0.10.31.21.6
NP_061985.2ABCA7ATP-binding cassette, sub-family A (ABC1), member 7−1.30.42.11.6
NP_000401.1HFEhemochromatosis2.22.01.22.8
NP_001142.2SLC25A4solute carrier family 25 (mitochondrial carrier: adenine0.60.81.31.5
nucleotide translocator), member 4
NP_006569.1GNB5guanine nucleotide binding protein (G protein), beta 50.20.80.91.4
NP_005846.1RAMP1receptor (G protein-coupled) activity modifying protein 1−0.5−0.51.11.4
NP_598378.3RHOVras homolog gene family, member V0.1−0.20.51.4
NP_112178.2PVRL4poliovirus receptor-related 4−0.3−2.86.11.87
NP_003686.1LY6Dlymphocyte antigen 6 complex, locus D−3.8−1.8−0.52.7
NP_775876.1KCNRGpotassium channel regulator1.00.22.61.9
NP_005063.19LC12A4solute carrier family 12 (potassium/chloride−0.2−0.11.21.2
transporters), member 4
NP_005292.2GPR35G protein-coupled receptor 35−0.8−1.41.1−0.8
NP_001607.1ACVR2Aactivin A receptor, type IIA0.2−0.51.41.0
NP_001687.1ATP6V1E1ATPase, H+ transporting, lysosomal 31kDa, V1 subunit E1−0.10.31.11.2
NP_036474.1BAMBIBMP and activin membrane-bound inhibitor homolog−0.80.71.32.4
(Xenopus laevis)
NP_005177.2CAPN1calpain 1, (mu/l) large subunit−1.3−1.31.3−0.2

Table 8-2 is a continuation of Table 8-1.

TABLE 8-2
PLR59 PLR123 PLR59 PLR123 SEQ
primaryprimaryprimary primary ID
DB accession No.AbbreviationMolecule nameLgr5+Lgr5+Lgr5−Lgr5−NO
NP_001798.2CELcarboxyl ester lipase (bile salt-stimulated lipase)0.00.07.45.4
NP_056034.2EXOC7exocyst complex component 7−0.2−0.21.91.2
NP_000034.1FASFas (TNF receptor superfamily, member 6)0.80.42.82.39
NP_005802.1GDF11growth differentiation factor 110.70.91.31.9
NP_060456.3GPR172BG protein-coupled receptor 17280.00.05.64.3
NP_665895.1KLK10kallikrein-related peptidase 10−0.90.41.21.6
NP_055414.2MAGED2melanoma antigen family D, 20.00.32.13.0
NP_000519.2MAN2B1mannosidase, alpha, class 2B, member 1−0.2−0.22.31.5
NP_002434.1MSMBmicroseminoprotein, beta-0.00.05.64.7
NP_009014.2NUDT6nudix (nucleoside diphosphate linked moiety X)-type 0.00.01.30.8
motif 6
NP_036528.1PHLDA3pleckstrin homology-like domain, family A, member 3−0.3−0.22.91.0
NP_002629.1PI3peptidase inhibitor 3, skin-derived−7.6−7.91.4−0.6
NP_597998.1SAT2spermidine/spermine N1-acetyltransferase family 0.70.91.71.2
member 2
NP_006207.1SERPINE2serpin peptidase inhibitor, clade E (nexin, −3.2− 2.51.30.7
plasminogen activator inhibitor type 1), member 2
NP_036303.1TSPAN17tetraspanin 170.60.41.71.3
(The values in Tables 8-1 and 8-2 shown above represent the expression difference (log 2 ratio).)

Furthermore, genes that meet a criterion described below and have GO:0005886 [plasma membrane] from GeneOntology (GO) (Tables 9 and 10) were extracted in order to obtain genes encoding proteins that are specifically presented on cell membrane of cancer stem cells.

Markers common for both proliferating and quiescent CSCs:

genes whose expression levels are in average greater than 64 in Lgr5-negative and Lgr5-positive cells; which show a greater than four-fold change in both Lgr5-negative and Lgr5-positive cells relative to primary cells; and which show a significant difference by t-test (Table 9).

TABLE 9
PLR59 PLR123 PLR59 PLR123 PLR59PLR123SEQ
primaryprimaryprimary primary Lgr5+Lgr5+ID
DB accession No.AbbreviationMolecule nameLgr5+Lgr5+Lgr5−Lgr5−Lgr5−Lgr5−NO
NP_001423.1EREGepiregulin2.23.42.53.10.3−0.33
NP_001986.2ACSL1acyl-CoA synthetase long-chain family 3.03.92.93.7−0.2−0.2
member 1
NP_005922.2MICBMHC class I polypeptide-related sequence B2.33.82.23.7−0.1−0.1
NP_000296.2PON2paraoxonase 22.34.62.94.60.70.0
NP_003458.1CXCR4chemokine (C-X-C motif) receptor 410.29.58.57.8−1.7−1.7
NP_062818.1SLCO1B3solute carrier organic anion transporter family, 4.45.13.04.1−1.4−1.0
member 183
NP_000280.1PF KMphosphofructokinase, muscle3.32.33.32.10.0−0.2
NP_057672.1NRN1neuritin 18.88.57.86.5−1.0−2.0
NP_060369.3TESCtescalcin3.35.02.036−1.3−1.3
NP_000139.1FUT1fucosyltransferase 1 (galactoside 2-alpha-L-6.95.93.14.3−3.9−1.6
fucosyltransferase, H blood group)
NP_003802.1TNFSF9tumor necrosis factor (ligand) superfamily, 4.54.45.45.10.90.77
member 9
NP_059108.1FZD3frizzled homolog 3 (Drosophila)2.82.62.63.2−0.20.6
NP_005810.1STX6syntaxin 62.82.74.23.51.40.9
NP_057635.1TM7SF3transmembrane 7 superfamily member 33.02.53.93.00.90.5
NP_000013.2ADAadenosine deaminase2.02.72.82.90.80.2
NP_071731.1EDARectodysplasin A receptor6.26.85.03.7−1.2−3.11
NP_003264.2TM7SF2transmembrane 7 superfamily member 23.64.36.96.73.22.4
NP_116265.1JUBjab, ajuba homolog (Xenopus laevis)3.74.34.73.81.0−0.5
NP_689740.2SLC16A14solute carrier family 16, member 14 5.46.65.86.10.3−0.4
(monocarboxylic acid transporter 14)
NP_065209.2ANK1ankyrin 1, erythrocytic6.63.05.32.7−1.3−0.3

Quiescent CSC-specific markers: genes whose expression levels are in average greater than 64 in Lgr5-negative cells and are in average less than 64 in both primary cells and Lgr5-positive cells; which show a greater than 20 fold change in Lgr5-negative cells relative to Lgr5-positive cells; and which show a significant difference by t-test (Table 10).

TABLE 10
PLR59 PLR123 PLR59 PLR123 PLR59PLR123SEQ
DB accession primaryprimaryprimary primary Lgr5+Lgr5+ID
No.AbbreviationMolecule nameLgr5+Lgr5+Lgr5−Lgr5−Lgr5−Lgr5−NO
NP_006111.2HLA-DMAmajor histocompatibility complex, 0.00.28.08.78.08.5
class II, DM alpha
NP_862830.1AMIGO2adhesion molecule with Ig-like domain 20.00.07.07.57.07.5
NP_001159449.1PROM2prominin 23.32.910.110.56.97.66
NP_076404.3GPR87G protein-coupled receptor 870.00.07.07.47.07.4
NP_722582.2GPR110G protein-coupled receptor 1100.00.06.07.06.07.0
NP_112178.2PVRL4poliovirus receptor-related 4−0.6−2.75.81.76.44.48
NP_938205.1FLRT3fibronectin leucine rich transmembrane 1.30.26.85.45.55.2
protein 3
3. Expression Analysis by Flow Cytometry Analysis
3.1. Flow Cytometry Analysis of NOG-Established Cancer Cell Lines

After suspending in FACS buffer, cells of NOG-established cancer lines collected from mice were incubated at 4° C. for 30 minutes with rat mAb to mouse MHC I (Abcam; ab15680) and mAb to human EREG (EP27; WO2008/047723). Then, following washing once with FACS buffer, the cells were incubated at 4° C. for 30 minutes with 7-AAD Viability Dye (Beckman Coulter; A07704) as dead cell staining and secondary antibodies: PE-labeled goat F(ab′)2 fragment to mouse IgG (H+L) (Beckman Coulter; IM0855) and APC-labeled goat Ab to rat IgG (BioLegend; 405406). After washing once with FACS buffer, the cells were subjected to flow cytometry analysis. Flow cytometry analysis was performed using EPICS ALTRA. Cells negative for 7-AAD Viability Dye and mouse MHC were analyzed for EREG expression.

3.2. Flow Cytometry Analysis of In Vitro Cultured Cancer Cell Lines

Lgr5-positive adherent cells and Lgr5-negative adherent cells resulting from induction by irinotecan treatment were harvested using Accutase. The cells were suspended in FACS buffer, and then incubated at 4° C. for 30 minutes with mouse mAb to human EREG. After the cells were washed once with FACS buffer, 7-AAD Viability Dye as dead cell staining and a PE-labeled goat F(ab′)2 fragment to mouse IgG (H+L) as a secondary antibody were added thereto. The cells were incubated at 4° C. for 30 minutes. Then, the cells were washed once with FACS buffer, and subjected to flow cytometry analysis. Flow cytometry analysis was performed using EPICS ALTRA. Cells negative for 7-AAD Viability Dye were analyzed for EREG expression. The result showed that the corresponding protein was expressed at a high level on cell membrane surface.

The result obtained by EREG flow cytometry analysis of primary cells from PLR59 and PLR123, and Lgr5+ and Lgr5 cancer stem cells is shown in FIG. 37. The cells were stained using an antibody against EREG and analyzed by flow cytometry. It was demonstrated that primary cells were negative for EREG while Lgr5+ and Lgr5 cancer stem cells were homogeneous EREG-positive cell populations. Gray indicates fluorescence intensity after cell staining with an indicated antibody; and white indicates fluorescence intensity after cell staining with a control isotype antibody.

4. In Vitro Assessment of Drug Efficacy by ADCC Activity Measurement

4.1. Preparation of Effector Cell Suspension

A mononuclear cell fraction collected from human peripheral blood was used as human effector cells. Fifty ml of peripheral blood was collected from a healthy volunteer (adult male) of the inventors' company using a syringe loaded in advance with 200 μl of 1000 units/ml heparin solution (Novo-Heparin 5,000 units/5 ml for Injection; Novo Nordisk). The peripheral blood was diluted twofold with PBS(−), and then introduced into a Leucosep lymphocyte separation tube (Greiner bio-one) in advance loaded with Ficoll-Paque PLUS and subjected to centrifugation. After centrifugation (2150 rpm, room temperature, 10 minutes), the monocyte fraction layer was collected from the tube. The cells were washed once with 10% FBS/D-MEM, and then suspended at a cell density of 5×106/ml in 10% FBS/D-MEM. The suspension was used as an effector cell suspension.

4.2. Preparation of Target Cell Suspensions

Target cell suspensions were prepared at the time of use. One×106 cells of cancer lines were centrifuged (1200 rpm, room temperature, 5 minutes). The cell pellets were suspended in 200 μl of 0.2 mg/ml calcein-AM (Nacalai Tesque)/DMEM (10% FBS) medium. Cell suspensions in calcein-AM solution were incubated for two hours in a CO2 incubator set to 37° C. and to a CO2 concentration of 5%. After washing once with 10% FBS/D-MEM, the cells were adjusted to a cell density of 2×105/ml with 10% FBS/D-MEM to prepare target cell suspensions.

4.3. ADCC Activity Measurement

Anti-EREG antibody was prepared at a concentration of 0.5 mg/ml, which was further diluted with 10% FBS/D-MEM to give antibody solutions. The final concentration was adjusted to 0.4, 4, and 40 μg/ml. The antibody solutions of respective concentrations or 10% FBS/D-MEM were each added at 50 μl/well to a 96-well round-bottomed plate. Then, the target cell suspensions were added at 50 μl/well to every well. The plate was incubated at room temperature for 15 minutes. Next, 100 μl of the effector cell suspension was added to each well containing target cell suspension, and antibody solution or 10% FBS/D-MEM. One-hundred μl of 10% FBS/D-MEM or 2% NP-40 solution (NP-40 substitute; Wako Pure Chemical Industries) was added to each of other wells containing 10% FBS/D-MEM and target cell suspension. The plate was centrifuged (1200 rpm, room temperature, 5 minutes) and incubated for 4 hours in a CO2 incubator set to 37° C. and to a CO2 concentration of 5%. The plate was centrifuged (1200 rpm, room temperature, 5 minutes), and a 100-μl aliquot of supernatant was collected from each well. The fluorescence intensity (λex=490 nm, λem=515 nm) was determined using a spectrofluorometer. The specific calcein release rate (cytotoxicity (%)) was determined according to the following formula.
cytotoxicity(%)=(A−C)×100/(B−C)  Formula 1:where A represents the fluorescence intensity in each well; B represents the mean value of fluorescence intensity in a well where 50 μl of target cell suspension and 100 μl of NP-40 solution were added to 50 μl of 10% FBS/D-MEM; and C represents the mean value of fluorescence intensity in a well where 50 μl of target cell suspension and 100 μl of 10% FBS/D-MEM were added to 50 μl of 10% FBS/D-MEM. This assay was carried out in triplicate, and the cytotoxicity (%) at each antibody concentration was determined using Microsoft Office Excel 2007.

The anti-EREG antibody-mediated ADCC activities against Lgr5-positive and -negative cells derived from PLR59 cells, and those against Lgr5-positive and -negative cells derived from PLR123 cells are shown in FIG. 38. The result showed that the anti-EREG antibody exerted cytotoxic activity against both Lgr5-positive and -negative cancer stem cells from PRL59 or PLR123 in a dose dependent manner whereas the control antibody had no cytotoxic activity.

To assess in vivo EREG expression, the Lgr5-positive cells were administered into the peritoneal cavities of NOG mice. In the early stage of tumor generation, EREG was expressed at a high level. In the late stage where the tumor formed specific ductal structures, EREG expression was somewhat localized to the budding clusters rather than ductal structures. EREG-positive cells were detected even after irinotecan administration to tumor-bearing mice (FIG. 54). The anti-EREG antibody was assessed for anti-tumor activity after irinotecan treatment. Effector cells are essential for the anti-EREG antibody to mediate ADCC activity. Thus, SCID mice were used as a model to assess the pharmacological efficacy of the anti-EREG antibody. Tumor growth was suppressed when the antibody was administered at the time points of days 4 and 11 after the final irinotecan administration (FIG. 57).

As a first step to assess the pharmacological efficacy based on the metastasis model, it was tested whether EREG is expressed in the metastasis model. When Lgr5-positive cells were intravenously injected into NOG mice, tumors were formed in multiple tissues including lung. Cells of the tumors formed in lungs are mostly positive for EREG (FIG. 58A). The pharmacological efficacy of the anti-EREG antibody was assessed using SCID-Beige mice where macrophages and mononuclear cells can serve as effector cells to mediate ADCC. The anti-EREG antibody was administered to mice once a week for a total of five times starting at three days after the injection of Lgr5-positive cells. The number of tumor cells in distal locations was demonstrated to be markedly reduced as compared to that in control mice (FIG. 58B). In addition, the size of each tumor was also shown to be remarkably reduced in mice administered with the antibody (FIGS. 58C and 58D).

Full text: Click here
Patent 2024

Example 2

Materials

X-vivo-15 was obtained for Lonza (cat #BE04-418Q), IL-2 from Miltenyi Biotech (cat #130-097-748), human serum AB from Seralab (cat #GEM-100-318), human T activator CD3/CD28 from Life Technology (cat #11132D), QBEND10-APC from R&D Systems (cat #FAB7227A), vioblue-labeled anti-CD3, PE-labeled anti-LNGFR, APC-labeled anti-CD25 and PE-labeled anti-PD1 from Miltenyi (cat #130-094-363, 130-112-790, 130-109-021 and 130-104-892 respectively) 48 wells treated plates (CytoOne, cat #CC7682-7548), human IL-15 Quantikine ELISA kit from R&D systems (cat #S1500), ONE-Glo from Promega (cat #E6110). AAV6 batches containing the different matrices were obtained from Virovek, PBMC cells were obtained from Allcells, (cat #PB004F) and Raji-Luciferase cells were obtained after Firefly Luciferase-encoding lentiviral particles transduction of Raji cells from ATCC (cat #CCL-86).

Methods

2.1—Transfection-Transduction

The double targeted integration at TRAC and PD1 or CD25 loci were performed as follows. PBMC cells were first thawed, washed, resuspended and cultivated in X-vivo-15 complete media (X-vivo-15, 5% AB serum, 20 ng/mL IL-2). One day later, cells were activated by Dynabeads human T activator CD3/CD28 (25 uL of beads/1E6 CD3 positive cells) and cultivated at a density of 1E6 cells/mL for 3 days in X-vivo complete media at 37° C. in the presence of 5% CO2. Cells were then split in fresh complete media and transduced/transfected the next day according to the following procedure. On the day of transduction-transfection, cells were first de-beaded by magnetic separation (EasySep), washed twice in Cytoporation buffer T (BTX Harvard Apparatus, Holliston, Massachusetts) and resuspended at a final concentration of 28E6 cells/mL in the same solution. Cellular suspension was mixed with 5 μg mRNA encoding TRAC TALEN® arms (SEQ ID NO:16 and 17) in the presence or in the absence of 15 μg of mRNA encoding arms of either CD25 or PD1 TALEN® (SEQ ID NO:18 and 19 and SEQ ID NO:20 and 21 respectively) in a final volume of 200 μl. TALEN® is a standard format of TALE-nucleases resulting from a fusion of TALE with Fok-1 Transfection was performed using Pulse Agile technology, by applying two 0.1 mS pulses at 3,000 V/cm followed by four 0.2 mS pulses at 325 V/cm in 0.4 cm gap cuvettes and in a final volume of 200 μl of Cytoporation buffer T (BTX Harvard Apparatus, Holliston, Massachusetts). Electroporated cells were then immediately transferred to a 12-well plate containing 1 mL of prewarm X-vivo-15 serum-free media and incubated for 37° C. for 15 min. Cells were then concentrated to 8E6 cells/mL in 250 μL of the same media in the presence of AAV6 particles (MOI=3E5 vg/cells) comprising the donor matrices in 48 wells regular treated plates. After 2 hours of culture at 30° C., 250 μL of Xvivo-15 media supplemented by 10% AB serum and 40 ng/ml IL-2 was added to the cell suspension and the mix was incubated 24 hours in the same culture conditions. One day later, cells were seeded at 1E6 cells/mL in complete X-vivo-15 media and cultivated at 37° C. in the presence of 5% CO2.

2.2—Activation-Dependent Expression of ΔLNGFR and Secretion of IL15

Engineered T-cells were recovered from the transfection-transduction process described earlier and seeded at 1E6 cells/mL alone or in the presence of Raji cells (E:T=1:1) or Dynabeads (12.5 uL/1E6 cells) in 100 μL final volume of complete X-vivo-15 media. Cells were cultivated for 48 hours before being recovered, labeled and analyzed by flow cytometry. Cells were labeled with two independent sets of antibodies. The first sets of antibodies, aiming at detecting the presence of ΔLNGFR, CAR and CD3 cells, consisted in QBEND10-APC (diluted 1/10), vioblue-labeled anti CD3 (diluted 1/25) and PE-labeled anti-ΔLNGFR (diluted 1/25). The second sets of antibodies, aiming at detecting expression of endogenous CD25 and PD1, consisted in APC-labeled anti-CD25 (diluted 1/25) and vioblue-labeled anti PD1 (diluted 1/25).

The same experimental set up was used to study IL-15 secretion in the media. Cells mixture were kept in co-culture for 2, 4, 7 and 10 days before collecting and analyzing supernatant using an IL-15 specific ELISA kit.

2.3—Serial Killing Assay

To assess the antitumor activity of engineered CAR T-cells, a serial killing assay was performed. The principle of this assay is to challenge CAR T-cell antitumor activity everyday by a daily addition of a constant amount of tumor cells. Tumor cell proliferation, control and relapse could be monitored via luminescence read out thanks to a Luciferase marker stably integrated in Tumor cell lines.

Typically, CAR T-cells are mixed to a suspension of 2.5×105 Raji-luc tumor cells at variable E:T ratio (E:T=5:1 or 1:1) in a total volume of 1 mL of Xvivo 5% AB, 20 ng/uL IL-2. The mixture is incubated 24 hours before determining the luminescence of 25 uL of cell suspension using ONE-Glo reagent. Cells mixture are then spun down, the old media is discarded and substituted with 1 mL of fresh complete X-vivo-15 media containing 2.5×105 Raji-Luc cells and the resulting cell mixture is incubated for 24 hours. This protocol is repeated 4 days.

Experiments and Results

This example describes methods to improve the therapeutic outcome of CAR T-cell therapies by integrating an IL-15/soluble IL-15 receptor alpha heterodimer (IL15/sIL15rα) expression cassette under the control of the endogenous T-cell promoters regulating PD1 and CD25 genes. Because both genes are known to be upregulated upon tumor engagement by CAR T-cells, they could be hijacked to re-express IL-IL15/sIL15rα only in vicinity of a tumor. This method aims to reduce the potential side effects of IL15/sIL15rα systemic secretion while maintaining its capacity to reduced activation induced T-cell death (AICD), promote T-cell survival, enhance T-cell antitumor activity and to reverse T-cell anergy.

The method developed to integrate IL15/sIL15rα at PD1 and CD25 loci consisted in generating a double-strand break at both loci using TALEN in the presence of a DNA repair matrix vectorized by AAV6. This matrix consists of two homology arms embedding IL15/sIL15rα coding regions separated by a 2A cis acting elements and regulatory elements (stop codon and polyA sequences). Depending on the locus targeted and its involvement in T-cell activity, the targeted endogenous gene could be inactivated or not via specific matrix design. When CD25 gene was considered as targeted locus, the insertion matrix was designed to knock-in (KI) IL15/sIL15rα without inactivating CD25 because the protein product of this gene is regarded as essential for T-cell function. By contrast, because PD1 is involved in T-cell inhibition/exhaustion of T-cells, the insertion matrix was designed to prevent its expression while enabling the expression and secretion of IL15/sIL15rα.

To illustrate this approach and demonstrate the feasibility of double targeted insertion in primary T-cells, three different matrices were designed (FIGS. 2A, 2B and 2C). The first one named CARm represented by SEQ ID NO:36 was designed to insert an anti-CD22 CAR cDNA at the TRAC locus in the presence of TRAC TALEN® (SEQ ID NO:16 and 17). The second one, IL-15_CD25m (SEQ ID NO:37) was designed to integrate IL15, sIL15rα and the surface marker named ΔLNGFR cDNAs separated by 2A cis-acting elements just before the stop codon of CD25 endogenous coding sequence using CD25 TALEN® (SEQ ID NO:18 and 19). The third one, IL-15_PD1m (SEQ ID NO:38), contained the same expression cassette and was designed to integrate in the middle of the PD1 open reading frame using PD1 TALEN® (SEQ ID NO:20 and 21). The three matrices contained an additional 2A cis-acting element located upstream expression cassettes to enable co-expression of IL15/sIL15rα and CAR with the endogenous gene targeted.

We first assessed the efficiency of double targeted insertion in T-cells by transducing them with one of the AAV6 encoding IL15/sIL15rα matrices (SEQ ID NO:41; pCLS30519) along with the one encoding the CAR and subsequently transfected the corresponding TALEN®. AAV6-assisted vectorization of matrices in the presence of mRNA encoding TRAC TALEN® (SEQ ID NO:22 and 23) and PD1 TALEN® (SEQ ID NO:24 and 25) or CD25 TALEN® (SEQ ID NO:26 and 27) enabled expression of the anti CD22 CAR in up to 46% of engineered T-cells (FIG. 3).

To determine the extent of IL15m integration at CD25 and PD1 locus, engineered T-cells were activated with either antiCD3/CD28 coated beads or with CD22 expressing Raji tumor cells. 2 days post activation, cells were recovered and analyzed by FACS using LNGFR expression as IL15/sIL15rα secretion surrogate (FIGS. 4 and 5). Our results showed that antiCD3/CD28 coated beads induced expression of ΔLNGFR by T-cells containing IL-15m_CD25 or IL-15m_PD1, independently of the presence of the anti CD22 CAR (FIG. 4A-B). Tumor cells however, only induced expression of ΔLNGFR by T-cell treated by both CARm and IL-15m. This indicated that expression of ΔLNGFR could be specifically induced through tumor cell engagement by the CAR (FIGS. 5 and 6).

As expected the endogenous CD25 gene was still expressed in activated treated T-cells (FIGS. 7 and 8) while PD1 expression was strongly impaired (FIG. 12).

To verify that expression of ΔLNGFR correlated with secretion of IL15 in the media, T-cells expressing the anti-CD22 CAR and ΔLNGFR were incubated in the presence of CD22 expressing Raji tumor cells (E:T ratio=1:1) for a total of 10 days. Supernatant were recovered at day 2, 4, 7 and 10 and the presence of IL15 was quantified by ELISA assay. Our results showed that IL15 was secreted in the media only by T-cells that were co-treated by both CARm and IL15m matrices along with their corresponding TALEN® (FIG. 13). T-cell treated with either one of these matrices were unable to secrete any significant level of IL15 with respect to resting T-cells. Interestingly, IL-15 secretion level was found transitory, with a maximum peak centered at day 4 (FIG. 14).

To assess whether the level of secreted IL-15 (SEQ ID NO:59) could impact CAR T-cell activity, CAR T-cell were co-cultured in the presence of tumor cells at E:T ratio of 5:1 for 4 days. Their antitumor activity was challenged everyday by pelleting and resuspended them in a culture media lacking IL-2 and containing fresh tumor cells. Antitumor activity of CAR T-cell was monitored everyday by measuring the luminescence of the remaining Raji tumor cells expressing luciferase. Our results showed that CAR T-cells co-expressing IL-15 had a higher antitumor activity than those lacking IL15 at all time points considered (FIG. 15).

Thus, together our results showed that we have developed a method allowing simultaneous targeted insertions of CAR and IL15 cDNA at TRAC and 0025 or PD1 loci. This double targeted insertion led to robust expression of an antiCD22 CAR and to the secretion of IL15 in the media. Levels of secreted IL15 were sufficient to enhance the activity of CAR T-cells.

TABLE 5
Sequences referred to in example 2.
SEQ
IDSequence
NO#NamePolypeptide sequenceRVD sequence
16TALENMGDPKKKRKVIDYPYDVPDYAIDIADLRTLGYSQQQQEKIKPKVRSTVANG-NN-NG-HD-
right TRACQHHEALVGHGFTHAHIVALSQHPAALGTVAVKYQDMIAALPEATHEAIVHD-HD-NI-HD-NI-
GVGKQWSGARALEALLTVAGELRGPPLQLDTGQLLKIAKRGGVTAVEANN-NI-NG-NI-NG-
VHAWRNALTGAPLNLTPQQVVAIASNGGGKQALETVQRLLPVLCQAHGHD-NG#
LTPQQVVAIASNNGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNGG
GKQALETVQRLLPVLCQAHGLTPEQVVAIASHDGGKQALETVQRLLPVL
CQAHGLTPEQVVAIASHDGGKQALETVQRLLPVLCQAHGLTPEQVVAIA
SHDGGKQALETVQRLLPVLCQAHGLTPEQVVAIASNIGGKQALETVQAL
LPVLCQAHGLTPEQVVAIASHDGGKQALETVQRLLPVLCQAHGLTPEQ
VVAIASNIGGKQALETVQALLPVLCQAHGLTPQQVVAIASNNGGKQALE
TVQRLLPVLCQAHGLTPEQVVAIASNIGGKQALETVQALLPVLCQAHGL
TPQQVVAIASNGGGKQALETVQRLLPVLCQAHGLTPEQVVAIASNIGGK
QALETVQALLPVLCQAHGLTPQQVVAIASNGGGKQALETVQRLLPVLC
QAHGLTPEQVVAIASHDGGKQALETVQRLLPVLCQAHGLTPQQVVAIAS
NGGGRPALESIVAQLSRPDPALAALTNDHLVALACLGGRPALDAVKKGL
GDPISRSQLVKSELEEKKSELRHKLKYVPHEYIELIEIARNSTQDRILEMK
VMEFFMKVYGYRGKHLGGSRKPDGAIYTVGSPIDYGVIVDTKAYSGGY
NLPIGQADEMQRYVEENQTRNKHINPNEWWKVYPSSVTEFKFLFVSGH
FKGNYKAQLTRLNHITNCNGAVLSVEELLIGGEMIKAGTLTLEEVRRKFN
NGEINFAAD
17TALENMGDPKKKRKVIDKETAAAKFERQHMDSIDIADLRTLGYSQQQQEKIKPKHD-NG-HD-NI-NN-
Left TRACVRSTVAQHHEALVGHGFTHAHIVALSQHPAALGTVAVKYQDMIAALPEAHD-NG-NN-NN-
THEAIVGVGKQWSGARALEALLTVAGELRGPPLQLDTGQLLKIAKRGGVNG-NI-HD-NI-HD-
TAVEAVHAWRNALTGAPLNLTPEQVVAIASHDGGKQALETVQRLLPVLNN-NG#
CQAHGLTPQQVVAIASNGGGKQALETVQRLLPVLCQAHGLTPEQVVAI
ASHDGGKQALETVQRLLPVLCQAHGLTPEQVVAIASNIGGKQALETVQA
LLPVLCQAHGLTPQQVVAIASNNGGKQALETVQRLLPVLCQAHGLTPE
QVVAIASHDGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNGGGKQA
LETVQRLLPVLCQAHGLTPQQVVAIASNNGGKQALETVQRLLPVLCQA
HGLTPQQVVAIASNNGGKQALETVQRLLPVLCQAHGLTPQQVVAIASN
GGGKQALETVQRLLPVLCQAHGLTPEQVVAIASNIGGKQALETVQALLP
VLCQAHGLTPEQVVAIASHDGGKQALETVQRLLPVLCQAHGLTPEQVV
AIASNIGGKQALETVQALLPVLCQAHGLTPEQVVAIASHDGGKQALETV
QRLLPVLCQAHGLTPQQVVAIASNNGGKQALETVQRLLPVLCQAHGLT
PQQVVAIASNGGGRPALESIVAQLSRPDPALAALTNDHLVALACLGGRP
ALDAVKKGLGDPISRSQLVKSELEEKKSELRHKLKYVPHEYIELIEIARNS
TQDRILEMKVMEFFMKVYGYRGKHLGGSRKPDGAIYTVGSPIDYGVIVD
TKAYSGGYNLPIGQADEMQRYVEENQTRNKHINPNEWWKVYPSSVTE
FKFLFVSGHFKGNYKAQLTRLNHITNCNGAVLSVEELLIGGEMIKAGTLT
LEEVRRKFNNGEINFAAD
18TALENMGDPKKKRKVIDYPYDVPDYAIDIADLRTLGYSQQQQEKIKPKVRSTVANN-NG-NG-HD-
right CD25QHHEALVGHGFTHAHIVALSQHPAALGTVAVKYQDMIAALPEATHEAIVNG-NG-NG-NG-
GVGKQWSGARALEALLTVAGELRGPPLQLDTGQLLKIAKRGGVTAVEANN-NN-NG-NG-
VHAWRNALTGAPLNLTPQQVVAIASNNGGKQALETVQRLLPVLCQAHGNG-NG-HD-NG#
LTPQQVVAIASNGGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNGG
GKQALETVQRLLPVLCQAHGLTPEQVVAIASHDGGKQALETVQRLLPVL
CQAHGLTPQQVVAIASNGGGKQALETVQRLLPVLCQAHGLTPQQVVAI
ASNGGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNGGGKQALETVQ
RLLPVLCQAHGLTPQQVVAIASNGGGKQALETVQRLLPVLCQAHGLTP
QQVVAIASNNGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNNGGKQ
ALETVQRLLPVLCQAHGLTPQQVVAIASNGGGKQALETVQRLLPVLCQ
AHGLTPQQVVAIASNGGGKQALETVQRLLPVLCQAHGLTPQQVVAIAS
NGGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNGGGKQALETVQRL
LPVLCQAHGLTPEQVVAIASHDGGKQALETVQRLLPVLCQAHGLTPQQ
VVAIASNGGGRPALESIVAQLSRPDPSGSGSGGDPISRSQLVKSELEEK
KSELRHKLKYVPHEYIELIEIARNSTQDRILEMKVMEFFMKVYGYRGKHL
GGSRKPDGAIYTVGSPIDYGVIVDTKAYSGGYNLPIGQADEMQRYVEEN
QTRNKHINPNEWWKVYPSSVTEFKFLFVSGHFKGNYKAQLTRLNHITN
CNGAVLSVEELLIGGEMIKAGTLTLEEVRRKFNNGEINFAAD
19TALEN leftMGDPKKKRKVIDYPYDVPDYAIDIADLRTLGYSQQQQEKIKPKVRSTVANI-HD-NI-NN-NN-
CD25QHHEALVGHGFTHAHIVALSQHPAALGTVAVKYQDMIAALPEATHEAIVNI-NN-NN-NI-NI-
GVGKQWSGARALEALLTVAGELRGPPLQLDTGQLLKIAKRGGVTAVEANN-NI-NN-NG-NI-
VHAWRNALTGAPLNLTPEQVVAIASNIGGKQALETVQALLPVLCQAHGLNG#
TPEQVVAIASHDGGKQALETVQRLLPVLCQAHGLTPEQVVAIASNIGGK
QALETVQALLPVLCQAHGLTPQQVVAIASNNGGKQALETVQRLLPVLC
QAHGLTPQQVVAIASNNGGKQALETVQRLLPVLCQAHGLTPEQVVAIAS
NIGGKQALETVQALLPVLCQAHGLTPQQVVAIASNNGGKQALETVQRLL
PVLCQAHGLTPQQVVAIASNNGGKQALETVQRLLPVLCQAHGLTPEQV
VAIASNIGGKQALETVQALLPVLCQAHGLTPEQVVAIASNIGGKQALETV
QALLPVLCQAHGLTPQQVVAIASNNGGKQALETVQRLLPVLCQAHGLT
PEQVVAIASNIGGKQALETVQALLPVLCQAHGLTPQQVVAIASNNGGKQ
ALETVQRLLPVLCQAHGLTPQQVVAIASNGGGKQALETVQRLLPVLCQ
AHGLTPEQVVAIASNIGGKQALETVQALLPVLCQAHGLTPQQVVAIASN
GGGRPALESIVAQLSRPDPSGSGSGGDPISRSQLVKSELEEKKSELRH
KLKYVPHEYIELIEIARNSTQDRILEMKVMEFFMKVYGYRGKHLGGSRK
PDGAIYTVGSPIDYGVIVDTKAYSGGYNLPIGQADEMQRYVEENQTRNK
HINPNEWWKVYPSSVTEFKFLFVSGHFKGNYKAQLTRLNHITNCNGAV
LSVEELLIGGEMIKAGTLTLEEVRRKFNNGEINFAAD
20TALENMGDPKKKRKVIDYPYDVPDYAIDIADLRTLGYSQQQQEKIKPKVRSTVAKL-HD-HD-NG-HD-
right PD1QHHEALVGHGFTHAHIVALSQHPAALGTVAVKYQDMIAALPEATHEAIVNG-YK-NG-NN-
GVGKQWSGARALEALLTVAGELRGPPLQLDTGQLLKIAKRGGVTAVEANN-NN-NN-HD-
VHAWRNALTGAPLNLTPEQVVAIASKLGGKQALETVQALLPVLCQAHGLHD-NI-NG#
TPEQVVAIASHDGGKQALETVQRLLPVLCQAHGLTPEQVVAIASHDGG
KQALETVQRLLPVLCQAHGLTPQQVVAIASNGGGKQALETVQRLLPVL
CQAHGLTPEQVVAIASHDGGKQALETVQRLLPVLCQAHGLTPQQVVAI
ASNGGGKQALETVQRLLPVLCQAHGLTPQQVVAIASYKGGKQALETVQ
RLLPVLCQAHGLTPQQVVAIASNGGGKQALETVQRLLPVLCQAHGLTP
QQVVAIASNNGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNNGGKQ
ALETVQRLLPVLCQAHGLTPQQVVAIASNNGGKQALETVQRLLPVLCQA
HGLTPQQVVAIASNNGGKQALETVQRLLPVLCQAHGLTPEQVVAIASHD
GGKQALETVQRLLPVLCQAHGLTPEQVVAIASHDGGKQALETVQRLLP
VLCQAHGLTPEQVVAIASNIGGKQALETVQALLPVLCQAHGLTPQQVVA
IASNGGGRPALESIVAQLSRPDPALAALTNDHLVALACLGGRPALDAVK
KGLGDPISRSQLVKSELEEKKSELRHKLKYVPHEYIELIEIARNSTQDRIL
EMKVMEFFMKVYGYRGKHLGGSRKPDGAIYTVGSPIDYGVIVDTKAYS
GGYNLPIGQADEMQRYVEENQTRNKHINPNEWWKVYPSSVTEFKFLFV
SGHFKGNYKAQLTRLNHITNCNGAVLSVEELLIGGEMIKAGTLTLEEVRR
KFNNGEINFAAD
21TALENMGDPKKKRKVIDKETAAAKFERQHMDSIDIADLRTLGYSQQQQEKIKPKHD-NG-HD-NG-
Left PD1VRSTVAQHHEALVGHGFTHAHIVALSQHPAALGTVAVKYQDMIAALPEANG-NG-NN-NI-NG-
THEAIVGVGKQWSGARALEALLTVAGELRGPPLQLDTGQLLKIAKRGGVHD-NG-NN-N-NN-
TAVEAVHAWRNALTGAPLNLTPEQVVAIASHDGGKQALETVQRLLPVLHD-NG#
CQAHGLTPQQVVAIASNGGGKQALETVQRLLPVLCQAHGLTPEQVVAI
ASHDGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNGGGKQALETVQ
RLLPVLCQAHGLTPQQVVAIASNGGGKQALETVQRLLPVLCQAHGLTP
QQVVAIASNGGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNNGGKQ
ALETVQRLLPVLCQAHGLTPEQVVAIASNIGGKQALETVQALLPVLCQA
HGLTPQQVVAIASNGGGKQALETVQRLLPVLCQAHGLTPEQVVAIASH
DGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNGGGKQALETVQRLL
PVLCQAHGLTPQQVVAIASNNGGKQALETVQRLLPVLCQAHGLTPEQV
VAIASNGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNNGGKQALETV
QRLLPVLCQAHGLTPEQVVAIASHDGGKQALETVQRLLPVLCQAHGLT
PQQVVAIASNGGGRPALESIVAQLSRPDPALAALTNDHLVALACLGGRP
ALDAVKKGLGDPISRSQLVKSELEEKKSELRHKLKYVPHEYIELIEIARNS
TQDRILEMKVMEFFMKVYGYRGKHLGGSRKPDGAIYTVGSPIDYGVIVD
TKAYSGGYNLPIGQADEMQRYVEENQTRNKHINPNEWWKVYPSSVTE
FKFLFVSGHFKGNYKAQLTRLNHITNCNGAVLSVEELLIGGEMIKAGTLT
LEEVRRKFNNGEINFAAD
SEQ
IDSequence
NO#NamePolynucleotide sequence
22TALEN TRACATGGGCGATCCTAAAAAGAAACGTAAGGTCATCGATTACCCATACGATGTTCCAGATTACGCTAT
pCLS11370CGATATCGCCGATCTACGCACGCTCGGCTACAGCCAGCAGCAACAGGAGAAGATCAAACCGAA
GGTTCGTTCGACAGTGGCGCAGCACCACGAGGCACTGGTCGGCCACGGGTTTACACACGCGC
ACATCGTTGCGTTAAGCCAACACCCGGCAGCGTTAGGGACCGTCGCTGTCAAGTATCAGGACA
TGATCGCAGCGTTGCCAGAGGCGACACACGAAGCGATCGTTGGCGTCGGCAAACAGTGGTCC
GGCGCACGCGCTCTGGAGGCCTTGCTCACGGTGGCGGGAGAGTTGAGAGGTCCACCGTTACA
GTTGGACACAGGCCAACTTCTCAAGATTGCAAAACGTGGCGGCGTGACCGCAGTGGAGGCAGT
GCATGCATGGCGCAATGCACTGACGGGTGCCCCGCTCAACTTGACCCCCCAGCAGGTGGTGG
CCATCGCCAGCAATGGCGGTGGCAAGCAGGCGCTGGAGACGGTCCAGCGGCTGTTGCCGGTG
CTGTGCCAGGCCCACGGCTTGACCCCCCAGCAGGTGGTGGCCATCGCCAGCAATAATGGTGG
CAAGCAGGCGCTGGAGACGGTCCAGCGGCTGTTGCCGGTGCTGTGCCAGGCCCACGGCTTGA
CCCCCCAGCAGGTGGTGGCCATCGCCAGCAATGGCGGTGGCAAGCAGGCGCTGGAGACGGT
CCAGCGGCTGTTGCCGGTGCTGTGCCAGGCCCACGGCTTGACCCCGGAGCAGGTGGTGGCCA
TCGCCAGCCACGATGGCGGCAAGCAGGCGCTGGAGACGGTCCAGCGGCTGTTGCCGGTGCTG
TGCCAGGCCCACGGCTTGACCCCGGAGCAGGTGGTGGCCATCGCCAGCCACGATGGCGGCAA
GCAGGCGCTGGAGACGGTCCAGCGGCTGTTGCCGGTGCTGTGCCAGGCCCACGGCTTGACCC
CGGAGCAGGTGGTGGCCATCGCCAGCCACGATGGCGGCAAGCAGGCGCTGGAGACGGTCCA
GCGGCTGTTGCCGGTGCTGTGCCAGGCCCACGGCTTGACCCCGGAGCAGGTGGTGGCCATCG
CCAGCAATATTGGTGGCAAGCAGGCGCTGGAGACGGTGCAGGCGCTGTTGCCGGTGCTGTGC
CAGGCCCACGGCTTGACCCCGGAGCAGGTGGTGGCCATCGCCAGCCACGATGGCGGCAAGCA
GGCGCTGGAGACGGTCCAGCGGCTGTTGCCGGTGCTGTGCCAGGCCCACGGCTTGACCCCG
GAGCAGGTGGTGGCCATCGCCAGCAATATTGGTGGCAAGCAGGCGCTGGAGACGGTGCAGGC
GCTGTTGCCGGTGCTGTGCCAGGCCCACGGCTTGACCCCCCAGCAGGTGGTGGCCATCGCCA
GCAATAATGGTGGCAAGCAGGCGCTGGAGACGGTCCAGCGGCTGTTGCCGGTGCTGTGCCAG
GCCCACGGCTTGACCCCGGAGCAGGTGGTGGCCATCGCCAGCAATATTGGTGGCAAGCAGGC
GCTGGAGACGGTGCAGGCGCTGTTGCCGGTGCTGTGCCAGGCCCACGGCTTGACCCCCCAGC
AGGTGGTGGCCATCGCCAGCAATGGCGGTGGCAAGCAGGCGCTGGAGACGGTCCAGCGGCT
GTTGCCGGTGCTGTGCCAGGCCCACGGCTTGACCCCGGAGCAGGTGGTGGCCATCGCCAGCA
ATATTGGTGGCAAGCAGGCGCTGGAGACGGTGCAGGCGCTGTTGCCGGTGCTGTGCCAGGCC
CACGGCTTGACCCCCCAGCAGGTGGTGGCCATCGCCAGCAATGGCGGTGGCAAGCAGGCGCT
GGAGACGGTCCAGCGGCTGTTGCCGGTGCTGTGCCAGGCCCACGGCTTGACCCCGGAGCAG
GTGGTGGCCATCGCCAGCCACGATGGCGGCAAGCAGGCGCTGGAGACGGTCCAGCGGCTGTT
GCCGGTGCTGTGCCAGGCCCACGGCTTGACCCCTCAGCAGGTGGTGGCCATCGCCAGCAATG
GCGGCGGCAGGCCGGCGCTGGAGAGCATTGTTGCCCAGTTATCTCGCCCTGATCCGGCGTTG
GCCGCGTTGACCAACGACCACCTCGTCGCCTTGGCCTGCCTCGGCGGGCGTCCTGCGCTGGA
TGCAGTGAAAAAGGGATTGGGGGATCCTATCAGCCGTTCCCAGCTGGTGAAGTCCGAGCTGGA
GGAGAAGAAATCCGAGTTGAGGCACAAGCTGAAGTACGTGCCCCACGAGTACATCGAGCTGAT
CGAGATCGCCCGGAACAGCACCCAGGACCGTATCCTGGAGATGAAGGTGATGGAGTTCTTCAT
GAAGGTGTACGGCTACAGGGGCAAGCACCTGGGCGGCTCCAGGAAGCCCGACGGCGCCATCT
ACACCGTGGGCTCCCCCATCGACTACGGCGTGATCGTGGACACCAAGGCCTACTCCGGCGGC
TACAACCTGCCCATCGGCCAGGCCGACGAAATGCAGAGGTACGTGGAGGAGAACCAGACCAG
GAACAAGCACATCAACCCCAACGAGTGGTGGAAGGTGTACCCCTCCAGCGTGACCGAGTTCAA
GTTCCTGTTCGTGTCCGGCCACTTCAAGGGCAACTACAAGGCCCAGCTGACCAGGCTGAACCA
CATCACCAACTGCAACGGCGCCGTGCTGTCCGTGGAGGAGCTCCTGATCGGCGGCGAGATGA
TCAAGGCCGGCACCCTGACCCTGGAGGAGGTGAGGAGGAAGTTCAACAACGGCGAGATCAAC
TTCGCGGCCGACTGATAA
23TALEN TRACATGGGCGATCCTAAAAAGAAACGTAAGGTCATCGATAAGGAGACCGCCGCTGCCAAGTTCGAG
pCLS11369AGACAGCACATGGACAGCATCGATATCGCCGATCTACGCACGCTCGGCTACAGCCAGCAGCAA
CAGGAGAAGATCAAACCGAAGGTTCGTTCGACAGTGGCGCAGCACCACGAGGCACTGGTCGG
CCACGGGTTTACACACGCGCACATCGTTGCGTTAAGCCAACACCCGGCAGCGTTAGGGACCGT
CGCTGTCAAGTATCAGGACATGATCGCAGCGTTGCCAGAGGCGACACACGAAGCGATCGTTGG
CGTCGGCAAACAGTGGTCCGGCGCACGCGCTCTGGAGGCCTTGCTCACGGTGGCGGGAGAGT
TGAGAGGTCCACCGTTACAGTTGGACACAGGCCAACTTCTCAAGATTGCAAAACGTGGCGGCG
TGACCGCAGTGGAGGCAGTGCATGCATGGCGCAATGCACTGACGGGTGCCCCGCTCAACTTG
ACCCCGGAGCAGGTGGTGGCCATCGCCAGCCACGATGGCGGCAAGCAGGCGCTGGAGACGG
TCCAGCGGCTGTTGCCGGTGCTGTGCCAGGCCCACGGCTTGACCCCCCAGCAGGTGGTGGCC
ATCGCCAGCAATGGCGGTGGCAAGCAGGCGCTGGAGACGGTCCAGCGGCTGTTGCCGGTGCT
GTGCCAGGCCCACGGCTTGACCCCGGAGCAGGTGGTGGCCATCGCCAGCCACGATGGCGGC
AAGCAGGCGCTGGAGACGGTCCAGCGGCTGTTGCCGGTGCTGTGCCAGGCCCACGGCTTGAC
CCCGGAGCAGGTGGTGGCCATCGCCAGCAATATTGGTGGCAAGCAGGCGCTGGAGACGGTGC
AGGCGCTGTTGCCGGTGCTGTGCCAGGCCCACGGCTTGACCCCCCAGCAGGTGGTGGCCATC
GCCAGCAATAATGGTGGCAAGCAGGCGCTGGAGACGGTCCAGCGGCTGTTGCCGGTGCTGTG
CCAGGCCCACGGCTTGACCCCGGAGCAGGTGGTGGCCATCGCCAGCCACGATGGCGGCAAG
CAGGCGCTGGAGACGGTCCAGCGGCTGTTGCCGGTGCTGTGCCAGGCCCACGGCTTGACCCC
CCAGCAGGTGGTGGCCATCGCCAGCAATGGCGGTGGCAAGCAGGCGCTGGAGACGGTCCAG
CGGCTGTTGCCGGTGCTGTGCCAGGCCCACGGCTTGACCCCCCAGCAGGTGGTGGCCATCGC
CAGCAATAATGGTGGCAAGCAGGCGCTGGAGACGGTCCAGCGGCTGTTGCCGGTGCTGTGCC
AGGCCCACGGCTTGACCCCCCAGCAGGTGGTGGCCATCGCCAGCAATAATGGTGGCAAGCAG
GCGCTGGAGACGGTCCAGCGGCTGTTGCCGGTGCTGTGCCAGGCCCACGGCTTGACCCCCCA
GCAGGTGGTGGCCATCGCCAGCAATGGCGGTGGCAAGCAGGCGCTGGAGACGGTCCAGCGG
CTGTTGCCGGTGCTGTGCCAGGCCCACGGCTTGACCCCGGAGCAGGTGGTGGCCATCGCCAG
CAATATTGGTGGCAAGCAGGCGCTGGAGACGGTGCAGGCGCTGTTGCCGGTGCTGTGCCAGG
CCCACGGCTTGACCCCGGAGCAGGTGGTGGCCATCGCCAGCCACGATGGCGGCAAGCAGGC
GCTGGAGACGGTCCAGCGGCTGTTGCCGGTGCTGTGCCAGGCCCACGGCTTGACCCCGGAGC
AGGTGGTGGCCATCGCCAGCAATATTGGTGGCAAGCAGGCGCTGGAGACGGTGCAGGCGCTG
TTGCCGGTGCTGTGCCAGGCCCACGGCTTGACCCCGGAGCAGGTGGTGGCCATCGCCAGCCA
CGATGGCGGCAAGCAGGCGCTGGAGACGGTCCAGCGGCTGTTGCCGGTGCTGTGCCAGGCC
CACGGCTTGACCCCCCAGCAGGTGGTGGCCATCGCCAGCAATAATGGTGGCAAGCAGGCGCT
GGAGACGGTCCAGCGGCTGTTGCCGGTGCTGTGCCAGGCCCACGGCTTGACCCCTCAGCAGG
TGGTGGCCATCGCCAGCAATGGCGGCGGCAGGCCGGCGCTGGAGAGCATTGTTGCCCAGTTA
TCTCGCCCTGATCCGGCGTTGGCCGCGTTGACCAACGACCACCTCGTCGCCTTGGCCTGCCTC
GGCGGGCGTCCTGCGCTGGATGCAGTGAAAAAGGGATTGGGGGATCCTATCAGCCGTTCCCA
GCTGGTGAAGTCCGAGCTGGAGGAGAAGAAATCCGAGTTGAGGCACAAGCTGAAGTACGTGCC
CCACGAGTACATCGAGCTGATCGAGATCGCCCGGAACAGCACCCAGGACCGTATCCTGGAGAT
GAAGGTGATGGAGTTCTTCATGAAGGTGTACGGCTACAGGGGCAAGCACCTGGGCGGCTCCA
GGAAGCCCGACGGCGCCATCTACACCGTGGGCTCCCCCATCGACTACGGCGTGATCGTGGAC
ACCAAGGCCTACTCCGGCGGCTACAACCTGCCCATCGGCCAGGCCGACGAAATGCAGAGGTA
CGTGGAGGAGAACCAGACCAGGAACAAGCACATCAACCCCAACGAGTGGTGGAAGGTGTACC
CCTCCAGCGTGACCGAGTTCAAGTTCCTGTTCGTGTCCGGCCACTTCAAGGGCAACTACAAGG
CCCAGCTGACCAGGCTGAACCACATCACCAACTGCAACGGCGCCGTGCTGTCCGTGGAGGAG
CTCCTGATCGGCGGCGAGATGATCAAGGCCGGCACCCTGACCCTGGAGGAGGTGAGGAGGAA
GTTCAACAACGGCGAGATCAACTTCGCGGCCGACTGATAA
24TALEN CD25ATGGGCGATCCTAAAAAGAAACGTAAGGTCATCGATTACCCATACGATGTTCCAGATTACGCTAT
pCLS30480CGATATCGCCGATCTACGCACGCTCGGCTACAGCCAGCAGCAACAGGAGAAGATCAAACCGAA
GGTTCGTTCGACAGTGGCGCAGCACCACGAGGCACTGGTCGGCCACGGGTTTACACACGCGC
ACATCGTTGCGTTAAGCCAACACCCGGCAGCGTTAGGGACCGTCGCTGTCAAGTATCAGGACA
TGATCGCAGCGTTGCCAGAGGCGACACACGAAGCGATCGTTGGCGTCGGCAAACAGTGGTCC
GGCGCACGCGCTCTGGAGGCCTTGCTCACGGTGGCGGGAGAGTTGAGAGGTCCACCGTTACA
GTTGGACACAGGCCAACTTCTCAAGATTGCAAAACGTGGCGGCGTGACCGCAGTGGAGGCAGT
GCATGCATGGCGCAATGCACTGACGGGTGCCCCGCTCAACTTGACCCCCCAGCAGGTGGTGG
CCATCGCCAGCAATAATGGTGGCAAGCAGGCGCTGGAGACGGTCCAGCGGCTGTTGCCGGTG
CTGTGCCAGGCCCACGGCTTGACCCCCCAGCAGGTGGTGGCCATCGCCAGCAATGGCGGTGG
CAAGCAGGCGCTGGAGACGGTCCAGCGGCTGTTGCCGGTGCTGTGCCAGGCCCACGGCTTGA
CCCCCCAGCAGGTGGTGGCCATCGCCAGCAATGGCGGTGGCAAGCAGGCGCTGGAGACGGT
CCAGCGGCTGTTGCCGGTGCTGTGCCAGGCCCACGGCTTGACCCCGGAGCAGGTGGTGGCCA
TCGCCAGCCACGATGGCGGCAAGCAGGCGCTGGAGACGGTCCAGCGGCTGTTGCCGGTGCTG
TGCCAGGCCCACGGCTTGACCCCCCAGCAGGTGGTGGCCATCGCCAGCAATGGCGGTGGCAA
GCAGGCGCTGGAGACGGTCCAGCGGCTGTTGCCGGTGCTGTGCCAGGCCCACGGCTTGACCC
CCCAGCAGGTGGTGGCCATCGCCAGCAATGGCGGTGGCAAGCAGGCGCTGGAGACGGTCCA
GCGGCTGTTGCCGGTGCTGTGCCAGGCCCACGGCTTGACCCCCCAGCAGGTGGTGGCCATCG
CCAGCAATGGCGGTGGCAAGCAGGCGCTGGAGACGGTCCAGCGGCTGTTGCCGGTGCTGTGC
CAGGCCCACGGCTTGACCCCCCAGCAGGTGGTGGCCATCGCCAGCAATGGCGGTGGCAAGCA
GGCGCTGGAGACGGTCCAGCGGCTGTTGCCGGTGCTGTGCCAGGCCCACGGCTTGACCCCCC
AGCAGGTGGTGGCCATCGCCAGCAATAATGGTGGCAAGCAGGCGCTGGAGACGGTCCAGCGG
CTGTTGCCGGTGCTGTGCCAGGCCCACGGCTTGACCCCCCAGCAGGTGGTGGCCATCGCCAG
CAATAATGGTGGCAAGCAGGCGCTGGAGACGGTCCAGCGGCTGTTGCCGGTGCTGTGCCAGG
CCCACGGCTTGACCCCCCAGCAGGTGGTGGCCATCGCCAGCAATGGCGGTGGCAAGCAGGCG
CTGGAGACGGTCCAGCGGCTGTTGCCGGTGCTGTGCCAGGCCCACGGCTTGACCCCCCAGCA
GGTGGTGGCCATCGCCAGCAATGGCGGTGGCAAGCAGGCGCTGGAGACGGTCCAGCGGCTG
TTGCCGGTGCTGTGCCAGGCCCACGGCTTGACCCCCCAGCAGGTGGTGGCCATCGCCAGCAA
TGGCGGTGGCAAGCAGGCGCTGGAGACGGTCCAGCGGCTGTTGCCGGTGCTGTGCCAGGCC
CACGGCTTGACCCCCCAGCAGGTGGTGGCCATCGCCAGCAATGGCGGTGGCAAGCAGGCGCT
GGAGACGGTCCAGCGGCTGTTGCCGGTGCTGTGCCAGGCCCACGGCTTGACCCCGGAGCAG
GTGGTGGCCATCGCCAGCCACGATGGCGGCAAGCAGGCGCTGGAGACGGTCCAGCGGCTGTT
GCCGGTGCTGTGCCAGGCCCACGGCTTGACCCCTCAGCAGGTGGTGGCCATCGCCAGCAATG
GCGGCGGCAGGCCGGCGCTGGAGAGCATTGTTGCCCAGTTATCTCGCCCTGATCCGAGTGGC
AGCGGAAGTGGCGGGGATCCTATCAGCCGTTCCCAGCTGGTGAAGTCCGAGCTGGAGGAGAA
GAAATCCGAGTTGAGGCACAAGCTGAAGTACGTGCCCCACGAGTACATCGAGCTGATCGAGAT
CGCCCGGAACAGCACCCAGGACCGTATCCTGGAGATGAAGGTGATGGAGTTCTTCATGAAGGT
GTACGGCTACAGGGGCAAGCACCTGGGCGGCTCCAGGAAGCCCGACGGCGCCATCTACACCG
TGGGCTCCCCCATCGACTACGGCGTGATCGTGGACACCAAGGCCTACTCCGGCGGCTACAACC
TGCCCATCGGCCAGGCCGACGAAATGCAGAGGTACGTGGAGGAGAACCAGACCAGGAACAAG
CACATCAACCCCAACGAGTGGTGGAAGGTGTACCCCTCCAGCGTGACCGAGTTCAAGTTCCTG
TTCGTGTCCGGCCACTTCAAGGGCAACTACAAGGCCCAGCTGACCAGGCTGAACCACATCACC
AACTGCAACGGCGCCGTGCTGTCCGTGGAGGAGCTCCTGATCGGCGGCGAGATGATCAAGGC
CGGCACCCTGACCCTGGAGGAGGTGAGGAGGAAGTTCAACAACGGCGAGATCAACTTCGCGG
CCGACTGATAA
25TALEN CD25ATGGGCGATCCTAAAAAGAAACGTAAGGTCATCGATTACCCATACGATGTTCCAGATTACGCTAT
pCLS30479CGATATCGCCGATCTACGCACGCTCGGCTACAGCCAGCAGCAACAGGAGAAGATCAAACCGAA
GGTTCGTTCGACAGTGGCGCAGCACCACGAGGCACTGGTCGGCCACGGGTTTACACACGCGC
ACATCGTTGCGTTAAGCCAACACCCGGCAGCGTTAGGGACCGTCGCTGTCAAGTATCAGGACA
TGATCGCAGCGTTGCCAGAGGCGACACACGAAGCGATCGTTGGCGTCGGCAAACAGTGGTCC
GGCGCACGCGCTCTGGAGGCCTTGCTCACGGTGGCGGGAGAGTTGAGAGGTCCACCGTTACA
GTTGGACACAGGCCAACTTCTCAAGATTGCAAAACGTGGCGGCGTGACCGCAGTGGAGGCAGT
GCATGCATGGCGCAATGCACTGACGGGTGCCCCGCTCAACTTGACCCCGGAGCAGGTGGTGG
CCATCGCCAGCAATATTGGTGGCAAGCAGGCGCTGGAGACGGTGCAGGCGCTGTTGCCGGTG
CTGTGCCAGGCCCACGGCTTGACCCCGGAGCAGGTGGTGGCCATCGCCAGCCACGATGGCGG
CAAGCAGGCGCTGGAGACGGTCCAGCGGCTGTTGCCGGTGCTGTGCCAGGCCCACGGCTTGA
CCCCGGAGCAGGTGGTGGCCATCGCCAGCAATATTGGTGGCAAGCAGGCGCTGGAGACGGTG
CAGGCGCTGTTGCCGGTGCTGTGCCAGGCCCACGGCTTGACCCCCCAGCAGGTGGTGGCCAT
CGCCAGCAATAATGGTGGCAAGCAGGCGCTGGAGACGGTCCAGCGGCTGTTGCCGGTGCTGT
GCCAGGCCCACGGCTTGACCCCCCAGCAGGTGGTGGCCATCGCCAGCAATAATGGTGGCAAG
CAGGCGCTGGAGACGGTCCAGCGGCTGTTGCCGGTGCTGTGCCAGGCCCACGGCTTGACCCC
GGAGCAGGTGGTGGCCATCGCCAGCAATATTGGTGGCAAGCAGGCGCTGGAGACGGTGCAGG
CGCTGTTGCCGGTGCTGTGCCAGGCCCACGGCTTGACCCCCCAGCAGGTGGTGGCCATCGCC
AGCAATAATGGTGGCAAGCAGGCGCTGGAGACGGTCCAGCGGCTGTTGCCGGTGCTGTGCCA
GGCCCACGGCTTGACCCCCCAGCAGGTGGTGGCCATCGCCAGCAATAATGGTGGCAAGCAGG
CGCTGGAGACGGTCCAGCGGCTGTTGCCGGTGCTGTGCCAGGCCCACGGCTTGACCCCGGAG
CAGGTGGTGGCCATCGCCAGCAATATTGGTGGCAAGCAGGCGCTGGAGACGGTGCAGGCGCT
GTTGCCGGTGCTGTGCCAGGCCCACGGCTTGACCCCGGAGCAGGTGGTGGCCATCGCCAGCA
ATATTGGTGGCAAGCAGGCGCTGGAGACGGTGCAGGCGCTGTTGCCGGTGCTGTGCCAGGCC
CACGGCTTGACCCCCCAGCAGGTGGTGGCCATCGCCAGCAATAATGGTGGCAAGCAGGCGCT
GGAGACGGTCCAGCGGCTGTTGCCGGTGCTGTGCCAGGCCCACGGCTTGACCCCGGAGCAG
GTGGTGGCCATCGCCAGCAATATTGGTGGCAAGCAGGCGCTGGAGACGGTGCAGGCGCTGTT
GCCGGTGCTGTGCCAGGCCCACGGCTTGACCCCCCAGCAGGTGGTGGCCATCGCCAGCAATA
ATGGTGGCAAGCAGGCGCTGGAGACGGTCCAGCGGCTGTTGCCGGTGCTGTGCCAGGCCCAC
GGCTTGACCCCCCAGCAGGTGGTGGCCATCGCCAGCAATGGCGGTGGCAAGCAGGCGCTGGA
GACGGTCCAGCGGCTGTTGCCGGTGCTGTGCCAGGCCCACGGCTTGACCCCGGAGCAGGTGG
TGGCCATCGCCAGCAATATTGGTGGCAAGCAGGCGCTGGAGACGGTGCAGGCGCTGTTGCCG
GTGCTGTGCCAGGCCCACGGCTTGACCCCTCAGCAGGTGGTGGCCATCGCCAGCAATGGCGG
CGGCAGGCCGGCGCTGGAGAGCATTGTTGCCCAGTTATCTCGCCCTGATCCGAGTGGCAGCG
GAAGTGGCGGGGATCCTATCAGCCGTTCCCAGCTGGTGAAGTCCGAGCTGGAGGAGAAGAAAT
CCGAGTTGAGGCACAAGCTGAAGTACGTGCCCCACGAGTACATCGAGCTGATCGAGATCGCCC
GGAACAGCACCCAGGACCGTATCCTGGAGATGAAGGTGATGGAGTTCTTCATGAAGGTGTACG
GCTACAGGGGCAAGCACCTGGGCGGCTCCAGGAAGCCCGACGGCGCCATCTACACCGTGGGC
TCCCCCATCGACTACGGCGTGATCGTGGACACCAAGGCCTACTCCGGCGGCTACAACCTGCCC
ATCGGCCAGGCCGACGAAATGCAGAGGTACGTGGAGGAGAACCAGACCAGGAACAAGCACAT
CAACCCCAACGAGTGGTGGAAGGTGTACCCCTCCAGCGTGACCGAGTTCAAGTTCCTGTTCGT
GTCCGGCCACTTCAAGGGCAACTACAAGGCCCAGCTGACCAGGCTGAACCACATCACCAACTG
CAACGGCGCCGTGCTGTCCGTGGAGGAGCTCCTGATCGGCGGCGAGATGATCAAGGCCGGCA
CCCTGACCCTGGAGGAGGTGAGGAGGAAGTTCAACAACGGCGAGATCAACTTCGCGGCCGAC
TGATAA
26TALEN PD1ATGGGCGATCCTAAAAAGAAACGTAAGGTCATCGATTACCCATACGATGTTCCAGATTACGCTAT
pCLS28959CGATATCGCCGATCTACGCACGCTCGGCTACAGCCAGCAGCAACAGGAGAAGATCAAACCGAA
GGTTCGTTCGACAGTGGCGCAGCACCACGAGGCACTGGTCGGCCACGGGTTTACACACGCGC
ACATCGTTGCGTTAAGCCAACACCCGGCAGCGTTAGGGACCGTCGCTGTCAAGTATCAGGACA
TGATCGCAGCGTTGCCAGAGGCGACACACGAAGCGATCGTTGGCGTCGGCAAACAGTGGTCC
GGCGCACGCGCTCTGGAGGCCTTGCTCACGGTGGCGGGAGAGTTGAGAGGTCCACCGTTACA
GTTGGACACAGGCCAACTTCTCAAGATTGCAAAACGTGGCGGCGTGACCGCAGTGGAGGCAGT
GCATGCATGGCGCAATGCACTGACGGGTGCCCCGCTCAACTTGACCCCCGAGCAAGTGGTGG
CTATCGCTTCCAAGCTGGGGGGAAAGCAGGCCCTGGAGACCGTCCAGGCCCTTCTCCCAGTG
CTTTGCCAGGCTCACGGACTGACCCCTGAACAGGTGGTGGCAATTGCCTCACACGACGGGGG
CAAGCAGGCACTGGAGACTGTCCAGCGGCTGCTGCCTGTCCTCTGCCAGGCCCACGGACTCA
CTCCTGAGCAGGTCGTGGCCATTGCCAGCCACGATGGGGGCAAACAGGCTCTGGAGACCGTG
CAGCGCCTCCTCCCAGTGCTGTGCCAGGCTCATGGGCTGACCCCACAGCAGGTCGTCGCCATT
GCCAGTAACGGCGGGGGGAAGCAGGCCCTCGAAACAGTGCAGAGGCTGCTGCCCGTCTTGTG
CCAAGCACACGGCCTGACACCCGAGCAGGTGGTGGCCATCGCCTCTCATGACGGCGGCAAGC
AGGCCCTTGAGACAGTGCAGAGACTGTTGCCCGTGTTGTGTCAGGCCCACGGGTTGACACCCC
AGCAGGTGGTCGCCATCGCCAGCAATGGCGGGGGAAAGCAGGCCCTTGAGACCGTGCAGCGG
TTGCTTCCAGTGTTGTGCCAGGCACACGGACTGACCCCTCAACAGGTGGTCGCAATCGCCAGC
TACAAGGGCGGAAAGCAGGCTCTGGAGACAGTGCAGCGCCTCCTGCCCGTGCTGTGTCAGGC
TCACGGACTGACACCACAGCAGGTGGTCGCCATCGCCAGTAACGGGGGCGGCAAGCAGGCTT
TGGAGACCGTCCAGAGACTCCTCCCCGTCCTTTGCCAGGCCCACGGGTTGACACCTCAGCAGG
TCGTCGCCATTGCCTCCAACAACGGGGGCAAGCAGGCCCTCGAAACTGTGCAGAGGCTGCTG
CCTGTGCTGTGCCAGGCTCATGGGCTGACACCCCAGCAGGTGGTGGCCATTGCCTCTAACAAC
GGCGGCAAACAGGCACTGGAGACCGTGCAAAGGCTGCTGCCCGTCCTCTGCCAAGCCCACGG
GCTCACTCCACAGCAGGTCGTGGCCATCGCCTCAAACAATGGCGGGAAGCAGGCCCTGGAGA
CTGTGCAAAGGCTGCTCCCTGTGCTCTGCCAGGCACACGGACTGACCCCTCAGCAGGTGGTG
GCAATCGCTTCCAACAACGGGGGAAAGCAGGCCCTCGAAACCGTGCAGCGCCTCCTCCCAGT
GCTGTGCCAGGCACATGGCCTCACACCCGAGCAAGTGGTGGCTATCGCCAGCCACGACGGAG
GGAAGCAGGCTCTGGAGACCGTGCAGAGGCTGCTGCCTGTCCTGTGCCAGGCCCACGGGCTT
ACTCCAGAGCAGGTCGTCGCCATCGCCAGTCATGATGGGGGGAAGCAGGCCCTTGAGACAGT
CCAGCGGCTGCTGCCAGTCCTTTGCCAGGCTCACGGCTTGACTCCCGAGCAGGTCGTGGCCAT
TGCCTCAAACATTGGGGGCAAACAGGCCCTGGAGACAGTGCAGGCCCTGCTGCCCGTGTTGTG
TCAGGCCCACGGCTTGACACCCCAGCAGGTGGTCGCCATTGCCTCTAATGGCGGCGGGAGAC
CCGCCTTGGAGAGCATTGTTGCCCAGTTATCTCGCCCTGATCCGGCGTTGGCCGCGTTGACCA
ACGACCACCTCGTCGCCTTGGCCTGCCTCGGCGGGCGTCCTGCGCTGGATGCAGTGAAAAAG
GGATTGGGGGATCCTATCAGCCGTTCCCAGCTGGTGAAGTCCGAGCTGGAGGAGAAGAAATCC
GAGTTGAGGCACAAGCTGAAGTACGTGCCCCACGAGTACATCGAGCTGATCGAGATCGCCCGG
AACAGCACCCAGGACCGTATCCTGGAGATGAAGGTGATGGAGTTCTTCATGAAGGTGTACGGC
TACAGGGGCAAGCACCTGGGCGGCTCCAGGAAGCCCGACGGCGCCATCTACACCGTGGGCTC
CCCCATCGACTACGGCGTGATCGTGGACACCAAGGCCTACTCCGGCGGCTACAACCTGCCCAT
CGGCCAGGCCGACGAAATGCAGAGGTACGTGGAGGAGAACCAGACCAGGAACAAGCACATCA
ACCCCAACGAGTGGTGGAAGGTGTACCCCTCCAGCGTGACCGAGTTCAAGTTCCTGTTCGTGT
CCGGCCACTTCAAGGGCAACTACAAGGCCCAGCTGACCAGGCTGAACCACATCACCAACTGCA
ACGGCGCCGTGCTGTCCGTGGAGGAGCTCCTGATCGGCGGCGAGATGATCAAGGCCGGCACC
CTGACCCTGGAGGAGGTGAGGAGGAAGTTCAACAACGGCGAGATCAACTTCGCGGCCGACTG
ATAA
27TALEN PD1ATGGGCGATCCTAAAAAGAAACGTAAGGTCATCGATAAGGAGACCGCCGCTGCCAAGTTCGAG
pCLS18792AGACAGCACATGGACAGCATCGATATCGCCGATCTACGCACGCTCGGCTACAGCCAGCAGCAA
CAGGAGAAGATCAAACCGAAGGTTCGTTCGACAGTGGCGCAGCACCACGAGGCACTGGTCGG
CCACGGGTTTACACACGCGCACATCGTTGCGTTAAGCCAACACCCGGCAGCGTTAGGGACCGT
CGCTGTCAAGTATCAGGACATGATCGCAGCGTTGCCAGAGGCGACACACGAAGCGATCGTTGG
CGTCGGCAAACAGTGGTCCGGCGCACGCGCTCTGGAGGCCTTGCTCACGGTGGCGGGAGAGT
TGAGAGGTCCACCGTTACAGTTGGACACAGGCCAACTTCTCAAGATTGCAAAACGTGGCGGCG
TGACCGCAGTGGAGGCAGTGCATGCATGGCGCAATGCACTGACGGGTGCCCCGCTCAACTTG
ACCCCCGAGCAAGTCGTCGCAATCGCCAGCCATGATGGAGGGAAGCAAGCCCTCGAAACCGT
GCAGCGGTTGCTTCCTGTGCTCTGCCAGGCCCACGGCCTTACCCCTCAGCAGGTGGTGGCCAT
CGCAAGTAACGGAGGAGGAAAGCAAGCCTTGGAGACAGTGCAGCGCCTGTTGCCCGTGCTGT
GCCAGGCACACGGCCTCACACCAGAGCAGGTCGTGGCCATTGCCTCCCATGACGGGGGGAAA
CAGGCTCTGGAGACCGTCCAGAGGCTGCTGCCCGTCCTCTGTCAAGCTCACGGCCTGACTCCC
CAACAAGTGGTCGCCATCGCCTCTAATGGCGGCGGGAAGCAGGCACTGGAAACAGTGCAGAG
ACTGCTCCCTGTGCTTTGCCAAGCTCATGGGTTGACCCCCCAACAGGTCGTCGCTATTGCCTCA
AACGGGGGGGGCAAGCAGGCCCTTGAGACTGTGCAGAGGCTGTTGCCAGTGCTGTGTCAGGC
TCACGGGCTCACTCCACAACAGGTGGTCGCAATTGCCAGCAACGGCGGCGGAAAGCAAGCTCT
TGAAACCGTGCAACGCCTCCTGCCCGTGCTCTGTCAGGCTCATGGCCTGACACCACAACAAGT
CGTGGCCATCGCCAGTAATAATGGCGGGAAACAGGCTCTTGAGACCGTCCAGAGGCTGCTCCC
AGTGCTCTGCCAGGCACACGGGCTGACCCCCGAGCAGGTGGTGGCTATCGCCAGCAATATTG
GGGGCAAGCAGGCCCTGGAAACAGTCCAGGCCCTGCTGCCAGTGCTTTGCCAGGCTCACGGG
CTCACTCCCCAGCAGGTCGTGGCAATCGCCTCCAACGGCGGAGGGAAGCAGGCTCTGGAGAC
CGTGCAGAGACTGCTGCCCGTCTTGTGCCAGGCCCACGGACTCACACCTGAACAGGTCGTCGC
CATTGCCTCTCACGATGGGGGCAAACAAGCCCTGGAGACAGTGCAGCGGCTGTTGCCTGTGTT
GTGCCAAGCCCACGGCTTGACTCCTCAACAAGTGGTCGCCATCGCCTCAAATGGCGGCGGAAA
ACAAGCTCTGGAGACAGTGCAGAGGTTGCTGCCCGTCCTCTGCCAAGCCCACGGCCTGACTCC
CCAACAGGTCGTCGCCATTGCCAGCAACAACGGAGGAAAGCAGGCTCTCGAAACTGTGCAGCG
GCTGCTTCCTGTGCTGTGTCAGGCTCATGGGCTGACCCCCGAGCAAGTGGTGGCTATTGCCTC
TAATGGAGGCAAGCAAGCCCTTGAGACAGTCCAGAGGCTGTTGCCAGTGCTGTGCCAGGCCCA
CGGGCTCACACCCCAGCAGGTGGTCGCCATCGCCAGTAACAACGGGGGCAAACAGGCATTGG
AAACCGTCCAGCGCCTGCTTCCAGTGCTCTGCCAGGCACACGGACTGACACCCGAACAGGTGG
TGGCCATTGCATCCCATGATGGGGGCAAGCAGGCCCTGGAGACCGTGCAGAGACTCCTGCCA
GTGTTGTGCCAAGCTCACGGCCTCACCCCTCAGCAAGTCGTGGCCATCGCCTCAAACGGGGG
GGGCCGGCCTGCACTGGAGAGCATTGTTGCCCAGTTATCTCGCCCTGATCCGGCGTTGGCCG
CGTTGACCAACGACCACCTCGTCGCCTTGGCCTGCCTCGGCGGGCGTCCTGCGCTGGATGCA
GTGAAAAAGGGATTGGGGGATCCTATCAGCCGTTCCCAGCTGGTGAAGTCCGAGCTGGAGGAG
AAGAAATCCGAGTTGAGGCACAAGCTGAAGTACGTGCCCCACGAGTACATCGAGCTGATCGAG
ATCGCCCGGAACAGCACCCAGGACCGTATCCTGGAGATGAAGGTGATGGAGTTCTTCATGAAG
GTGTACGGCTACAGGGGCAAGCACCTGGGCGGCTCCAGGAAGCCCGACGGCGCCATCTACAC
CGTGGGCTCCCCCATCGACTACGGCGTGATCGTGGACACCAAGGCCTACTCCGGCGGCTACA
ACCTGCCCATCGGCCAGGCCGACGAAATGCAGAGGTACGTGGAGGAGAACCAGACCAGGAAC
AAGCACATCAACCCCAACGAGTGGTGGAAGGTGTACCCCTCCAGCGTGACCGAGTTCAAGTTC
CTGTTCGTGTCCGGCCACTTCAAGGGCAACTACAAGGCCCAGCTGACCAGGCTGAACCACATC
ACCAACTGCAACGGCGCCGTGCTGTCCGTGGAGGAGCTCCTGATCGGCGGCGAGATGATCAA
GGCCGGCACCCTGACCCTGGAGGAGGTGAGGAGGAAGTTCAACAACGGCGAGATCAACTTCG
CGGCCGACTGATAA
28TALE NTTGTCCCACAGATATCCAGAACCCTGACCCTGCCGTGTACCAGCTGAGA
target TRAC
29TALE NTACAGGAGGAAGAGTAGAAGAACAATCTAGAAAACCAAAAGAACA
target CD25
30TALE NTACCTCTGTGGGGCCATCTCCCTGGCCCCCAAGGCGCAGATCAAAGAGA
target PD1
31Matrice TRACTTGCTGGGCCTTTTTCCCATGCCTGCCTTTACTCTGCCAGAGTTATATTGCTGGGGTTTTGAAGA
locus_CubiCARAGATCCTATTAAATAAAAGAATAAGCAGTATTATTAAGTAGCCCTGCATTTCAGGTTTCCTTGAGT
CD22GGCAGGCCAGGCCTGGCCGTGAACGTTCACTGAAATCATGGCCTCTTGGCCAAGATTGATAGC
pCLS30056TTGTGCCTGTCCCTGAGTCCCAGTCCATCACGAGCAGCTGGTTTCTAAGATGCTATTTCCCGTA
TAAAGCATGAGACCGTGACTTGCCAGCCCCACAGAGCCCCGCCCTTGTCCATCACTGGCATCT
GGACTCCAGCCTGGGTTGGGGCAAAGAGGGAAATGAGATCATGTCCTAACCCTGATCCTCTTG
TCCCACAGATATCCAGTACCCCTACGACGTGCCCGACTACGCCTCCGGTGAGGGCAGAGGAAG
TCTTCTAACATGCGGTGACGTGGAGGAGAATCCGGGCCCCGGATCCGCTCTGCCCGTCACCGC
TCTGCTGCTGCCACTGGCACTGCTGCTGCACGCTGCTAGGCCCGGAGGGGGAGGCAGCTGCC
CCTACAGCAACCCCAGCCTGTGCAGCGGAGGCGGCGGCAGCGGCGGAGGGGGTAGCCAGGT
GCAGCTGCAGCAGAGCGGCCCTGGCCTGGTGAAGCCAAGCCAGACACTGTCCCTGACCTGCG
CCATCAGCGGCGATTCCGTGAGCTCCAACTCCGCCGCCTGGAATTGGATCAGGCAGTCCCCTT
CTCGGGGCCTGGAGTGGCTGGGAAGGACATACTATCGGTCTAAGTGGTACAACGATTATGCCG
TGTCTGTGAAGAGCAGAATCACAATCAACCCTGACACCTCCAAGAATCAGTTCTCTCTGCAGCT
GAATAGCGTGACACCAGAGGACACCGCCGTGTACTATTGCGCCAGGGAGGTGACCGGCGACC
TGGAGGATGCCTTTGACATCTGGGGCCAGGGCACAATGGTGACCGTGAGCTCCGGAGGCGGC
GGATCTGGCGGAGGAGGAAGTGGGGGCGGCGGGAGTGATATCCAGATGACACAGTCCCCATC
CTCTCTGAGCGCCTCCGTGGGCGACAGAGTGACAATCACCTGTAGGGCCTCCCAGACCATCTG
GTCTTACCTGAACTGGTATCAGCAGAGGCCCGGCAAGGCCCCTAATCTGCTGATCTACGCAGC
AAGCTCCCTGCAGAGCGGAGTGCCATCCAGATTCTCTGGCAGGGGCTCCGGCACAGACTTCAC
CCTGACCATCTCTAGCCTGCAGGCCGAGGACTTCGCCACCTACTATTGCCAGCAGTCTTATAGC
ATCCCCCAGACATTTGGCCAGGGCACCAAGCTGGAGATCAAGTCGGATCCCGGAAGCGGAGG
GGGAGGCAGCTGCCCCTACAGCAACCCCAGCCTGTGCAGCGGAGGCGGCGGCAGCGAGCTG
CCCACCCAGGGCACCTTCTCCAACGTGTCCACCAACGTGAGCCCAGCCAAGCCCACCACCACC
GCCTGTCCTTATTCCAATCCTTCCCTGTGTGCTCCCACCACAACCCCCGCTCCAAGGCCCCCTA
CCCCCGCACCAACTATTGCCTCCCAGCCACTCTCACTGCGGCCTGAGGCCTGTCGGCCCGCTG
CTGGAGGCGCAGTGCATACAAGGGGCCTCGATTTCGCCTGCGATATTTACATCTGGGCACCCC
TCGCCGGCACCTGCGGGGTGCTTCTCCTCTCCCTGGTGATTACCCTGTATTGCAGACGGGGCC
GGAAGAAGCTCCTCTACATTTTTAAGCAGCCTTTCATGCGGCCAGTGCAGACAACCCAAGAGGA
GGATGGGTGTTCCTGCAGATTCCCTGAGGAAGAGGAAGGCGGGTGCGAGCTGAGAGTGAAGT
TCTCCAGGAGCGCAGATGCCCCCGCCTATCAACAGGGCCAGAACCAGCTCTACAACGAGCTTA
ACCTCGGGAGGCGCGAAGAATACGACGTGTTGGATAAGAGAAGGGGGCGGGACCCCGAGATG
GGAGGAAAGCCCCGGAGGAAGAACCCTCAGGAGGGCCTGTACAACGAGCTGCAGAAGGATAA
GATGGCCGAGGCCTACTCAGAGATCGGGATGAAGGGGGAGCGGCGCCGCGGGAAGGGGCAC
GATGGGCTCTACCAGGGGCTGAGCACAGCCACAAAGGACACATACGACGCCTTGCACATGCAG
GCCCTTCCACCCCGGGAATAGTCTAGAGGGCCCGTTTAAACCCGCTGATCAGCCTCGACTGTG
CCTTCTAGTTGCCAGCCATCTGTTGTTTGCCCCTCCCCCGTGCCTTCCTTGACCCTGGAAGGTG
CCACTCCCACTGTCCTTTCCTAATAAAATGAGGAAATTGCATCGCATTGTCTGAGTAGGTGTCAT
TCTATTCTGGGGGGTGGGGTGGGGCAGGACAGCAAGGGGGAGGATTGGGAAGACAATAGCAG
GCATGCTGGGGATGCGGTGGGCTCTATGACTAGTGGCGAATTCCCGTGTACCAGCTGAGAGAC
TCTAAATCCAGTGACAAGTCTGTCTGCCTATTCACCGATTTTGATTCTCAAACAAATGTGTCACA
AAGTAAGGATTCTGATGTGTATATCACAGACAAAACTGTGCTAGACATGAGGTCTATGGACTTCA
AGAGCAACAGTGCTGTGGCCTGGAGCAACAAATCTGACTTTGCATGTGCAAACGCCTTCAACAA
CAGCATTATTCCAGAAGACACCTTCTTCCCCAGCCCAGGTAAGGGCAGCTTTGGTGCCTTCGCA
GGCTGTTTCCTTGCTTCAGGAATGGCCAGGTTCTGCCCAGAGCTCTGGTCAATGATGTCTAAAA
CTCCTCTGATTGGTGGTCTCGGCCTTATCCATTGCCACCAAAACCCTCTTTTTACTAA
32Matrice CD25GTTTATTATTCCTGTTCCACAGCTATTGTCTGCCATATAAAAACTTAGGCCAGGCACAGTGGCTC
locus_IL15_ACACCTGTAATCCCAGCACTTTGGAAGGCCGAGGCAGGCAGATCACAAGGTCAGGAGTTCGAG
2A_sIL15RaACCAGCCTGGCCAACATAGCAAAACCCCATCTCTACTAAAAATACAAAAATTAGCCAGGCATGG
pCLS0519TGGCGTGTGCACTGGTTTAGAGTGAGGACCACATTTTTTTGGTGCCGTGTTACACATATGACCG
TGACTTTGTTACACCACTACAGGAGGAAGAGTAGAAGAACAATCGGTTCTGGCGTGAAACAGAC
TTTGAATTTTGACCTTCTCAAGTTGGCGGGAGACGTGGAGTCCAACCCAGGGCCCGGTACCGG
GTCCGCCACCATGGACTGGACCTGGATTCTGTTCCTCGTGGCTGCTGCTACAAGAGTGCACAG
CGGCATTCATGTCTTCATTTTGGGCTGTTTCAGTGCAGGGCTTCCTAAAACAGAAGCCAACTGG
GTGAATGTAATAAGTGATTTGAAAAAAATTGAAGATCTTATTCAATCTATGCATATTGATGCTACT
TTATATACGGAAAGTGATGTTCACCCCAGTTGCAAAGTAACAGCAATGAAGTGCTTTCTCTTGGA
GTTACAAGTTATTTCACTTGAGTCCGGAGATGCAAGTATTCATGATACAGTAGAAAATCTGATCA
TCCTAGCAAACAACAGTTTGTCTTCTAATGGGAATGTAACAGAATCTGGATGCAAAGAATGTGAG
GAACTGGAGGAAAAAAATATTAAAGAATTTTTGCAGAGTTTTGTACATATTGTCCAAATGTTCATC
AACACTTCTGGAAGCGGAGCTACTAACTTCAGCCTGCTGAAGCAGGCTGGAGACGTGGAGGAG
AACCCTGGACCTGGGACCGGCTCTGCAACCATGGATTGGACGTGGATCCTGTTTCTCGTGGCA
GCTGCCACAAGAGTTCACAGTATCACGTGCCCTCCCCCCATGTCCGTGGAACACGCAGACATC
TGGGTCAAGAGCTACAGCTTGTACTCCAGGGAGCGGTACATTTGTAACTCTGGTTTCAAGCGTA
AAGCCGGCACGTCCAGCCTGACGGAGTGCGTGTTGAACAAGGCCACGAATGTCGCCCACTGG
ACAACCCCCAGTCTCAAATGCATTAGAGACCCTGCCCTGGTTCACCAAAGGCCAGCGCCACCC
TCCACAGTAACGACGGCAGGGGTGACCCCACAGCCAGAGAGCCTCTCCCCTTCTGGAAAAGAG
CCCGCAGCTTCATCTCCCAGCTCAAACAACACAGCGGCCACAACAGCAGCTATTGTCCCGGGC
TCCCAGCTGATGCCTTCAAAATCACCTTCCACAGGAACCACAGAGATAAGCAGTCATGAGTCCT
CCCACGGCACCCCCTCTCAGACAACAGCCAAGAACTGGGAACTCACAGCATCCGCCTCCCACC
AGCCGCCAGGTGTGTATCCACAGGGCCACAGCGACACCACTGAGGGCAGAGGCAGCCTGCTG
ACCTGCGGCGACGTCGAGGAGAACCCCGGGCCCATGGGGGCAGGTGCCACCGGCCGCGCCA
TGGACGGGCCGCGCCTGCTGCTGTTGCTGCTTCTGGGGGTGTCCCTTGGAGGTGCCAAGGAG
GCATGCCCCACAGGCCTGTACACACACAGCGGTGAGTGCTGCAAAGCCTGCAACCTGGGCGA
GGGTGTGGCCCAGCCTTGTGGAGCCAACCAGACCGTGTGTGAGCCCTGCCTGGACAGCGTGA
CGTTCTCCGACGTGGTGAGCGCGACCGAGCCGTGCAAGCCGTGCACCGAGTGCGTGGGGCTC
CAGAGCATGTCGGCGCCGTGCGTGGAGGCCGATGACGCCGTGTGCCGCTGCGCCTACGGCTA
CTACCAGGATGAGACGACTGGGCGCTGCGAGGCGTGCCGCGTGTGCGAGGCGGGCTCGGGC
CTCGTGTTCTCCTGCCAGGACAAGCAGAACACCGTGTGCGAGGAGTGCCCCGACGGCACGTAT
TCCGACGAGGCCAACCACGTGGACCCGTGCCTGCCCTGCACCGTGTGCGAGGACACCGAGCG
CCAGCTCCGCGAGTGCACACGCTGGGCCGACGCCGAGTGCGAGGAGATCCCTGGCCGTTGGA
TTACACGGTCCACACCCCCAGAGGGCTCGGACAGCACAGCCCCCAGCACCCAGGAGCCTGAG
GCACCTCCAGAACAAGACCTCATAGCCAGCACGGTGGCAGGTGTGGTGACCACAGTGATGGG
CAGCTCCCAGCCCGTGGTGACCCGAGGCACCACCGACAACCTCATCCCTGTCTATTGCTCCAT
CCTGGCTGCTGTGGTTGTGGGTCTTGTGGCCTACATAGCCTTCAAGAGGTGAAAAACCAAAAGA
ACAAGAATTTCTTGGTAAGAAGCCGGGAACAGACAACAGAAGTCATGAAGCCCAAGTGAAATCA
AAGGTGCTAAATGGTCGCCCAGGAGACATCCGTTGTGCTTGCCTGCGTTTTGGAAGCTCTGAA
GTCACATCACAGGACACGGGGCAGTGGCAACCTTGTCTCTATGCCAGCTCAGTCCCATCAGAG
AGCGAGCGCTACCCACTTCTAAATAGCAATTTCGCCGTTGAAGAGGAAGGGCAAAACCACTAGA
ACTCTCCATCTTATTTTCATGTATATGTGTTCAT
33MatriCe PD1GACTCCCCAGACAGGCCCTGGAACCCCCCCACCTTCTCCCCAGCCCTGCTCGTGGTGACCGAA
locus_IL15_GGGGACAACGCCACCTTCACCTGCAGCTTCTCCAACACATCGGAGAGCTTCGTGCTAAACTGG
2A_sIL15RaTACCGCATGAGCCCCAGCAACCAGACGGACAAGCTGGCCGCCTTCCCCGAGGACCGCAGCCA
pCLS30513GCCCGGCCAGGACTGCCGCTTCCGTGTCACACAACTGCCCAACGGGCGTGACTTCCACATGAG
CGTGGTCAGGGCCCGGCGCAATGACAGCGGCACCTACCTCTGTGGGGCCGGTTCTGGCGTGA
AACAGACTTTGAATTTTGACCTTCTCAAGTTGGCGGGAGACGTGGAGTCCAACCCAGGGCCCG
GTACCGGGTCCGCCACCATGGACTGGACCTGGATTCTGTTCCTCGTGGCTGCTGCTACAAGAG
TGCACAGCGGCATTCATGTCTTCATTTTGGGCTGTTTCAGTGCAGGGCTTCCTAAAACAGAAGC
CAACTGGGTGAATGTAATAAGTGATTTGAAAAAAATTGAAGATCTTATTCAATCTATGCATATTGA
TGCTACTTTATATACGGAAAGTGATGTTCACCCCAGTTGCAAAGTAACAGCAATGAAGTGCTTTC
TCTTGGAGTTACAAGTTATTTCACTTGAGTCCGGAGATGCAAGTATTCATGATACAGTAGAAAAT
CTGATCATCCTAGCAAACAACAGTTTGTCTTCTAATGGGAATGTAACAGAATCTGGATGCAAAGA
ATGTGAGGAACTGGAGGAAAAAAATATTAAAGAATTTTTGCAGAGTTTTGTACATATTGTCCAAAT
GTTCATCAACACTTCTGGAAGCGGAGCTACTAACTTCAGCCTGCTGAAGCAGGCTGGAGACGT
GGAGGAGAACCCTGGACCTGGGACCGGCTCTGCAACCATGGATTGGACGTGGATCCTGTTTCT
CGTGGCAGCTGCCACAAGAGTTCACAGTATCACGTGCCCTCCCCCCATGTCCGTGGAACACGC
AGACATCTGGGTCAAGAGCTACAGCTTGTACTCCAGGGAGCGGTACATTTGTAACTCTGGTTTC
AAGCGTAAAGCCGGCACGTCCAGCCTGACGGAGTGCGTGTTGAACAAGGCCACGAATGTCGC
CCACTGGACAACCCCCAGTCTCAAATGCATTAGAGACCCTGCCCTGGTTCACCAAAGGCCAGC
GCCACCCTCCACAGTAACGACGGCAGGGGTGACCCCACAGCCAGAGAGCCTCTCCCCTTCTG
GAAAAGAGCCCGCAGCTTCATCTCCCAGCTCAAACAACACAGCGGCCACAACAGCAGCTATTG
TCCCGGGCTCCCAGCTGATGCCTTCAAAATCACCTTCCACAGGAACCACAGAGATAAGCAGTCA
TGAGTCCTCCCACGGCACCCCCTCTCAGACAACAGCCAAGAACTGGGAACTCACAGCATCCGC
CTCCCACCAGCCGCCAGGTGTGTATCCACAGGGCCACAGCGACACCACTGAGGGCAGAGGCA
GCCTGCTGACCTGCGGCGACGTCGAGGAGAACCCCGGGCCCATGGGGGCAGGTGCCACCGG
CCGCGCCATGGACGGGCCGCGCCTGCTGCTGTTGCTGCTTCTGGGGGTGTCCCTTGGAGGTG
CCAAGGAGGCATGCCCCACAGGCCTGTACACACACAGCGGTGAGTGCTGCAAAGCCTGCAAC
CTGGGCGAGGGTGTGGCCCAGCCTTGTGGAGCCAACCAGACCGTGTGTGAGCCCTGCCTGGA
CAGCGTGACGTTCTCCGACGTGGTGAGCGCGACCGAGCCGTGCAAGCCGTGCACCGAGTGCG
TGGGGCTCCAGAGCATGTCGGCGCCGTGCGTGGAGGCCGATGACGCCGTGTGCCGCTGCGC
CTACGGCTACTACCAGGATGAGACGACTGGGCGCTGCGAGGCGTGCCGCGTGTGCGAGGCGG
GCTCGGGCCTCGTGTTCTCCTGCCAGGACAAGCAGAACACCGTGTGCGAGGAGTGCCCCGAC
GGCACGTATTCCGACGAGGCCAACCACGTGGACCCGTGCCTGCCCTGCACCGTGTGCGAGGA
CACCGAGCGCCAGCTCCGCGAGTGCACACGCTGGGCCGACGCCGAGTGCGAGGAGATCCCT
GGCCGTTGGATTACACGGTCCACACCCCCAGAGGGCTCGGACAGCACAGCCCCCAGCACCCA
GGAGCCTGAGGCACCTCCAGAACAAGACCTCATAGCCAGCACGGTGGCAGGTGTGGTGACCA
CAGTGATGGGCAGCTCCCAGCCCGTGGTGACCCGAGGCACCACCGACAACCTCATCCCTGTCT
ATTGCTCCATCCTGGCTGCTGTGGTTGTGGGTCTTGTGGCCTACATAGCCTTCAAGAGGTGATC
TAGAGGGCCCGTTTAAACCCGCTGATCAGCCTCGACTGTGCCTTCTAGTTGCCAGCCATCTGTT
GTTTGCCCCTCCCCCGTGCCTTCCTTGACCCTGGAAGGTGCCACTCCCACTGTCCTTTCCTAAT
AAAATGAGGAAATTGCATCGCATTGTCTGAGTAGGTGTCATTCTATTCTGGGGGGTGGGGTGGG
GCAGGACAGCAAGGGGGAGGATTGGGAAGACAATAGCAGGCATGCTGGGGATGCGGTGGGCT
CTATGACTAGTGGCGAATTCGGCGCAGATCAAAGAGAGCCTGCGGGCAGAGCTCAGGGTGACA
GGTGCGGCCTCGGAGGCCCCGGGGCAGGGGTGAGCTGAGCCGGTCCTGGGGTGGGTGTCCC
CTCCTGCACAGGATCAGGAGCTCCAGGGTCGTAGGGCAGGGACCCCCCAGCTCCAGTCCAGG
GCTCTGTCCTGCACCTGGGGAATGGTGACCGGCATCTCTGTCCTCTAGCTCTGGAAGCACCCC
AGCCCCTCTAGTCTGCCCTCACCCCTGACCCTGACCCTCCACCCTGACCCCGTCCTAACCCCT
GACCTTTG
34Matrice CD25GTTTATTATTCCTGTTCCACAGCTATTGTCTGCCATATAAAAACTTAGGCCAGGCACAGTGGCTC
locus_IL12a_ACACCTGTAATCCCAGCACTTTGGAAGGCCGAGGCAGGCAGATCACAAGGTCAGGAGTTCGAG
2A_IL12bACCAGCCTGGCCAACATAGCAAAACCCCATCTCTACTAAAAATACAAAAATTAGCCAGGCATGG
pCLS30520TGGCGTGTGCACTGGTTTAGAGTGAGGACCACATTTTTTTGGTGCCGTGTTACACATATGACCG
TGACTTTGTTACACCACTACAGGAGGAAGAGTAGAAGAACAATCGGTTCTGGCGTGAAACAGAC
TTTGAATTTTGACCTTCTCAAGTTGGCGGGAGACGTGGAGTCCAACCCAGGGCCCATGTGGCC
CCCTGGGTCAGCCTCCCAGCCACCGCCCTCACCTGCCGCGGCCACAGGTCTGCATCCAGCGG
CTCGCCCTGTGTCCCTGCAGTGCCGGCTCAGCATGTGTCCAGCGCGCAGCCTCCTCCTTGTGG
CTACCCTGGTCCTCCTGGACCACCTCAGTTTGGCCAGAAACCTCCCCGTGGCCACTCCAGACC
CAGGAATGTTCCCATGCCTTCACCACTCCCAAAACCTGCTGAGGGCCGTCAGCAACATGCTCCA
GAAGGCCAGACAAACTCTAGAATTTTACCCTTGCACTTCTGAAGAGATTGATCATGAAGATATCA
CAAAAGATAAAACCAGCACAGTGGAGGCCTGTTTACCATTGGAATTAACCAAGAATGAGAGTTG
CCTAAATTCCAGAGAGACCTCTTTCATAACTAATGGGAGTTGCCTGGCCTCCAGAAAGACCTCT
TTTATGATGGCCCTGTGCCTTAGTAGTATTTATGAAGACTTGAAGATGTACCAGGTGGAGTTCAA
GACCATGAATGCAAAGCTTCTGATGGATCCTAAGAGGCAGATCTTTCTAGATCAAAACATGCTG
GCAGTTATTGATGAGCTGATGCAGGCCCTGAATTTCAACAGTGAGACTGTGCCACAAAAATCCT
CCCTTGAAGAACCGGATTTTTATAAAACTAAAATCAAGCTCTGCATACTTCTTCATGCTTTCAGAA
TTCGGGCAGTGACTATTGATAGAGTGATGAGCTATCTGAATGCTTCCGGAAGCGGAGCTACTAA
CTTCAGCCTGCTGAAGCAGGCTGGAGACGTGGAGGAGAACCCTGGACCTATGTGTCACCAGCA
GTTGGTCATCTCTTGGTTTTCCCTGGTTTTTCTGGCATCTCCCCTCGTGGCCATATGGGAACTGA
AGAAAGATGTTTATGTCGTAGAATTGGATTGGTATCCGGATGCCCCTGGAGAAATGGTGGTCCT
CACCTGTGACACCCCTGAAGAAGATGGTATCACCTGGACCTTGGACCAGAGCAGTGAGGTCTT
AGGCTCTGGCAAAACCCTGACCATCCAAGTCAAAGAGTTTGGAGATGCTGGCCAGTACACCTGT
CACAAAGGAGGCGAGGTTCTAAGCCATTCGCTCCTGCTGCTTCACAAAAAGGAAGATGGAATTT
GGTCCACTGATATTTTAAAGGACCAGAAAGAACCCAAAAATAAGACCTTTCTAAGATGCGAGGC
CAAGAATTATTCTGGACGTTTCACCTGCTGGTGGCTGACGACAATCAGTACTGATTTGACATTCA
GTGTCAAAAGCAGCAGAGGCTCTTCTGACCCCCAAGGGGTGACGTGCGGAGCTGCTACACTCT
CTGCAGAGAGAGTCAGAGGGGACAACAAGGAGTATGAGTACTCAGTGGAGTGCCAGGAGGAC
AGTGCCTGCCCAGCTGCTGAGGAGAGTCTGCCCATTGAGGTCATGGTGGATGCCGTTCACAAG
CTCAAGTATGAAAACTACACCAGCAGCTTCTTCATCAGGGACATCATCAAACCTGACCCACCCA
AGAACTTGCAGCTGAAGCCATTAAAGAATTCTCGGCAGGTGGAGGTCAGCTGGGAGTACCCTG
ACACCTGGAGTACTCCACATTCCTACTTCTCCCTGACATTCTGCGTTCAGGTCCAGGGCAAGAG
CAAGAGAGAAAAGAAAGATAGAGTCTTCACGGACAAGACCTCAGCCACGGTCATCTGCCGCAA
AAATGCCAGCATTAGCGTGCGGGCCCAGGACCGCTACTATAGCTCATCTTGGAGCGAATGGGC
ATCTGTGCCCTGCAGTGAGGGCAGAGGCAGCCTGCTGACCTGCGGCGACGTCGAGGAGAACC
CCGGGCCCATGGGGGCAGGTGCCACCGGCCGCGCCATGGACGGGCCGCGCCTGCTGCTGTT
GCTGCTTCTGGGGGTGTCCCTTGGAGGTGCCAAGGAGGCATGCCCCACAGGCCTGTACACAC
ACAGCGGTGAGTGCTGCAAAGCCTGCAACCTGGGCGAGGGTGTGGCCCAGCCTTGTGGAGCC
AACCAGACCGTGTGTGAGCCCTGCCTGGACAGCGTGACGTTCTCCGACGTGGTGAGCGCGAC
CGAGCCGTGCAAGCCGTGCACCGAGTGCGTGGGGCTCCAGAGCATGTCGGCGCCGTGCGTG
GAGGCCGATGACGCCGTGTGCCGCTGCGCCTACGGCTACTACCAGGATGAGACGACTGGGCG
CTGCGAGGCGTGCCGCGTGTGCGAGGCGGGCTCGGGCCTCGTGTTCTCCTGCCAGGACAAGC
AGAACACCGTGTGCGAGGAGTGCCCCGACGGCACGTATTCCGACGAGGCCAACCACGTGGAC
CCGTGCCTGCCCTGCACCGTGTGCGAGGACACCGAGCGCCAGCTCCGCGAGTGCACACGCTG
GGCCGACGCCGAGTGCGAGGAGATCCCTGGCCGTTGGATTACACGGTCCACACCCCCAGAGG
GCTCGGACAGCACAGCCCCCAGCACCCAGGAGCCTGAGGCACCTCCAGAACAAGACCTCATA
GCCAGCACGGTGGCAGGTGTGGTGACCACAGTGATGGGCAGCTCCCAGCCCGTGGTGACCCG
AGGCACCACCGACAACCTCATCCCTGTCTATTGCTCCATCCTGGCTGCTGTGGTTGTGGGTCTT
GTGGCCTACATAGCCTTCAAGAGGTGAAAAACCAAAAGAACAAGAATTTCTTGGTAAGAAGCCG
GGAACAGACAACAGAAGTCATGAAGCCCAAGTGAAATCAAAGGTGCTAAATGGTCGCCCAGGA
GACATCCGTTGTGCTTGCCTGCGTTTTGGAAGCTCTGAAGTCACATCACAGGACACGGGGCAG
TGGCAACCTTGTCTCTATGCCAGCTCAGTCCCATCAGAGAGCGAGCGCTACCCACTTCTAAATA
GCAATTTCGCCGTTGAAGAGGAAGGGCAAAACCACTAGAACTCTCCATCTTATTTTCATGTATAT
GTGTTCAT
35Matrice PD1GACTCCCCAGACAGGCCCTGGAACCCCCCCACCTTCTCCCCAGCCCTGCTCGTGGTGACCGAA
locus_IL12a_GGGGACAACGCCACCTTCACCTGCAGCTTCTCCAACACATCGGAGAGCTTCGTGCTAAACTGG
2A_IL12bTACCGCATGAGCCCCAGCAACCAGACGGACAAGCTGGCCGCCTTCCCCGAGGACCGCAGCCA
pCLS30511GCCCGGCCAGGACTGCCGCTTCCGTGTCACACAACTGCCCAACGGGCGTGACTTCCACATGAG
CGTGGTCAGGGCCCGGCGCAATGACAGCGGCACCTACCTCTGTGGGGCCGGTTCTGGCGTGA
AACAGACTTTGAATTTTGACCTTCTCAAGTTGGCGGGAGACGTGGAGTCCAACCCAGGGCCCAT
GTGGCCCCCTGGGTCAGCCTCCCAGCCACCGCCCTCACCTGCCGCGGCCACAGGTCTGCATC
CAGCGGCTCGCCCTGTGTCCCTGCAGTGCCGGCTCAGCATGTGTCCAGCGCGCAGCCTCCTC
CTTGTGGCTACCCTGGTCCTCCTGGACCACCTCAGTTTGGCCAGAAACCTCCCCGTGGCCACT
CCAGACCCAGGAATGTTCCCATGCCTTCACCACTCCCAAAACCTGCTGAGGGCCGTCAGCAAC
ATGCTCCAGAAGGCCAGACAAACTCTAGAATTTTACCCTTGCACTTCTGAAGAGATTGATCATGA
AGATATCACAAAAGATAAAACCAGCACAGTGGAGGCCTGTTTACCATTGGAATTAACCAAGAAT
GAGAGTTGCCTAAATTCCAGAGAGACCTCTTTCATAACTAATGGGAGTTGCCTGGCCTCCAGAA
AGACCTCTTTTATGATGGCCCTGTGCCTTAGTAGTATTTATGAAGACTTGAAGATGTACCAGGTG
GAGTTCAAGACCATGAATGCAAAGCTTCTGATGGATCCTAAGAGGCAGATCTTTCTAGATCAAAA
CATGCTGGCAGTTATTGATGAGCTGATGCAGGCCCTGAATTTCAACAGTGAGACTGTGCCACAA
AAATCCTCCCTTGAAGAACCGGATTTTTATAAAACTAAAATCAAGCTCTGCATACTTCTTCATGCT
TTCAGAATTCGGGCAGTGACTATTGATAGAGTGATGAGCTATCTGAATGCTTCCGGAAGCGGAG
CTACTAACTTCAGCCTGCTGAAGCAGGCTGGAGACGTGGAGGAGAACCCTGGACCTATGTGTC
ACCAGCAGTTGGTCATCTCTTGGTTTTCCCTGGTTTTTCTGGCATCTCCCCTCGTGGCCATATGG
GAACTGAAGAAAGATGTTTATGTCGTAGAATTGGATTGGTATCCGGATGCCCCTGGAGAAATGG
TGGTCCTCACCTGTGACACCCCTGAAGAAGATGGTATCACCTGGACCTTGGACCAGAGCAGTG
AGGTCTTAGGCTCTGGCAAAACCCTGACCATCCAAGTCAAAGAGTTTGGAGATGCTGGCCAGTA
CACCTGTCACAAAGGAGGCGAGGTTCTAAGCCATTCGCTCCTGCTGCTTCACAAAAAGGAAGAT
GGAATTTGGTCCACTGATATTTTAAAGGACCAGAAAGAACCCAAAAATAAGACCTTTCTAAGATG
CGAGGCCAAGAATTATTCTGGACGTTTCACCTGCTGGTGGCTGACGACAATCAGTACTGATTTG
ACATTCAGTGTCAAAAGCAGCAGAGGCTCTTCTGACCCCCAAGGGGTGACGTGCGGAGCTGCT
ACACTCTCTGCAGAGAGAGTCAGAGGGGACAACAAGGAGTATGAGTACTCAGTGGAGTGCCAG
GAGGACAGTGCCTGCCCAGCTGCTGAGGAGAGTCTGCCCATTGAGGTCATGGTGGATGCCGTT
CACAAGCTCAAGTATGAAAACTACACCAGCAGCTTCTTCATCAGGGACATCATCAAACCTGACC
CACCCAAGAACTTGCAGCTGAAGCCATTAAAGAATTCTCGGCAGGTGGAGGTCAGCTGGGAGT
ACCCTGACACCTGGAGTACTCCACATTCCTACTTCTCCCTGACATTCTGCGTTCAGGTCCAGGG
CAAGAGCAAGAGAGAAAAGAAAGATAGAGTCTTCACGGACAAGACCTCAGCCACGGTCATCTG
CCGCAAAAATGCCAGCATTAGCGTGCGGGCCCAGGACCGCTACTATAGCTCATCTTGGAGCGA
ATGGGCATCTGTGCCCTGCAGTGAGGGCAGAGGCAGCCTGCTGACCTGCGGCGACGTCGAGG
AGAACCCCGGGCCCATGGGGGCAGGTGCCACCGGCCGCGCCATGGACGGGCCGCGCCTGCT
GCTGTTGCTGCTTCTGGGGGTGTCCCTTGGAGGTGCCAAGGAGGCATGCCCCACAGGCCTGTA
CACACACAGCGGTGAGTGCTGCAAAGCCTGCAACCTGGGCGAGGGTGTGGCCCAGCCTTGTG
GAGCCAACCAGACCGTGTGTGAGCCCTGCCTGGACAGCGTGACGTTCTCCGACGTGGTGAGC
GCGACCGAGCCGTGCAAGCCGTGCACCGAGTGCGTGGGGCTCCAGAGCATGTCGGCGCCGT
GCGTGGAGGCCGATGACGCCGTGTGCCGCTGCGCCTACGGCTACTACCAGGATGAGACGACT
GGGCGCTGCGAGGCGTGCCGCGTGTGCGAGGCGGGCTCGGGCCTCGTGTTCTCCTGCCAGG
ACAAGCAGAACACCGTGTGCGAGGAGTGCCCCGACGGCACGTATTCCGACGAGGCCAACCAC
GTGGACCCGTGCCTGCCCTGCACCGTGTGCGAGGACACCGAGCGCCAGCTCCGCGAGTGCAC
ACGCTGGGCCGACGCCGAGTGCGAGGAGATCCCTGGCCGTTGGATTACACGGTCCACACCCC
CAGAGGGCTCGGACAGCACAGCCCCCAGCACCCAGGAGCCTGAGGCACCTCCAGAACAAGAC
CTCATAGCCAGCACGGTGGCAGGTGTGGTGACCACAGTGATGGGCAGCTCCCAGCCCGTGGT
GACCCGAGGCACCACCGACAACCTCATCCCTGTCTATTGCTCCATCCTGGCTGCTGTGGTTGT
GGGTCTTGTGGCCTACATAGCCTTCAAGAGGTGATCTAGAGGGCCCGTTTAAACCCGCTGATCA
GCCTCGACTGTGCCTTCTAGTTGCCAGCCATCTGTTGTTTGCCCCTCCCCCGTGCCTTCCTTGA
CCCTGGAAGGTGCCACTCCCACTGTCCTTTCCTAATAAAATGAGGAAATTGCATCGCATTGTCT
GAGTAGGTGTCATTCTATTCTGGGGGGTGGGGTGGGGCAGGACAGCAAGGGGGAGGATTGGG
AAGACAATAGCAGGCATGCTGGGGATGCGGTGGGCTCTATGACTAGTGGCGAATTCGGCGCAG
ATCAAAGAGAGCCTGCGGGCAGAGCTCAGGGTGACAGGTGCGGCCTCGGAGGCCCCGGGGC
AGGGGTGAGCTGAGCCGGTCCTGGGGTGGGTGTCCCCTCCTGCACAGGATCAGGAGCTCCAG
GGTCGTAGGGCAGGGACCCCCCAGCTCCAGTCCAGGGCTCTGTCCTGCACCTGGGGAATGGT
GACCGGCATCTCTGTCCTCTAGCTCTGGAAGCACCCCAGCCCCTCTAGTCTGCCCTCACCCCT
GACCCTGACCCTCCACCCTGACCCCGTCCTAACCCCTGACCTTTG
36InsertedATGAGATCATGTCCTAACCCTGATCCTCTTGTCCCACAGATATCCAGAACCCTGACCCTGTTGCT
matrice TRACGGGCCTTTTTCCCATGCCTGCCTTTACTCTGCCAGAGTTATATTGCTGGGGTTTTGAAGAAGATC
locus_CubiCARCTATTAAATAAAAGAATAAGCAGTATTATTAAGTAGCCCTGCATTTCAGGTTTCCTTGAGTGGCA
CD22 (60GGCCAGGCCTGGCCGTGAACGTTCACTGAAATCATGGCCTCTTGGCCAAGATTGATAGCTTGT
nucleotidesGCCTGTCCCTGAGTCCCAGTCCATCACGAGCAGCTGGTTTCTAAGATGCTATTTCCCGTATAAA
upstream andGCATGAGACCGTGACTTGCCAGCCCCACAGAGCCCCGCCCTTGTCCATCACTGGCATCTGGAC
downstream)TCCAGCCTGGGTTGGGGCAAAGAGGGAAATGAGATCATGTCCTAACCCTGATCCTCTTGTCCCA
CAGATATCCAGTACCCCTACGACGTGCCCGACTACGCCTCCGGTGAGGGCAGAGGAAGTCTTC
TAACATGCGGTGACGTGGAGGAGAATCCGGGCCCCGGATCCGCTCTGCCCGTCACCGCTCTG
CTGCTGCCACTGGCACTGCTGCTGCACGCTGCTAGGCCCGGAGGGGGAGGCAGCTGCCCCTA
CAGCAACCCCAGCCTGTGCAGCGGAGGCGGCGGCAGCGGCGGAGGGGGTAGCCAGGTGCAG
CTGCAGCAGAGCGGCCCTGGCCTGGTGAAGCCAAGCCAGACACTGTCCCTGACCTGCGCCAT
CAGCGGCGATTCCGTGAGCTCCAACTCCGCCGCCTGGAATTGGATCAGGCAGTCCCCTTCTCG
GGGCCTGGAGTGGCTGGGAAGGACATACTATCGGTCTAAGTGGTACAACGATTATGCCGTGTC
TGTGAAGAGCAGAATCACAATCAACCCTGACACCTCCAAGAATCAGTTCTCTCTGCAGCTGAAT
AGCGTGACACCAGAGGACACCGCCGTGTACTATTGCGCCAGGGAGGTGACCGGCGACCTGGA
GGATGCCTTTGACATCTGGGGCCAGGGCACAATGGTGACCGTGAGCTCCGGAGGCGGCGGAT
CTGGCGGAGGAGGAAGTGGGGGCGGCGGGAGTGATATCCAGATGACACAGTCCCCATCCTCT
CTGAGCGCCTCCGTGGGCGACAGAGTGACAATCACCTGTAGGGCCTCCCAGACCATCTGGTCT
TACCTGAACTGGTATCAGCAGAGGCCCGGCAAGGCCCCTAATCTGCTGATCTACGCAGCAAGC
TCCCTGCAGAGCGGAGTGCCATCCAGATTCTCTGGCAGGGGCTCCGGCACAGACTTCACCCTG
ACCATCTCTAGCCTGCAGGCCGAGGACTTCGCCACCTACTATTGCCAGCAGTCTTATAGCATCC
CCCAGACATTTGGCCAGGGCACCAAGCTGGAGATCAAGTCGGATCCCGGAAGCGGAGGGGGA
GGCAGCTGCCCCTACAGCAACCCCAGCCTGTGCAGCGGAGGCGGCGGCAGCGAGCTGCCCA
CCCAGGGCACCTTCTCCAACGTGTCCACCAACGTGAGCCCAGCCAAGCCCACCACCACCGCCT
GTCCTTATTCCAATCCTTCCCTGTGTGCTCCCACCACAACCCCCGCTCCAAGGCCCCCTACCCC
CGCACCAACTATTGCCTCCCAGCCACTCTCACTGCGGCCTGAGGCCTGTCGGCCCGCTGCTGG
AGGCGCAGTGCATACAAGGGGCCTCGATTTCGCCTGCGATATTTACATCTGGGCACCCCTCGC
CGGCACCTGCGGGGTGCTTCTCCTCTCCCTGGTGATTACCCTGTATTGCAGACGGGGCCGGAA
GAAGCTCCTCTACATTTTTAAGCAGCCTTTCATGCGGCCAGTGCAGACAACCCAAGAGGAGGAT
GGGTGTTCCTGCAGATTCCCTGAGGAAGAGGAAGGCGGGTGCGAGCTGAGAGTGAAGTTCTC
CAGGAGCGCAGATGCCCCCGCCTATCAACAGGGCCAGAACCAGCTCTACAACGAGCTTAACCT
CGGGAGGCGCGAAGAATACGACGTGTTGGATAAGAGAAGGGGGCGGGACCCCGAGATGGGA
GGAAAGCCCCGGAGGAAGAACCCTCAGGAGGGCCTGTACAACGAGCTGCAGAAGGATAAGAT
GGCCGAGGCCTACTCAGAGATCGGGATGAAGGGGGAGCGGCGCCGCGGGAAGGGGCACGAT
GGGCTCTACCAGGGGCTGAGCACAGCCACAAAGGACACATACGACGCCTTGCACATGCAGGC
CCTTCCACCCCGGGAATAGTCTAGAGGGCCCGTTTAAACCCGCTGATCAGCCTCGACTGTGCC
TTCTAGTTGCCAGCCATCTGTTGTTTGCCCCTCCCCCGTGCCTTCCTTGACCCTGGAAGGTGCC
ACTCCCACTGTCCTTTCCTAATAAAATGAGGAAATTGCATCGCATTGTCTGAGTAGGTGTCATTC
TATTCTGGGGGGTGGGGTGGGGCAGGACAGCAAGGGGGAGGATTGGGAAGACAATAGCAGGC
ATGCTGGGGATGCGGTGGGCTCTATGACTAGTGGCGAATTCCCGTGTACCAGCTGAGAGACTC
TAAATCCAGTGACAAGTCTGTCTGCCTATTCACCGATTTTGATTCTCAAACAAATGTGTCACAAA
GTAAGGATTCTGATGTGTATATCACAGACAAAACTGTGCTAGACATGAGGTCTATGGACTTCAAG
AGCAACAGTGCTGTGGCCTGGAGCAACAAATCTGACTTTGCATGTGCAAACGCCTTCAACAACA
GCATTATTCCAGAAGACACCTTCTTCCCCAGCCCAGGTAAGGGCAGCTTTGGTGCCTTCGCAG
GCTGTTTCCTTGCTTCAGGAATGGCCAGGTTCTGCCCAGAGCTCTGGTCAATGATGTCTAAAAC
TCCTCTGATTGGTGGTCTCGGCCTTATCCATTGCCACCAAAACCCTCTTTTTACTAAGAAACAGT
GAGCCTTGTTCTGGCAGTCCAGAGAATGACACGGGAAAAAAGCAGATGAAGA
37InsertedAGTGCTGGCTAGAAACCAAGTGCTTTACTGCATGCACATCATTTAGCACAGTTAGTTGCTGTTTA
matrice CD25TTATTCCTGTTCCACAGCTATTGTCTGCCATATAAAAACTTAGGCCAGGCACAGTGGCTCACACC
locus_IL15_TGTAATCCCAGCACTTTGGAAGGCCGAGGCAGGCAGATCACAAGGTCAGGAGTTCGAGACCAG
2A_sIL15RaCCTGGCCAACATAGCAAAACCCCATCTCTACTAAAAATACAAAAATTAGCCAGGCATGGTGGCG
(60TGTGCACTGGTTTAGAGTGAGGACCACATTTTTTTGGTGCCGTGTTACACATATGACCGTGACTT
nucleotidesTGTTACACCACTACAGGAGGAAGAGTAGAAGAACAATCGGTTCTGGCGTGAAACAGACTTTGAA
upstream andTTTTGACCTTCTCAAGTTGGCGGGAGACGTGGAGTCCAACCCAGGGCCCGGTACCGGGTCCGC
downstream)CACCATGGACTGGACCTGGATTCTGTTCCTCGTGGCTGCTGCTACAAGAGTGCACAGCGGCAT
TCATGTCTTCATTTTGGGCTGTTTCAGTGCAGGGCTTCCTAAAACAGAAGCCAACTGGGTGAAT
GTAATAAGTGATTTGAAAAAAATTGAAGATCTTATTCAATCTATGCATATTGATGCTACTTTATATA
CGGAAAGTGATGTTCACCCCAGTTGCAAAGTAACAGCAATGAAGTGCTTTCTCTTGGAGTTACA
AGTTATTTCACTTGAGTCCGGAGATGCAAGTATTCATGATACAGTAGAAAATCTGATCATCCTAG
CAAACAACAGTTTGTCTTCTAATGGGAATGTAACAGAATCTGGATGCAAAGAATGTGAGGAACT
GGAGGAAAAAAATATTAAAGAATTTTTGCAGAGTTTTGTACATATTGTCCAAATGTTCATCAACAC
TTCTGGAAGCGGAGCTACTAACTTCAGCCTGCTGAAGCAGGCTGGAGACGTGGAGGAGAACCC
TGGACCTGGGACCGGCTCTGCAACCATGGATTGGACGTGGATCCTGTTTCTCGTGGCAGCTGC
CACAAGAGTTCACAGTATCACGTGCCCTCCCCCCATGTCCGTGGAACACGCAGACATCTGGGT
CAAGAGCTACAGCTTGTACTCCAGGGAGCGGTACATTTGTAACTCTGGTTTCAAGCGTAAAGCC
GGCACGTCCAGCCTGACGGAGTGCGTGTTGAACAAGGCCACGAATGTCGCCCACTGGACAAC
CCCCAGTCTCAAATGCATTAGAGACCCTGCCCTGGTTCACCAAAGGCCAGCGCCACCCTCCAC
AGTAACGACGGCAGGGGTGACCCCACAGCCAGAGAGCCTCTCCCCTTCTGGAAAAGAGCCCG
CAGCTTCATCTCCCAGCTCAAACAACACAGCGGCCACAACAGCAGCTATTGTCCCGGGCTCCC
AGCTGATGCCTTCAAAATCACCTTCCACAGGAACCACAGAGATAAGCAGTCATGAGTCCTCCCA
CGGCACCCCCTCTCAGACAACAGCCAAGAACTGGGAACTCACAGCATCCGCCTCCCACCAGCC
GCCAGGTGTGTATCCACAGGGCCACAGCGACACCACTGAGGGCAGAGGCAGCCTGCTGACCT
GCGGCGACGTCGAGGAGAACCCCGGGCCCATGGGGGCAGGTGCCACCGGCCGCGCCATGGA
CGGGCCGCGCCTGCTGCTGTTGCTGCTTCTGGGGGTGTCCCTTGGAGGTGCCAAGGAGGCAT
GCCCCACAGGCCTGTACACACACAGCGGTGAGTGCTGCAAAGCCTGCAACCTGGGCGAGGGT
GTGGCCCAGCCTTGTGGAGCCAACCAGACCGTGTGTGAGCCCTGCCTGGACAGCGTGACGTT
CTCCGACGTGGTGAGCGCGACCGAGCCGTGCAAGCCGTGCACCGAGTGCGTGGGGCTCCAGA
GCATGTCGGCGCCGTGCGTGGAGGCCGATGACGCCGTGTGCCGCTGCGCCTACGGCTACTAC
CAGGATGAGACGACTGGGCGCTGCGAGGCGTGCCGCGTGTGCGAGGCGGGCTCGGGCCTCG
TGTTCTCCTGCCAGGACAAGCAGAACACCGTGTGCGAGGAGTGCCCCGACGGCACGTATTCCG
ACGAGGCCAACCACGTGGACCCGTGCCTGCCCTGCACCGTGTGCGAGGACACCGAGCGCCAG
CTCCGCGAGTGCACACGCTGGGCCGACGCCGAGTGCGAGGAGATCCCTGGCCGTTGGATTAC
ACGGTCCACACCCCCAGAGGGCTCGGACAGCACAGCCCCCAGCACCCAGGAGCCTGAGGCAC
CTCCAGAACAAGACCTCATAGCCAGCACGGTGGCAGGTGTGGTGACCACAGTGATGGGCAGCT
CCCAGCCCGTGGTGACCCGAGGCACCACCGACAACCTCATCCCTGTCTATTGCTCCATCCTGG
CTGCTGTGGTTGTGGGTCTTGTGGCCTACATAGCCTTCAAGAGGTGAAAAACCAAAAGAACAAG
AATTTCTTGGTAAGAAGCCGGGAACAGACAACAGAAGTCATGAAGCCCAAGTGAAATCAAAGGT
GCTAAATGGTCGCCCAGGAGACATCCGTTGTGCTTGCCTGCGTTTTGGAAGCTCTGAAGTCACA
TCACAGGACACGGGGCAGTGGCAACCTTGTCTCTATGCCAGCTCAGTCCCATCAGAGAGCGAG
CGCTACCCACTTCTAAATAGCAATTTCGCCGTTGAAGAGGAAGGGCAAAACCACTAGAACTCTC
CATCTTATTTTCATGTATATGTGTTCATTAAAGCATGAATGGTATGGAACTCTCTCCACCCTATAT
GTAGTATAAAGAAAAGTAGGTT
38InsertedGGTGGCCGGGGAGGCTTTGTGGGGCCACCCAGCCCCTTCCTCACCTCTCTCCATCTCTCAGAC
matrice PD1TCCCCAGACAGGCCCTGGAACCCCCCCACCTTCTCCCCAGCCCTGCTCGTGGTGACCGAAGG
locus_IL15_GGACAACGCCACCTTCACCTGCAGCTTCTCCAACACATCGGAGAGCTTCGTGCTAAACTGGTAC
2A_sIL15RaCGCATGAGCCCCAGCAACCAGACGGACAAGCTGGCCGCCTTCCCCGAGGACCGCAGCCAGCC
(60CGGCCAGGACTGCCGCTTCCGTGTCACACAACTGCCCAACGGGCGTGACTTCCACATGAGCGT
nucleotidesGGTCAGGGCCCGGCGCAATGACAGCGGCACCTACCTCTGTGGGGCCGGTTCTGGCGTGAAAC
upstream andAGACTTTGAATTTTGACCTTCTCAAGTTGGCGGGAGACGTGGAGTCCAACCCAGGGCCCGGTA
downstream)CCGGGTCCGCCACCATGGACTGGACCTGGATTCTGTTCCTCGTGGCTGCTGCTACAAGAGTGC
ACAGCGGCATTCATGTCTTCATTTTGGGCTGTTTCAGTGCAGGGCTTCCTAAAACAGAAGCCAA
CTGGGTGAATGTAATAAGTGATTTGAAAAAAATTGAAGATCTTATTCAATCTATGCATATTGATGC
TACTTTATATACGGAAAGTGATGTTCACCCCAGTTGCAAAGTAACAGCAATGAAGTGCTTTCTCT
TGGAGTTACAAGTTATTTCACTTGAGTCCGGAGATGCAAGTATTCATGATACAGTAGAAAATCTG
ATCATCCTAGCAAACAACAGTTTGTCTTCTAATGGGAATGTAACAGAATCTGGATGCAAAGAATG
TGAGGAACTGGAGGAAAAAAATATTAAAGAATTTTTGCAGAGTTTTGTACATATTGTCCAAATGTT
CATCAACACTTCTGGAAGCGGAGCTACTAACTTCAGCCTGCTGAAGCAGGCTGGAGACGTGGA
GGAGAACCCTGGACCTGGGACCGGCTCTGCAACCATGGATTGGACGTGGATCCTGTTTCTCGT
GGCAGCTGCCACAAGAGTTCACAGTATCACGTGCCCTCCCCCCATGTCCGTGGAACACGCAGA
CATCTGGGTCAAGAGCTACAGCTTGTACTCCAGGGAGCGGTACATTTGTAACTCTGGTTTCAAG
CGTAAAGCCGGCACGTCCAGCCTGACGGAGTGCGTGTTGAACAAGGCCACGAATGTCGCCCA
CTGGACAACCCCCAGTCTCAAATGCATTAGAGACCCTGCCCTGGTTCACCAAAGGCCAGCGCC
ACCCTCCACAGTAACGACGGCAGGGGTGACCCCACAGCCAGAGAGCCTCTCCCCTTCTGGAAA
AGAGCCCGCAGCTTCATCTCCCAGCTCAAACAACACAGCGGCCACAACAGCAGCTATTGTCCC
GGGCTCCCAGCTGATGCCTTCAAAATCACCTTCCACAGGAACCACAGAGATAAGCAGTCATGAG
TCCTCCCACGGCACCCCCTCTCAGACAACAGCCAAGAACTGGGAACTCACAGCATCCGCCTCC
CACCAGCCGCCAGGTGTGTATCCACAGGGCCACAGCGACACCACTGAGGGCAGAGGCAGCCT
GCTGACCTGCGGCGACGTCGAGGAGAACCCCGGGCCCATGGGGGCAGGTGCCACCGGCCGC
GCCATGGACGGGCCGCGCCTGCTGCTGTTGCTGCTTCTGGGGGTGTCCCTTGGAGGTGCCAA
GGAGGCATGCCCCACAGGCCTGTACACACACAGCGGTGAGTGCTGCAAAGCCTGCAACCTGG
GCGAGGGTGTGGCCCAGCCTTGTGGAGCCAACCAGACCGTGTGTGAGCCCTGCCTGGACAGC
GTGACGTTCTCCGACGTGGTGAGCGCGACCGAGCCGTGCAAGCCGTGCACCGAGTGCGTGGG
GCTCCAGAGCATGTCGGCGCCGTGCGTGGAGGCCGATGACGCCGTGTGCCGCTGCGCCTACG
GCTACTACCAGGATGAGACGACTGGGCGCTGCGAGGCGTGCCGCGTGTGCGAGGCGGGCTC
GGGCCTCGTGTTCTCCTGCCAGGACAAGCAGAACACCGTGTGCGAGGAGTGCCCCGACGGCA
CGTATTCCGACGAGGCCAACCACGTGGACCCGTGCCTGCCCTGCACCGTGTGCGAGGACACC
GAGCGCCAGCTCCGCGAGTGCACACGCTGGGCCGACGCCGAGTGCGAGGAGATCCCTGGCC
GTTGGATTACACGGTCCACACCCCCAGAGGGCTCGGACAGCACAGCCCCCAGCACCCAGGAG
CCTGAGGCACCTCCAGAACAAGACCTCATAGCCAGCACGGTGGCAGGTGTGGTGACCACAGTG
ATGGGCAGCTCCCAGCCCGTGGTGACCCGAGGCACCACCGACAACCTCATCCCTGTCTATTGC
TCCATCCTGGCTGCTGTGGTTGTGGGTCTTGTGGCCTACATAGCCTTCAAGAGGTGATCTAGAG
GGCCCGTTTAAACCCGCTGATCAGCCTCGACTGTGCCTTCTAGTTGCCAGCCATCTGTTGTTTG
CCCCTCCCCCGTGCCTTCCTTGACCCTGGAAGGTGCCACTCCCACTGTCCTTTCCTAATAAAAT
GAGGAAATTGCATCGCATTGTCTGAGTAGGTGTCATTCTATTCTGGGGGGTGGGGTGGGGCAG
GACAGCAAGGGGGAGGATTGGGAAGACAATAGCAGGCATGCTGGGGATGCGGTGGGCTCTAT
GACTAGTGGCGAATTCGGCGCAGATCAAAGAGAGCCTGCGGGCAGAGCTCAGGGTGACAGGT
GCGGCCTCGGAGGCCCCGGGGCAGGGGTGAGCTGAGCCGGTCCTGGGGTGGGTGTCCCCTC
CTGCACAGGATCAGGAGCTCCAGGGTCGTAGGGCAGGGACCCCCCAGCTCCAGTCCAGGGCT
CTGTCCTGCACCTGGGGAATGGTGACCGGCATCTCTGTCCTCTAGCTCTGGAAGCACCCCAGC
CCCTCTAGTCTGCCCTCACCCCTGACCCTGACCCTCCACCCTGACCCCGTCCTAACCCCTGAC
CTTTGTGCCCTTCCAGAGAGAAGGGCAGAAGTGCCCACAGCCCACCCCAGCCCCTCACCCAGG
CC
39InsertedAGTGCTGGCTAGAAACCAAGTGCTTTACTGCATGCACATCATTTAGCACAGTTAGTTGCTGTTTA
matrice CD25TTATTCCTGTTCCACAGCTATTGTCTGCCATATAAAAACTTAGGCCAGGCACAGTGGCTCACACC
locus_IL12a_TGTAATCCCAGCACTTTGGAAGGCCGAGGCAGGCAGATCACAAGGTCAGGAGTTCGAGACCAG
2A_IL12b (60CCTGGCCAACATAGCAAAACCCCATCTCTACTAAAAATACAAAAATTAGCCAGGCATGGTGGCG
nucleotidesTGTGCACTGGTTTAGAGTGAGGACCACATTTTTTTGGTGCCGTGTTACACATATGACCGTGACTT
upstream andTGTTACACCACTACAGGAGGAAGAGTAGAAGAACAATCGGTTCTGGCGTGAAACAGACTTTGAA
downstream)TTTTGACCTTCTCAAGTTGGCGGGAGACGTGGAGTCCAACCCAGGGCCCATGTGGCCCCCTGG
GTCAGCCTCCCAGCCACCGCCCTCACCTGCCGCGGCCACAGGTCTGCATCCAGCGGCTCGCC
CTGTGTCCCTGCAGTGCCGGCTCAGCATGTGTCCAGCGCGCAGCCTCCTCCTTGTGGCTACCC
TGGTCCTCCTGGACCACCTCAGTTTGGCCAGAAACCTCCCCGTGGCCACTCCAGACCCAGGAA
TGTTCCCATGCCTTCACCACTCCCAAAACCTGCTGAGGGCCGTCAGCAACATGCTCCAGAAGG
CCAGACAAACTCTAGAATTTTACCCTTGCACTTCTGAAGAGATTGATCATGAAGATATCACAAAA
GATAAAACCAGCACAGTGGAGGCCTGTTTACCATTGGAATTAACCAAGAATGAGAGTTGCCTAA
ATTCCAGAGAGACCTCTTTCATAACTAATGGGAGTTGCCTGGCCTCCAGAAAGACCTCTTTTATG
ATGGCCCTGTGCCTTAGTAGTATTTATGAAGACTTGAAGATGTACCAGGTGGAGTTCAAGACCA
TGAATGCAAAGCTTCTGATGGATCCTAAGAGGCAGATCTTTCTAGATCAAAACATGCTGGCAGTT
ATTGATGAGCTGATGCAGGCCCTGAATTTCAACAGTGAGACTGTGCCACAAAAATCCTCCCTTG
AAGAACCGGATTTTTATAAAACTAAAATCAAGCTCTGCATACTTCTTCATGCTTTCAGAATTCGGG
CAGTGACTATTGATAGAGTGATGAGCTATCTGAATGCTTCCGGAAGCGGAGCTACTAACTTCAG
CCTGCTGAAGCAGGCTGGAGACGTGGAGGAGAACCCTGGACCTATGTGTCACCAGCAGTTGGT
CATCTCTTGGTTTTCCCTGGTTTTTCTGGCATCTCCCCTCGTGGCCATATGGGAACTGAAGAAA
GATGTTTATGTCGTAGAATTGGATTGGTATCCGGATGCCCCTGGAGAAATGGTGGTCCTCACCT
GTGACACCCCTGAAGAAGATGGTATCACCTGGACCTTGGACCAGAGCAGTGAGGTCTTAGGCT
CTGGCAAAACCCTGACCATCCAAGTCAAAGAGTTTGGAGATGCTGGCCAGTACACCTGTCACAA
AGGAGGCGAGGTTCTAAGCCATTCGCTCCTGCTGCTTCACAAAAAGGAAGATGGAATTTGGTCC
ACTGATATTTTAAAGGACCAGAAAGAACCCAAAAATAAGACCTTTCTAAGATGCGAGGCCAAGAA
TTATTCTGGACGTTTCACCTGCTGGTGGCTGACGACAATCAGTACTGATTTGACATTCAGTGTCA
AAAGCAGCAGAGGCTCTTCTGACCCCCAAGGGGTGACGTGCGGAGCTGCTACACTCTCTGCAG
AGAGAGTCAGAGGGGACAACAAGGAGTATGAGTACTCAGTGGAGTGCCAGGAGGACAGTGCC
TGCCCAGCTGCTGAGGAGAGTCTGCCCATTGAGGTCATGGTGGATGCCGTTCACAAGCTCAAG
TATGAAAACTACACCAGCAGCTTCTTCATCAGGGACATCATCAAACCTGACCCACCCAAGAACTT
GCAGCTGAAGCCATTAAAGAATTCTCGGCAGGTGGAGGTCAGCTGGGAGTACCCTGACACCTG
GAGTACTCCACATTCCTACTTCTCCCTGACATTCTGCGTTCAGGTCCAGGGCAAGAGCAAGAGA
GAAAAGAAAGATAGAGTCTTCACGGACAAGACCTCAGCCACGGTCATCTGCCGCAAAAATGCCA
GCATTAGCGTGCGGGCCCAGGACCGCTACTATAGCTCATCTTGGAGCGAATGGGCATCTGTGC
CCTGCAGTGAGGGCAGAGGCAGCCTGCTGACCTGCGGCGACGTCGAGGAGAACCCCGGGCC
CATGGGGGCAGGTGCCACCGGCCGCGCCATGGACGGGCCGCGCCTGCTGCTGTTGCTGCTTC
TGGGGGTGTCCCTTGGAGGTGCCAAGGAGGCATGCCCCACAGGCCTGTACACACACAGCGGT
GAGTGCTGCAAAGCCTGCAACCTGGGCGAGGGTGTGGCCCAGCCTTGTGGAGCCAACCAGAC
CGTGTGTGAGCCCTGCCTGGACAGCGTGACGTTCTCCGACGTGGTGAGCGCGACCGAGCCGT
GCAAGCCGTGCACCGAGTGCGTGGGGCTCCAGAGCATGTCGGCGCCGTGCGTGGAGGCCGA
TGACGCCGTGTGCCGCTGCGCCTACGGCTACTACCAGGATGAGACGACTGGGCGCTGCGAGG
CGTGCCGCGTGTGCGAGGCGGGCTCGGGCCTCGTGTTCTCCTGCCAGGACAAGCAGAACACC
GTGTGCGAGGAGTGCCCCGACGGCACGTATTCCGACGAGGCCAACCACGTGGACCCGTGCCT
GCCCTGCACCGTGTGCGAGGACACCGAGCGCCAGCTCCGCGAGTGCACACGCTGGGCCGAC
GCCGAGTGCGAGGAGATCCCTGGCCGTTGGATTACACGGTCCACACCCCCAGAGGGCTCGGA
CAGCACAGCCCCCAGCACCCAGGAGCCTGAGGCACCTCCAGAACAAGACCTCATAGCCAGCA
CGGTGGCAGGTGTGGTGACCACAGTGATGGGCAGCTCCCAGCCCGTGGTGACCCGAGGCACC
ACCGACAACCTCATCCCTGTCTATTGCTCCATCCTGGCTGCTGTGGTTGTGGGTCTTGTGGCCT
ACATAGCCTTCAAGAGGTGAAAAACCAAAAGAACAAGAATTTCTTGGTAAGAAGCCGGGAACAG
ACAACAGAAGTCATGAAGCCCAAGTGAAATCAAAGGTGCTAAATGGTCGCCCAGGAGACATCC
GTTGTGCTTGCCTGCGTTTTGGAAGCTCTGAAGTCACATCACAGGACACGGGGCAGTGGCAAC
CTTGTCTCTATGCCAGCTCAGTCCCATCAGAGAGCGAGCGCTACCCACTTCTAAATAGCAATTT
CGCCGTTGAAGAGGAAGGGCAAAACCACTAGAACTCTCCATCTTATTTTCATGTATATGTGTTCA
TGAATGGTATGGAACTCTCTCCACCCTATATGTAGTATAAAGAAAAGTAGGTT
40InsertedGGTGGCCGGGGAGGCTTTGTGGGGCCACCCAGCCCCTTCCTCACCTCTCTCCATCTCTCAGAC
matrice PD1TCCCCAGACAGGCCCTGGAACCCCCCCACCTTCTCCCCAGCCCTGCTCGTGGTGACCGAAGG
locus_IL12a_GGACAACGCCACCTTCACCTGCAGCTTCTCCAACACATCGGAGAGCTTCGTGCTAAACTGGTAC
2A_IL12b (60CGCATGAGCCCCAGCAACCAGACGGACAAGCTGGCCGCCTTCCCCGAGGACCGCAGCCAGCC
nucleotidesCGGCCAGGACTGCCGCTTCCGTGTCACACAACTGCCCAACGGGCGTGACTTCCACATGAGCGT
upstream andGGTCAGGGCCCGGCGCAATGACAGCGGCACCTACCTCTGTGGGGCCGGTTCTGGCGTGAAAC
downstream)AGACTTTGAATTTTGACCTTCTCAAGTTGGCGGGAGACGTGGAGTCCAACCCAGGGCCCATGT
GGCCCCCTGGGTCAGCCTCCCAGCCACCGCCCTCACCTGCCGCGGCCACAGGTCTGCATCCA
GCGGCTCGCCCTGTGTCCCTGCAGTGCCGGCTCAGCATGTGTCCAGCGCGCAGCCTCCTCCTT
GTGGCTACCCTGGTCCTCCTGGACCACCTCAGTTTGGCCAGAAACCTCCCCGTGGCCACTCCA
GACCCAGGAATGTTCCCATGCCTTCACCACTCCCAAAACCTGCTGAGGGCCGTCAGCAACATG
CTCCAGAAGGCCAGACAAACTCTAGAATTTTACCCTTGCACTTCTGAAGAGATTGATCATGAAGA
TATCACAAAAGATAAAACCAGCACAGTGGAGGCCTGTTTACCATTGGAATTAACCAAGAATGAG
AGTTGCCTAAATTCCAGAGAGACCTCTTTCATAACTAATGGGAGTTGCCTGGCCTCCAGAAAGA
CCTCTTTTATGATGGCCCTGTGCCTTAGTAGTATTTATGAAGACTTGAAGATGTACCAGGTGGAG
TTCAAGACCATGAATGCAAAGCTTCTGATGGATCCTAAGAGGCAGATCTTTCTAGATCAAAACAT
GCTGGCAGTTATTGATGAGCTGATGCAGGCCCTGAATTTCAACAGTGAGACTGTGCCACAAAAA
TCCTCCCTTGAAGAACCGGATTTTTATAAAACTAAAATCAAGCTCTGCATACTTCTTCATGCTTTC
AGAATTCGGGCAGTGACTATTGATAGAGTGATGAGCTATCTGAATGCTTCCGGAAGCGGAGCTA
CTAACTTCAGCCTGCTGAAGCAGGCTGGAGACGTGGAGGAGAACCCTGGACCTATGTGTCACC
AGCAGTTGGTCATCTCTTGGTTTTCCCTGGTTTTTCTGGCATCTCCCCTCGTGGCCATATGGGAA
CTGAAGAAAGATGTTTATGTCGTAGAATTGGATTGGTATCCGGATGCCCCTGGAGAAATGGTGG
TCCTCACCTGTGACACCCCTGAAGAAGATGGTATCACCTGGACCTTGGACCAGAGCAGTGAGG
TCTTAGGCTCTGGCAAAACCCTGACCATCCAAGTCAAAGAGTTTGGAGATGCTGGCCAGTACAC
CTGTCACAAAGGAGGCGAGGTTCTAAGCCATTCGCTCCTGCTGCTTCACAAAAAGGAAGATGGA
ATTTGGTCCACTGATATTTTAAAGGACCAGAAAGAACCCAAAAATAAGACCTTTCTAAGATGCGA
GGCCAAGAATTATTCTGGACGTTTCACCTGCTGGTGGCTGACGACAATCAGTACTGATTTGACA
TTCAGTGTCAAAAGCAGCAGAGGCTCTTCTGACCCCCAAGGGGTGACGTGCGGAGCTGCTACA
CTCTCTGCAGAGAGAGTCAGAGGGGACAACAAGGAGTATGAGTACTCAGTGGAGTGCCAGGAG
GACAGTGCCTGCCCAGCTGCTGAGGAGAGTCTGCCCATTGAGGTCATGGTGGATGCCGTTCAC
AAGCTCAAGTATGAAAACTACACCAGCAGCTTCTTCATCAGGGACATCATCAAACCTGACCCAC
CCAAGAACTTGCAGCTGAAGCCATTAAAGAATTCTCGGCAGGTGGAGGTCAGCTGGGAGTACC
CTGACACCTGGAGTACTCCACATTCCTACTTCTCCCTGACATTCTGCGTTCAGGTCCAGGGCAA
GAGCAAGAGAGAAAAGAAAGATAGAGTCTTCACGGACAAGACCTCAGCCACGGTCATCTGCCG
CAAAAATGCCAGCATTAGCGTGCGGGCCCAGGACCGCTACTATAGCTCATCTTGGAGCGAATG
GGCATCTGTGCCCTGCAGTGAGGGCAGAGGCAGCCTGCTGACCTGCGGCGACGTCGAGGAGA
ACCCCGGGCCCATGGGGGCAGGTGCCACCGGCCGCGCCATGGACGGGCCGCGCCTGCTGCT
GTTGCTGCTTCTGGGGGTGTCCCTTGGAGGTGCCAAGGAGGCATGCCCCACAGGCCTGTACAC
ACACAGCGGTGAGTGCTGCAAAGCCTGCAACCTGGGCGAGGGTGTGGCCCAGCCTTGTGGAG
CCAACCAGACCGTGTGTGAGCCCTGCCTGGACAGCGTGACGTTCTCCGACGTGGTGAGCGCG
ACCGAGCCGTGCAAGCCGTGCACCGAGTGCGTGGGGCTCCAGAGCATGTCGGCGCCGTGCGT
GGAGGCCGATGACGCCGTGTGCCGCTGCGCCTACGGCTACTACCAGGATGAGACGACTGGGC
GCTGCGAGGCGTGCCGCGTGTGCGAGGCGGGCTCGGGCCTCGTGTTCTCCTGCCAGGACAAG
CAGAACACCGTGTGCGAGGAGTGCCCCGACGGCACGTATTCCGACGAGGCCAACCACGTGGA
CCCGTGCCTGCCCTGCACCGTGTGCGAGGACACCGAGCGCCAGCTCCGCGAGTGCACACGCT
GGGCCGACGCCGAGTGCGAGGAGATCCCTGGCCGTTGGATTACACGGTCCACACCCCCAGAG
GGCTCGGACAGCACAGCCCCCAGCACCCAGGAGCCTGAGGCACCTCCAGAACAAGACCTCAT
AGCCAGCACGGTGGCAGGTGTGGTGACCACAGTGATGGGCAGCTCCCAGCCCGTGGTGACCC
GAGGCACCACCGACAACCTCATCCCTGTCTATTGCTCCATCCTGGCTGCTGTGGTTGTGGGTCT
TGTGGCCTACATAGCCTTCAAGAGGTGATCTAGAGGGCCCGTTTAAACCCGCTGATCAGCCTC
GACTGTGCCTTCTAGTTGCCAGCCATCTGTTGTTTGCCCCTCCCCCGTGCCTTCCTTGACCCTG
GAAGGTGCCACTCCCACTGTCCTTTCCTAATAAAATGAGGAAATTGCATCGCATTGTCTGAGTA
GGTGTCATTCTATTCTGGGGGGTGGGGTGGGGCAGGACAGCAAGGGGGAGGATTGGGAAGAC
AATAGCAGGCATGCTGGGGATGCGGTGGGCTCTATGACTAGTGGCGAATTCGGCGCAGATCAA
AGAGAGCCTGCGGGCAGAGCTCAGGGTGACAGGTGCGGCCTCGGAGGCCCCGGGGCAGGGG
TGAGCTGAGCCGGTCCTGGGGTGGGTGTCCCCTCCTGCACAGGATCAGGAGCTCCAGGGTCG
TAGGGCAGGGACCCCCCAGCTCCAGTCCAGGGCTCTGTCCTGCACCTGGGGAATGGTGACCG
GCATCTCTGTCCTCTAGCTCTGGAAGCACCCCAGCCCCTCTAGTCTGCCCTCACCCCTGACCCT
GACCCTCCACCCTGACCCCGTCCTAACCCCTGACCTTTGTGCCCTTCCAGAGAGAAGGGCAGA
AGTGCCCACAGCCCACCCCAGCCCCTCACCCAGGCC
41upstreamATGAGATCATGTCCTAACCCTGATCCTCTTGTCCCACAGATATCCAGAACCCTGACC
TRAC locusCTG
polynucleotide
sequence
42downstreamGAAACAGTGAGCCTTGTTCTGGCAGTCCAGAGAATGACACGGGAAAAAAGCAGATG
TRAC locusAAGA
polynucleotide
sequence
43upstreamAGTGCTGGCTAGAAACCAAGTGCTTTACTGCATGCACATCATTTAGCACAGTTAGTT
CD25 locusGCT
polynucleotide
sequence
44downstreamGAATGGTATGGAACTCTCTCCACCCTATATGTAGTATAAAGAAAAGTAGGTT
CD25 locus
polynucleotide
sequence
45upstream PD1GGTGGCCGGGGAGGCTTTGTGGGGCCACCCAGCCCCTTCCTCACCTCTCTCCATCT
locusCTCA
polynucleotide
sequence
46downstreamTGCCCTTCCAGAGAGAAGGGCAGAAGTGCCCACAGCCCACCCCAGCCCCTCACCC
PD1 locusAGGCC
polynucleotide
sequence
47IL-12aATGTGGCCCCCTGGGTCAGCCTCCCAGCCACCGCCCTCACCTGCCGCGGCCACAG
polynucleotideGTCTGCATCCAGCGGCTCGCCCTGTGTCCCTGCAGTGCCGGCTCAGCATGTGTCCA
GCGCGCAGCCTCCTCCTTGTGGCTACCCTGGTCCTCCTGGACCACCTCAGTTTGGC
CAGAAACCTCCCCGTGGCCACTCCAGACCCAGGAATGTTCCCATGCCTTCACCACT
CCCAAAACCTGCTGAGGGCCGTCAGCAACATGCTCCAGAAGGCCAGACAAACTCTA
GAATTTTACCCTTGCACTTCTGAAGAGATTGATCATGAAGATATCACAAAAGATAAAA
CCAGCACAGTGGAGGCCTGTTTACCATTGGAATTAACCAAGAATGAGAGTTGCCTAA
ATTCCAGAGAGACCTCTTTCATAACTAATGGGAGTTGCCTGGCCTCCAGAAAGACCT
CTTTTATGATGGCCCTGTGCCTTAGTAGTATTTATGAAGACTTGAAGATGTACCAGGT
GGAGTTCAAGACCATGAATGCAAAGCTTCTGATGGATCCTAAGAGGCAGATCTTTCT
AGATCAAAACATGCTGGCAGTTATTGATGAGCTGATGCAGGCCCTGAATTTCAACAG
TGAGACTGTGCCACAAAAATCCTCCCTTGAAGAACCGGATTTTTATAAAACTAAAATC
AAGCTCTGCATACTTCTTCATGCTTTCAGAATTCGGGCAGTGACTATTGATAGAGTGA
TGAGCTATCTGAATGCTTCC
48IL12bATGTGTCACCAGCAGTTGGTCATCTCTTGGTTTTCCCTGGTTTTTCTGGCATCTCCCC
polynucleotideTCGTGGCCATATGGGAACTGAAGAAAGATGTTTATGTCGTAGAATTGGATTGGTATC
CGGATGCCCCTGGAGAAATGGTGGTCCTCACCTGTGACACCCCTGAAGAAGATGGT
ATCACCTGGACCTTGGACCAGAGCAGTGAGGTCTTAGGCTCTGGCAAAACCCTGAC
CATCCAAGTCAAAGAGTTTGGAGATGCTGGCCAGTACACCTGTCACAAAGGAGGCG
AGGTTCTAAGCCATTCGCTCCTGCTGCTTCACAAAAAGGAAGATGGAATTTGGTCCA
CTGATATTTTAAAGGACCAGAAAGAACCCAAAAATAAGACCTTTCTAAGATGCGAGG
CCAAGAATTATTCTGGACGTTTCACCTGCTGGTGGCTGACGACAATCAGTACTGATT
TGACATTCAGTGTCAAAAGCAGCAGAGGCTCTTCTGACCCCCAAGGGGTGACGTGC
GGAGCTGCTACACTCTCTGCAGAGAGAGTCAGAGGGGACAACAAGGAGTATGAGTA
CTCAGTGGAGTGCCAGGAGGACAGTGCCTGCCCAGCTGCTGAGGAGAGTCTGCCC
ATTGAGGTCATGGTGGATGCCGTTCACAAGCTCAAGTATGAAAACTACACCAGCAGC
TTCTTCATCAGGGACATCATCAAACCTGACCCACCCAAGAACTTGCAGCTGAAGCCA
TTAAAGAATTCTCGGCAGGTGGAGGTCAGCTGGGAGTACCCTGACACCTGGAGTAC
TCCACATTCCTACTTCTCCCTGACATTCTGCGTTCAGGTCCAGGGCAAGAGCAAGAG
AGAAAAGAAAGATAGAGTCTTCACGGACAAGACCTCAGCCACGGTCATCTGCCGCA
AAAATGCCAGCATTAGCGTGCGGGCCCAGGACCGCTACTATAGCTCATCTTGGAGC
GAATGGGCATCTGTGCCCTGCAGT
49IL15GGCATTCATGTCTTCATTTTGGGCTGTTTCAGTGCAGGGCTTCCTAAAACAGAAGCC
polynucleotideAACTGGGTGAATGTAATAAGTGATTTGAAAAAAATTGAAGATCTTATTCAATCTATGC
ATATTGATGCTACTTTATATACGGAAAGTGATGTTCACCCCAGTTGCAAAGTAACAGC
AATGAAGTGCTTTCTCTTGGAGTTACAAGTTATTTCACTTGAGTCCGGAGATGCAAGT
ATTCATGATACAGTAGAAAATCTGATCATCCTAGCAAACAACAGTTTGTCTTCTAATG
GGAATGTAACAGAATCTGGATGCAAAGAATGTGAGGAACTGGAGGAAAAAAATATTA
AAGAATTTTTGCAGAGTTTTGTACATATTGTCCAAATGTTCATCAACACTTCT
50sIL15raATCACGTGCCCTCCCCCCATGTCCGTGGAACACGCAGACATCTGGGTCAAGAGCTA
polynucleotideCAGCTTGTACTCCAGGGAGCGGTACATTTGTAACTCTGGTTTCAAGCGTAAAGCCGG
CACGTCCAGCCTGACGGAGTGCGTGTTGAACAAGGCCACGAATGTCGCCCACTGGA
CAACCCCCAGTCTCAAATGCATTAGAGACCCTGCCCTGGTTCACCAAAGGCCAGCG
CCACCCTCCACAGTAACGACGGCAGGGGTGACCCCACAGCCAGAGAGCCTCTCCC
CTTCTGGAAAAGAGCCCGCAGCTTCATCTCCCAGCTCAAACAACACAGCGGCCACA
ACAGCAGCTATTGTCCCGGGCTCCCAGCTGATGCCTTCAAAATCACCTTCCACAGGA
ACCACAGAGATAAGCAGTCATGAGTCCTCCCACGGCACCCCCTCTCAGACAACAGC
CAAGAACTGGGAACTCACAGCATCCGCCTCCCACCAGCCGCCAGGTGTGTATCCAC
AGGGCCACAGCGACACCACT
51solubleATGCTGACACTGCAGACTTGGCTGGTGCAGGCACTGTTTATTTTTCTGACTACTGAA
GP130TCAACTGGCGAACTGCTGGACCCTTGTGGCTACATCAGCCCTGAGTCCCCAGTGGT
polynucleotideGCAGCTGCACAGCAACTTCACCGCCGTGTGCGTGCTGAAGGAGAAGTGTATGGACT
ACTTTCACGTGAACGCCAATTATATCGTGTGGAAAACCAACCACTTCACAATCCCCAA
GGAGCAGTACACCATCATCAATAGGACAGCCAGCTCCGTGACCTTTACAGACATCG
CCTCCCTGAACATCCAGCTGACCTGCAATATCCTGACATTCGGCCAGCTGGAGCAG
AACGTGTATGGCATCACCATCATCTCTGGCCTGCCCCCTGAGAAGCCTAAGAACCTG
AGCTGCATCGTGAATGAGGGCAAGAAGATGCGGTGTGAGTGGGACGGCGGCAGAG
AGACACACCTGGAGACAAACTTCACCCTGAAGTCCGAGTGGGCCACACACAAGTTT
GCCGACTGCAAGGCCAAGCGCGATACCCCAACATCCTGTACCGTGGATTACTCTAC
AGTGTATTTTGTGAACATCGAAGTGTGGGTGGAGGCCGAGAATGCCCTGGGCAAGG
TGACCTCCGACCACATCAACTTCGATCCCGTGTACAAGGTGAAGCCTAACCCACCCC
ACAATCTGAGCGTGATCAATTCCGAGGAGCTGTCTAGCATCCTGAAGCTGACCTGGA
CAAACCCATCTATCAAGAGCGTGATCATCCTGAAGTACAATATCCAGTATCGGACCA
AGGACGCCTCCACATGGAGCCAGATCCCTCCAGAGGATACCGCCAGCACAAGATCC
TCTTTCACCGTGCAGGACCTGAAGCCCTTCACAGAGTACGTGTTTCGGATCAGATGT
ATGAAGGAGGACGGCAAGGGCTACTGGAGCGATTGGTCCGAGGAGGCCAGCGGCA
TCACCTATGAGGACAGGCCTTCTAAGGCCCCCAGCTTCTGGTACAAGATCGATCCAT
CCCACACCCAGGGCTATCGCACAGTGCAGCTGGTGTGGAAAACCCTGCCCCCTTTC
GAGGCCAACGGCAAGATCCTGGACTACGAGGTGACCCTGACACGGTGGAAGTCCC
ACCTGCAGAACTATACCGTGAATGCCACCAAGCTGACAGTGAACCTGACAAATGATC
GGTACCTGGCCACCCTGACAGTGAGAAACCTGGTGGGCAAGTCTGACGCCGCCGT
GCTGACCATCCCTGCCTGCGATTTCCAGGCCACACACCCAGTGATGGACCTGAAGG
CCTTTCCCAAGGATAATATGCTGTGGGTGGAGTGGACCACACCTAGAGAGTCCGTG
AAGAAGTACATCCTGGAGTGGTGCGTGCTGTCTGACAAGGCCCCATGTATCACCGA
CTGGCAGCAGGAGGATGGCACCGTGCACAGGACATATCTGCGCGGCAACCTGGCC
GAGTCTAAGTGTTACCTGATCACCGTGACACCCGTGTATGCAGACGGACCAGGCTC
TCCTGAGAGCATCAAGGCCTACCTGAAGCAGGCACCACCAAGCAAGGGACCAACCG
TGCGGACAAAGAAGGTCGGCAAGAATGAGGCCGTGCTGGAGTGGGACCAGCTGCC
TGTGGATGTGCAGAACGGCTTCATCAGGAATTACACCATCTTTTATCGCACAATCATC
GGCAACGAGACAGCCGTGAATGTGGACAGCTCCCACACCGAGTATACACTGTCTAG
CCTGACCTCCGATACACTGTACATGGTGAGGATGGCCGCCTATACAGACGAGGGCG
GCAAGGATGGCCCCGAGTTT
52IgE signalGGTACCGGGTCCGCCACCATGGACTGGACCTGGATTCTGTTCCTCGTGGCTGCTGC
sequenceTACAAGAGTGCACAGC
53F2AGGTTCTGGCGTGAAACAGACTTTGAATTTTGACCTTCTCAAGTTGGCGGGAGACGTG
GAGTCCAACCCAGGGCCC
54P2AGGAAGCGGAGCTACTAACTTCAGCCTGCTGAAGCAGGCTGGAGACGTGGAGGAGA
ACCCTGGACCT
55T2AGAGGGCAGAGGCAGCCTGCTGACCTGCGGCGACGTCGAGGAGAACCCCGGGCCC
56LNGFRATGGGGGCAGGTGCCACCGGCCGCGCCATGGACGGGCCGCGCCTGCTGCTGTTG
CTGCTTCTGGGGGTGTCCCTTGGAGGTGCCAAGGAGGCATGCCCCACAGGCCTGT
ACACACACAGCGGTGAGTGCTGCAAAGCCTGCAACCTGGGCGAGGGTGTGGCCCA
GCCTTGTGGAGCCAACCAGACCGTGTGTGAGCCCTGCCTGGACAGCGTGACGTTCT
CCGACGTGGTGAGCGCGACCGAGCCGTGCAAGCCGTGCACCGAGTGCGTGGGGC
TCCAGAGCATGTCGGCGCCGTGCGTGGAGGCCGATGACGCCGTGTGCCGCTGCGC
CTACGGCTACTACCAGGATGAGACGACTGGGCGCTGCGAGGCGTGCCGCGTGTGC
GAGGCGGGCTCGGGCCTCGTGTTCTCCTGCCAGGACAAGCAGAACACCGTGTGCG
AGGAGTGCCCCGACGGCACGTATTCCGACGAGGCCAACCACGTGGACCCGTGCCT
GCCCTGCACCGTGTGCGAGGACACCGAGCGCCAGCTCCGCGAGTGCACACGCTGG
GCCGACGCCGAGTGCGAGGAGATCCCTGGCCGTTGGATTACACGGTCCACACCCC
CAGAGGGCTCGGACAGCACAGCCCCCAGCACCCAGGAGCCTGAGGCACCTCCAGA
ACAAGACCTCATAGCCAGCACGGTGGCAGGTGTGGTGACCACAGTGATGGGCAGCT
CCCAGCCCGTGGTGACCCGAGGCACCACCGACAACCTCATCCCTGTCTATTGCTCC
ATCCTGGCTGCTGTGGTTGTGGGTCTTGTGGCCTACATAGCCTTCAAGAGGTGA
57IL-12aMWPPGSASQPPPSPAAATGLHPAARPVSLQCRLSMCPARSLLLVATLVLLDHLSLARNL
polypeptidePVATPDPGMFPCLHHSQNLLRAVSNMLQKARQTLEFYPCTSEEIDHEDITKDKTSTVEA
CLPLELTKNESCLNSRETSFITNGSCLASRKTSFMMALCLSSIYEDLKMYQVEFKTMNAK
LLMDPKRQIFLDQNMLAVIDELMQALNFNSETVPQKSSLEEPDFYKTKIKLCILLHAFRIRA
VTIDRVMSYLNAS
58IL12bMCHQQLVISWFSLVFLASPLVAIWELKKDVYVVELDWYPDAPGEMVVLTCDTPEEDGIT
polypeptideWTLDQSSEVLGSGKTLTIQVKEFGDAGQYTCHKGGEVLSHSLLLLHKKEDGIWSTDILKD
QKEPKNKTFLRCEAKNYSGRFTCWWLTTISTDLTFSVKSSRGSSDPQGVTCGAATLSAE
RVRGDNKEYEYSVECQEDSACPAAEESLPIEVMVDAVHKLKYENYTSSFFIRDIIKPDPP
KNLQLKPLKNSRQVEVSWEYPDTWSTPHSYFSLTFCVQVQGKSKREKKDRVFTDKTSA
TVICRKNASISVRAQDRYYSSSWSEWASVPCS
59IL15GIHVFILGCFSAGLPKTEANWVNVISDLKKIEDLIQSMHIDATLYTESDVHPSCKVTAMKC
polypeptideFLLELQVISLESGDASIHDTVENLIILANNSLSSNGNVTESGCKECEELEEKNIKEFLQSFV
HIVQMFINTS
60sIL15raITCPPPMSVEHADIWVKSYSLYSRERYICNSGFKRKAGTSSLTECVLNKATNVAHWTTPS
polypeptideLKCIRDPALVHQRPAPPSTVTTAGVTPQPESLSPSGKEPAASSPSSNNTAATTAAIVPGS
QLMPSKSPSTGTTEISSHESSHGTPSQTTAKNWELTASASHQPPGVYPQGHSDTT
61soluble gp130MLTLQTWLVQALFIFLTTESTGELLDPCGYISPESPVVQLHSNFTAVCVLKEKCMDYFHV
NANYIVWKTNHFTIPKEQYTIINRTASSVTFTDIASLNIQLTCNILTFGQLEQNVYGITIISGL
PPEKPKNLSCIVNEGKKMRCEWDGGRETHLETNFTLKSEWATHKFADCKAKRDTPTSC
TVDYSTVYFVNIEVWVEAENALGKVTSDHINFDPVYKVKPNPPHNLSVINSEELSSILKLT
WTNPSIKSVIILKYNIQYRTKDASTWSQIPPEDTASTRSSFTVQDLKPFTEYVFRIRCMKE
DGKGYWSDWSEEASGITYEDRPSKAPSFWYKIDPSHTQGYRTVQLVWKTLPPFEANGK
ILDYEVTLTRWKSHLQNYTVNATKLTVNLTNDRYLATLTVRNLVGKSDAAVLTIPACDFQA
THPVMDLKAFPKDNMLWVEWTTPRESVKKYILEWCVLSDKAPCITDWQQEDGTVHRTY
LRGNLAESKCYLITVTPVYADGPGSPESIKAYLKQAPPSKGPTVRTKKVGKNEAVLEWD
QLPVDVQNGFIRNYTIFYRTIIGNETAVNVDSSHTEYTLSSLTSDTLYMVRMAAYTDEGG
KDGPEF
62soluble gp130MLTLQTWLVQALFIFLTTESTGELLDPCGYISPESPVVQLHSNFTAVCVLKEKCMDYFHV
fused to a FcNANYIVWKTNHFTIPKEQYTIINRTASSVTFTDIASLNIQLTCNILTFGQLEQNVYGITIISGL
PPEKPKNLSCIVNEGKKMRCEWDGGRETHLETNFTLKSEWATHKFADCKAKRDTPTSC
TVDYSTVYFVNIEVWVEAENALGKVTSDHINFDPVYKVKPNPPHNLSVINSEELSSILKLT
WTNPSIKSVIILKYNIQYRTKDASTWSQIPPEDTASTRSSFTVQDLKPFTEYVFRIRCMKE
DGKGYWSDWSEEASGITYEDRPSKAPSFWYKIDPSHTQGYRTVQLVWKTLPPFEANGK
ILDYEVTLTRWKSHLQNYTVNATKLTVNLTNDRYLATLTVRNLVGKSDAAVLTIPACDFQA
THPVMDLKAFPKDNMLWVEWTTPRESVKKYILEWCVLSDKAPCITDWQQEDGTVHRTY
LRGNLAESKCYLITVTPVYADGPGSPESIKAYLKQAPPSKGPTVRTKKVGKNEAVLEWD
QLPVDVQNGFIRNYTIFYRTIIGNETAVNVDSSHTEYTLSSLTSDTLYMVRMAAYTDEGG
KDGPEFRSCDKTHTCPPCPAPEAEGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHED
PEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKAL
PAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQP
ENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSP
GK
63Matrice TRACGTGGCACTTTTCGGGGAAATGTGCGCGGAACCCCTATTTGTTTATTTTTCTAAATACA
locus_CubiCARTTCAAATATGTATCCGCTCATGAGACAATAACCCTGATAAATGCTTCAATAATATTGAA
CD22AAAGGAAGAGTATGAGTATTCAACATTTCCGTGTCGCCCTTATTCCCTTTTTTGCGGC
pCLS30056ATTTTGCCTTCCTGTTTTTGCTCACCCAGAAACGCTGGTGAAAGTAAAAGATGCTGAA
full sequenceGATCAGTTGGGTGCACGAGTGGGTTACATCGAACTGGATCTCAACAGCGGTAAGAT
CCTTGAGAGTTTTCGCCCCGAAGAACGTTTTCCAATGATGAGCACTTTTAAAGTTCTG
CTATGTGGCGCGGTATTATCCCGTATTGACGCCGGGCAAGAGCAACTCGGTCGCCG
CATACACTATTCTCAGAATGACTTGGTTGAGTACTCACCAGTCACAGAAAAGCATCTT
ACGGATGGCATGACAGTAAGAGAATTATGCAGTGCTGCCATAACCATGAGTGATAAC
ACTGCGGCCAACTTACTTCTGACAACGATCGGAGGACCGAAGGAGCTAACCGCTTT
TTTGCACAACATGGGGGATCATGTAACTCGCCTTGATCGTTGGGAACCGGAGCTGA
ATGAAGCCATACCAAACGACGAGCGTGACACCACGATGCCTGTAGCAATGGCAACA
ACGTTGCGCAAACTATTAACTGGCGAACTACTTACTCTAGCTTCCCGGCAACAATTAA
TAGACTGGATGGAGGCGGATAAAGTTGCAGGACCACTTCTGCGCTCGGCCCTTCCG
GCTGGCTGGTTTATTGCTGATAAATCTGGAGCCGGTGAGCGTGGTTCTCGCGGTAT
CATTGCAGCACTGGGGCCAGATGGTAAGCCCTCCCGTATCGTAGTTATCTACACGA
CGGGGAGTCAGGCAACTATGGATGAACGAAATAGACAGATCGCTGAGATAGGTGCC
TCACTGATTAAGCATTGGTAACTGTCAGACCAAGTTTACTCATATATACTTTAGATTGA
TTTAAAACTTCATTTTTAATTTAAAAGGATCTAGGTGAAGATCCTTTTTGATAATCTCAT
GACCAAAATCCCTTAACGTGAGTTTTCGTTCCACTGAGCGTCAGACCCCGTAGAAAA
GATCAAAGGATCTTCTTGAGATCCTTTTTTTCTGCGCGTAATCTGCTGCTTGCAAACA
AAAAAACCACCGCTACCAGCGGTGGTTTGTTTGCCGGATCAAGAGCTACCAACTCTT
TTTCCGAAGGTAACTGGCTTCAGCAGAGCGCAGATACCAAATACTGTTCTTCTAGTG
TAGCCGTAGTTAGGCCACCACTTCAAGAACTCTGTAGCACCGCCTACATACCTCGCT
CTGCTAATCCTGTTACCAGTGGCTGCTGCCAGTGGCGATAAGTCGTGTCTTACCGG
GTTGGACTCAAGACGATAGTTACCGGATAAGGCGCAGCGGTCGGGCTGAACGGGG
GGTTCGTGCACACAGCCCAGCTTGGAGCGAACGACCTACACCGAACTGAGATACCT
ACAGCGTGAGCTATGAGAAAGCGCCACGCTTCCCGAAGGGAGAAAGGCGGACAGG
TATCCGGTAAGCGGCAGGGTCGGAACAGGAGAGCGCACGAGGGAGCTTCCAGGGG
GAAACGCCTGGTATCTTTATAGTCCTGTCGGGTTTCGCCACCTCTGACTTGAGCGTC
GATTTTTGTGATGCTCGTCAGGGGGGCGGAGCCTATGGAAAAACGCCAGCAACGCG
GCCTTTTTACGGTTCCTGGCCTTTTGCTGGCCTTTTGCTCACATGGTCTTTCCTGCGT
TATCCCCTGATTCTGTGGATAACCGTATTACCGCCTTTGAGTGAGCTGATACCGCTC
GCCGCAGCCGAACGACCGAGCGCAGCGAGTCAGTGAGCGAGGAAGCGGAGAGCG
CCCAATACGCAAACCGCCTCTCCCCGCGCGTTGGCCGATTCATTAATGCAGCTGGC
ACGACAGGTTTCCCGACTGGAAAGCGGGCAGTGAGCGCAACGCAATTAATGTGAGT
TAGCTCACTCATTAGGCACCCCAGGCTTTACACTTTATGCTTCCGGCTCGTATGTTGT
GTGGAATTGTGAGCGGATAACAATTTCACACAGGAAACAGCTATGACCATGATTACG
CCAAGCGCGTCAATTAACCCTCACTAAAGGGAACAAAAGCTGTTAATTAATTGCTGG
GCCTTTTTCCCATGCCTGCCTTTACTCTGCCAGAGTTATATTGCTGGGGTTTTGAAGA
AGATCCTATTAAATAAAAGAATAAGCAGTATTATTAAGTAGCCCTGCATTTCAGGTTT
CCTTGAGTGGCAGGCCAGGCCTGGCCGTGAACGTTCACTGAAATCATGGCCTCTTG
GCCAAGATTGATAGCTTGTGCCTGTCCCTGAGTCCCAGTCCATCACGAGCAGCTGG
TTTCTAAGATGCTATTTCCCGTATAAAGCATGAGACCGTGACTTGCCAGCCCCACAG
AGCCCCGCCCTTGTCCATCACTGGCATCTGGACTCCAGCCTGGGTTGGGGCAAAGA
GGGAAATGAGATCATGTCCTAACCCTGATCCTCTTGTCCCACAGATATCCAGTACCC
CTACGACGTGCCCGACTACGCCTCCGGTGAGGGCAGAGGAAGTCTTCTAACATGCG
GTGACGTGGAGGAGAATCCGGGCCCCGGATCCGCTCTGCCCGTCACCGCTCTGCT
GCTGCCACTGGCACTGCTGCTGCACGCTGCTAGGCCCGGAGGGGGAGGCAGCTGC
CCCTACAGCAACCCCAGCCTGTGCAGCGGAGGCGGCGGCAGCGGCGGAGGGGGT
AGCCAGGTGCAGCTGCAGCAGAGCGGCCCTGGCCTGGTGAAGCCAAGCCAGACAC
TGTCCCTGACCTGCGCCATCAGCGGCGATTCCGTGAGCTCCAACTCCGCCGCCTGG
AATTGGATCAGGCAGTCCCCTTCTCGGGGCCTGGAGTGGCTGGGAAGGACATACTA
TCGGTCTAAGTGGTACAACGATTATGCCGTGTCTGTGAAGAGCAGAATCACAATCAA
CCCTGACACCTCCAAGAATCAGTTCTCTCTGCAGCTGAATAGCGTGACACCAGAGGA
CACCGCCGTGTACTATTGCGCCAGGGAGGTGACCGGCGACCTGGAGGATGCCTTT
GACATCTGGGGCCAGGGCACAATGGTGACCGTGAGCTCCGGAGGCGGCGGATCTG
GCGGAGGAGGAAGTGGGGGCGGCGGGAGTGATATCCAGATGACACAGTCCCCATC
CTCTCTGAGCGCCTCCGTGGGCGACAGAGTGACAATCACCTGTAGGGCCTCCCAGA
CCATCTGGTCTTACCTGAACTGGTATCAGCAGAGGCCCGGCAAGGCCCCTAATCTG
CTGATCTACGCAGCAAGCTCCCTGCAGAGCGGAGTGCCATCCAGATTCTCTGGCAG
GGGCTCCGGCACAGACTTCACCCTGACCATCTCTAGCCTGCAGGCCGAGGACTTCG
CCACCTACTATTGCCAGCAGTCTTATAGCATCCCCCAGACATTTGGCCAGGGCACCA
AGCTGGAGATCAAGTCGGATCCCGGAAGCGGAGGGGGAGGCAGCTGCCCCTACAG
CAACCCCAGCCTGTGCAGCGGAGGCGGCGGCAGCGAGCTGCCCACCCAGGGCAC
CTTCTCCAACGTGTCCACCAACGTGAGCCCAGCCAAGCCCACCACCACCGCCTGTC
CTTATTCCAATCCTTCCCTGTGTGCTCCCACCACAACCCCCGCTCCAAGGCCCCCTA
CCCCCGCACCAACTATTGCCTCCCAGCCACTCTCACTGCGGCCTGAGGCCTGTCGG
CCCGCTGCTGGAGGCGCAGTGCATACAAGGGGCCTCGATTTCGCCTGCGATATTTA
CATCTGGGCACCCCTCGCCGGCACCTGCGGGGTGCTTCTCCTCTCCCTGGTGATTA
CCCTGTATTGCAGACGGGGCCGGAAGAAGCTCCTCTACATTTTTAAGCAGCCTTTCA
TGCGGCCAGTGCAGACAACCCAAGAGGAGGATGGGTGTTCCTGCAGATTCCCTGAG
GAAGAGGAAGGCGGGTGCGAGCTGAGAGTGAAGTTCTCCAGGAGCGCAGATGCCC
CCGCCTATCAACAGGGCCAGAACCAGCTCTACAACGAGCTTAACCTCGGGAGGCGC
GAAGAATACGACGTGTTGGATAAGAGAAGGGGGCGGGACCCCGAGATGGGAGGAA
AGCCCCGGAGGAAGAACCCTCAGGAGGGCCTGTACAACGAGCTGCAGAAGGATAA
GATGGCCGAGGCCTACTCAGAGATCGGGATGAAGGGGGAGCGGCGCCGCGGGAA
GGGGCACGATGGGCTCTACCAGGGGCTGAGCACAGCCACAAAGGACACATACGAC
GCCTTGCACATGCAGGCCCTTCCACCCCGGGAATAGTCTAGAGGGCCCGTTTAAAC
CCGCTGATCAGCCTCGACTGTGCCTTCTAGTTGCCAGCCATCTGTTGTTTGCCCCTC
CCCCGTGCCTTCCTTGACCCTGGAAGGTGCCACTCCCACTGTCCTTTCCTAATAAAA
TGAGGAAATTGCATCGCATTGTCTGAGTAGGTGTCATTCTATTCTGGGGGGTGGGGT
GGGGCAGGACAGCAAGGGGGAGGATTGGGAAGACAATAGCAGGCATGCTGGGGAT
GCGGTGGGCTCTATGACTAGTGGCGAATTCCCGTGTACCAGCTGAGAGACTCTAAA
TCCAGTGACAAGTCTGTCTGCCTATTCACCGATTTTGATTCTCAAACAAATGTGTCAC
AAAGTAAGGATTCTGATGTGTATATCACAGACAAAACTGTGCTAGACATGAGGTCTAT
GGACTTCAAGAGCAACAGTGCTGTGGCCTGGAGCAACAAATCTGACTTTGCATGTG
CAAACGCCTTCAACAACAGCATTATTCCAGAAGACACCTTCTTCCCCAGCCCAGGTA
AGGGCAGCTTTGGTGCCTTCGCAGGCTGTTTCCTTGCTTCAGGAATGGCCAGGTTC
TGCCCAGAGCTCTGGTCAATGATGTCTAAAACTCCTCTGATTGGTGGTCTCGGCCTT
ATCCATTGCCACCAAAACCCTCTTTTTACTAAGCGATCGCTCCGGTGCCCGTCAGTG
GGCAGAGCGCACATCGCCCACAGTCCCCGAGAAGTTGGGGGGAGGGGTCGGCAAT
TGAACGGGTGCCTAGAGAAGGTGGCGCGGGGTAAACTGGGAAAGTGATGTCGTGT
ACTGGCTCCGCCTTTTTCCCGAGGGTGGGGGAGAACCGTATATAAGTGCAGTAGTC
GCCGTGAACGTTCTTTTTCGCAACGGGTTTGCCGCCAGAACACAGCTGAAGCTTCG
AGGGGCTCGCATCTCTCCTTCACGCGCCCGCCGCCCTACCTGAGGCCGCCATCCA
CGCCGGTTGAGTCGCGTTCTGCCGCCTCCCGCCTGTGGTGCCTCCTGAACTGCGTC
CGCCGTCTAGGTAAGTTTAAAGCTCAGGTCGAGACCGGGCCTTTGTCCGGCGCTCC
CTTGGAGCCTACCTAGACTCAGCCGGCTCTCCACGCTTTGCCTGACCCTGCTTGCT
CAACTCTACGTCTTTGTTTCGTTTTCTGTTCTGCGCCGTTACAGATCCAAGCTGTGAC
CGGCGCCTACCTGAGATCACCGGCGCCACCATGGCTTCTTACCCTGGACACCAGCA
TGCTTCTGCCTTTGACCAGGCTGCCAGATCCAGGGGCCACTCCAACAGGAGAACTG
CCCTAAGACCCAGAAGACAGCAGGAAGCCACTGAGGTGAGGCCTGAGCAGAAGAT
GCCAACCCTGCTGAGGGTGTACATTGATGGACCTCATGGCATGGGCAAGACCACCA
CCACTCAACTGCTGGTGGCACTGGGCTCCAGGGATGACATTGTGTATGTGCCTGAG
CCAATGACCTACTGGAGAGTGCTAGGAGCCTCTGAGACCATTGCCAACATCTACACC
ACCCAGCACAGGCTGGACCAGGGAGAAATCTCTGCTGGAGATGCTGCTGTGGTGAT
GACCTCTGCCCAGATCACAATGGGAATGCCCTATGCTGTGACTGATGCTGTTCTGGC
TCCTCACATTGGAGGAGAGGCTGGCTCTTCTCATGCCCCTCCACCTGCCCTGACCC
TGATCTTTGACAGACACCCCATTGCAGCCCTGCTGTGCTACCCAGCAGCAAGGTAC
CTCATGGGCTCCATGACCCCACAGGCTGTGCTGGCTTTTGTGGCCCTGATCCCTCC
AACCCTCCCTGGCACCAACATTGTTCTGGGAGCACTGCCTGAAGACAGACACATTGA
CAGGCTGGCAAAGAGGCAGAGACCTGGAGAGAGACTGGACCTGGCCATGCTGGCT
GCAATCAGAAGGGTGTATGGACTGCTGGCAAACACTGTGAGATACCTCCAGTGTGG
AGGCTCTTGGAGAGAGGACTGGGGACAGCTCTCTGGAACAGCAGTGCCCCCTCAA
GGAGCTGAGCCCCAGTCCAATGCTGGTCCAAGACCCCACATTGGGGACACCCTGTT
CACCCTGTTCAGAGCCCCTGAGCTGCTGGCTCCCAATGGAGACCTGTACAATGTGT
TTGCCTGGGCTCTGGATGTTCTAGCCAAGAGGCTGAGGTCCATGCATGTGTTCATCC
TGGACTATGACCAGTCCCCTGCTGGATGCAGAGATGCTCTGCTGCAACTAACCTCTG
GCATGGTGCAGACCCATGTGACCACCCCTGGCAGCATCCCCACCATCTGTGACCTA
GCCAGAACCTTTGCCAGGGAGATGGGAGAGGCCAACTAAGGCGCGCCACTCGAGC
GCTAGCTGGCCAGACATGATAAGATACATTGATGAGTTTGGACAAACCACAACTAGA
ATGCAGTGAAAAAAATGCTTTATTTGTGAAATTTGTGATGCTATTGCTTTATTTGTAAC
CATTATAAGCTGCAATAAACAAGTTAACAACAACAATTGCATTCATTTTATGTTTCAGG
TTCAGGGGGAGGTGTGGGAGGTTTTTTAAAGCAAGTAAAACCTCTACAAATGTGGTA
TGGAAGGCGCGCCCAATTCGCCCTATAGTGAGTCGTATTACGTCGCGCTCACTGGC
CGTCGTTTTACAACGTCGTGACTGGGAAAACCCTGGCGTTACCCAACTTAATCGCCT
TGCAGCACATCCCCCTTTCGCCAGCTGGCGTAATAGCGAAGAGGCCCGCACCGAAA
CGCCCTTCCCAACAGTTGCGCAGCCTGAATGGCGAATGGGAGCGCCCTGTAGCGG
CGCATTAAGCGCGGCGGGTGTGGTGGTTACGCGCAGCGTGACCGCTACACTTGCC
AGCGCCCTAGCGCCCGCTCCTTTCGCTTTCTTCCCTTCCTTTCTCGCCACGTTCGCC
GGCTTTCCCCGTCAAGCTCTAAATCGGGGGCTCCCTTTAGGGTTCCGATTTAGTGCT
TTACGGCACCTCGACCCCAAAAAACTTGATTAGGGTGATGGTTGGCCTGTAGTGGG
CCATAGCCCTGATAGACGGTTTTTCGCCCTTTGACGTTGGAGTCCACGTTCTTTAATA
GTGGACTCTTGTTCCAAACTGGAACAACACTCAACCCTATCTCGGTCTATTCTTTTGA
TTTATAAGGGATTTTGCCGATTTCGGCCTATTGGTTAAAAAATGAGCTGATTTAACAA
AAATTTAACGCGAATTTTAACAAAATATTAACGCTTACAATTTAG
64Matrice CD25GTTTATTATTCCTGTTCCACAGCTATTGTCTGCCATATAAAAACTTAGGCCAGGCACA
locus_IL15_GTGGCTCACACCTGTAATCCCAGCACTTTGGAAGGCCGAGGCAGGCAGATCACAAG
2A_sIL15RaGTCAGGAGTTCGAGACCAGCCTGGCCAACATAGCAAAACCCCATCTCTACTAAAAAT
pCLS30519ACAAAAATTAGCCAGGCATGGTGGCGTGTGCACTGGTTTAGAGTGAGGACCACATTT
full sequenceTTTTGGTGCCGTGTTACACATATGACCGTGACTTTGTTACACCACTACAGGAGGAAG
AGTAGAAGAACAATCGGTTCTGGCGTGAAACAGACTTTGAATTTTGACCTTCTCAAGT
TGGCGGGAGACGTGGAGTCCAACCCAGGGCCCGGTACCGGGTCCGCCACCATGGA
CTGGACCTGGATTCTGTTCCTCGTGGCTGCTGCTACAAGAGTGCACAGCGGCATTC
ATGTCTTCATTTTGGGCTGTTTCAGTGCAGGGCTTCCTAAAACAGAAGCCAACTGGG
TGAATGTAATAAGTGATTTGAAAAAAATTGAAGATCTTATTCAATCTATGCATATTGAT
GCTACTTTATATACGGAAAGTGATGTTCACCCCAGTTGCAAAGTAACAGCAATGAAG
TGCTTTCTCTTGGAGTTACAAGTTATTTCACTTGAGTCCGGAGATGCAAGTATTCATG
ATACAGTAGAAAATCTGATCATCCTAGCAAACAACAGTTTGTCTTCTAATGGGAATGT
AACAGAATCTGGATGCAAAGAATGTGAGGAACTGGAGGAAAAAAATATTAAAGAATT
TTTGCAGAGTTTTGTACATATTGTCCAAATGTTCATCAACACTTCTGGAAGCGGAGCT
ACTAACTTCAGCCTGCTGAAGCAGGCTGGAGACGTGGAGGAGAACCCTGGACCTGG
GACCGGCTCTGCAACCATGGATTGGACGTGGATCCTGTTTCTCGTGGCAGCTGCCA
CAAGAGTTCACAGTATCACGTGCCCTCCCCCCATGTCCGTGGAACACGCAGACATC
TGGGTCAAGAGCTACAGCTTGTACTCCAGGGAGCGGTACATTTGTAACTCTGGTTTC
AAGCGTAAAGCCGGCACGTCCAGCCTGACGGAGTGCGTGTTGAACAAGGCCACGA
ATGTCGCCCACTGGACAACCCCCAGTCTCAAATGCATTAGAGACCCTGCCCTGGTTC
ACCAAAGGCCAGCGCCACCCTCCACAGTAACGACGGCAGGGGTGACCCCACAGCC
AGAGAGCCTCTCCCCTTCTGGAAAAGAGCCCGCAGCTTCATCTCCCAGCTCAAACAA
CACAGCGGCCACAACAGCAGCTATTGTCCCGGGCTCCCAGCTGATGCCTTCAAAAT
CACCTTCCACAGGAACCACAGAGATAAGCAGTCATGAGTCCTCCCACGGCACCCCC
TCTCAGACAACAGCCAAGAACTGGGAACTCACAGCATCCGCCTCCCACCAGCCGCC
AGGTGTGTATCCACAGGGCCACAGCGACACCACTGAGGGCAGAGGCAGCCTGCTG
ACCTGCGGCGACGTCGAGGAGAACCCCGGGCCCATGGGGGCAGGTGCCACCGGC
CGCGCCATGGACGGGCCGCGCCTGCTGCTGTTGCTGCTTCTGGGGGTGTCCCTTG
GAGGTGCCAAGGAGGCATGCCCCACAGGCCTGTACACACACAGCGGTGAGTGCTG
CAAAGCCTGCAACCTGGGCGAGGGTGTGGCCCAGCCTTGTGGAGCCAACCAGACC
GTGTGTGAGCCCTGCCTGGACAGCGTGACGTTCTCCGACGTGGTGAGCGCGACCG
AGCCGTGCAAGCCGTGCACCGAGTGCGTGGGGCTCCAGAGCATGTCGGCGCCGTG
CGTGGAGGCCGATGACGCCGTGTGCCGCTGCGCCTACGGCTACTACCAGGATGAG
ACGACTGGGCGCTGCGAGGCGTGCCGCGTGTGCGAGGCGGGCTCGGGCCTCGTG
TTCTCCTGCCAGGACAAGCAGAACACCGTGTGCGAGGAGTGCCCCGACGGCACGT
ATTCCGACGAGGCCAACCACGTGGACCCGTGCCTGCCCTGCACCGTGTGCGAGGA
CACCGAGCGCCAGCTCCGCGAGTGCACACGCTGGGCCGACGCCGAGTGCGAGGA
GATCCCTGGCCGTTGGATTACACGGTCCACACCCCCAGAGGGCTCGGACAGCACA
GCCCCCAGCACCCAGGAGCCTGAGGCACCTCCAGAACAAGACCTCATAGCCAGCA
CGGTGGCAGGTGTGGTGACCACAGTGATGGGCAGCTCCCAGCCCGTGGTGACCCG
AGGCACCACCGACAACCTCATCCCTGTCTATTGCTCCATCCTGGCTGCTGTGGTTGT
GGGTCTTGTGGCCTACATAGCCTTCAAGAGGTGAAAAACCAAAAGAACAAGAATTTC
TTGGTAAGAAGCCGGGAACAGACAACAGAAGTCATGAAGCCCAAGTGAAATCAAAG
GTGCTAAATGGTCGCCCAGGAGACATCCGTTGTGCTTGCCTGCGTTTTGGAAGCTCT
GAAGTCACATCACAGGACACGGGGCAGTGGCAACCTTGTCTCTATGCCAGCTCAGT
CCCATCAGAGAGCGAGCGCTACCCACTTCTAAATAGCAATTTCGCCGTTGAAGAGGA
AGGGCAAAACCACTAGAACTCTCCATCTTATTTTCATGTATATGTGTTCATGCGATCG
CTCCGGTGCCCGTCAGTGGGCAGAGCGCACATCGCCCACAGTCCCCGAGAAGTTG
GGGGGAGGGGTCGGCAATTGAACGGGTGCCTAGAGAAGGTGGCGCGGGGTAAACT
GGGAAAGTGATGTCGTGTACTGGCTCCGCCTTTTTCCCGAGGGTGGGGGAGAACCG
TATATAAGTGCAGTAGTCGCCGTGAACGTTCTTTTTCGCAACGGGTTTGCCGCCAGA
ACACAGCTGAAGCTTCGAGGGGCTCGCATCTCTCCTTCACGCGCCCGCCGCCCTAC
CTGAGGCCGCCATCCACGCCGGTTGAGTCGCGTTCTGCCGCCTCCCGCCTGTGGT
GCCTCCTGAACTGCGTCCGCCGTCTAGGTAAGTTTAAAGCTCAGGTCGAGACCGGG
CCTTTGTCCGGCGCTCCCTTGGAGCCTACCTAGACTCAGCCGGCTCTCCACGCTTT
GCCTGACCCTGCTTGCTCAACTCTACGTCTTTGTTTCGTTTTCTGTTCTGCGCCGTTA
CAGATCCAAGCTGTGACCGGCGCCTACCTGAGATCACCGGCGCCACCATGGCTTCT
TACCCTGGACACCAGCATGCTTCTGCCTTTGACCAGGCTGCCAGATCCAGGGGCCA
CTCCAACAGGAGAACTGCCCTAAGACCCAGAAGACAGCAGGAAGCCACTGAGGTGA
GGCCTGAGCAGAAGATGCCAACCCTGCTGAGGGTGTACATTGATGGACCTCATGGC
ATGGGCAAGACCACCACCACTCAACTGCTGGTGGCACTGGGCTCCAGGGATGACAT
TGTGTATGTGCCTGAGCCAATGACCTACTGGAGAGTGCTAGGAGCCTCTGAGACCA
TTGCCAACATCTACACCACCCAGCACAGGCTGGACCAGGGAGAAATCTCTGCTGGA
GATGCTGCTGTGGTGATGACCTCTGCCCAGATCACAATGGGAATGCCCTATGCTGT
GACTGATGCTGTTCTGGCTCCTCACATTGGAGGAGAGGCTGGCTCTTCTCATGCCC
CTCCACCTGCCCTGACCCTGATCTTTGACAGACACCCCATTGCAGCCCTGCTGTGCT
ACCCAGCAGCAAGGTACCTCATGGGCTCCATGACCCCACAGGCTGTGCTGGCTTTT
GTGGCCCTGATCCCTCCAACCCTCCCTGGCACCAACATTGTTCTGGGAGCACTGCC
TGAAGACAGACACATTGACAGGCTGGCAAAGAGGCAGAGACCTGGAGAGAGACTG
GACCTGGCCATGCTGGCTGCAATCAGAAGGGTGTATGGACTGCTGGCAAACACTGT
GAGATACCTCCAGTGTGGAGGCTCTTGGAGAGAGGACTGGGGACAGCTCTCTGGAA
CAGCAGTGCCCCCTCAAGGAGCTGAGCCCCAGTCCAATGCTGGTCCAAGACCCCAC
ATTGGGGACACCCTGTTCACCCTGTTCAGAGCCCCTGAGCTGCTGGCTCCCAATGG
AGACCTGTACAATGTGTTTGCCTGGGCTCTGGATGTTCTAGCCAAGAGGCTGAGGT
CCATGCATGTGTTCATCCTGGACTATGACCAGTCCCCTGCTGGATGCAGAGATGCTC
TGCTGCAACTAACCTCTGGCATGGTGCAGACCCATGTGACCACCCCTGGCAGCATC
CCCACCATCTGTGACCTAGCCAGAACCTTTGCCAGGGAGATGGGAGAGGCCAACTA
AGGCGCGCCACTCGAGCGCTAGCTGGCCAGACATGATAAGATACATTGATGAGTTT
GGACAAACCACAACTAGAATGCAGTGAAAAAAATGCTTTATTTGTGAAATTTGTGATG
CTATTGCTTTATTTGTAACCATTATAAGCTGCAATAAACAAGTTAACAACAACAATTGC
ATTCATTTTATGTTTCAGGTTCAGGGGGAGGTGTGGGAGGTTTTTTAAAGCAAGTAAA
ACCTCTACAAATGTGGTATGGAAGGCGCGCCCAATTCGCCCTATAGTGAGTCGTATT
ACGTCGCGCTCACTGGCCGTCGTTTTACAACGTCGTGACTGGGAAAACCCTGGCGT
TACCCAACTTAATCGCCTTGCAGCACATCCCCCTTTCGCCAGCTGGCGTAATAGCGA
AGAGGCCCGCACCGAAACGCCCTTCCCAACAGTTGCGCAGCCTGAATGGCGAATG
GGAGCGCCCTGTAGCGGCGCATTAAGCGCGGCGGGTGTGGTGGTTACGCGCAGCG
TGACCGCTACACTTGCCAGCGCCCTAGCGCCCGCTCCTTTCGCTTTCTTCCCTTCCT
TTCTCGCCACGTTCGCCGGCTTTCCCCGTCAAGCTCTAAATCGGGGGCTCCCTTTAG
GGTTCCGATTTAGTGCTTTACGGCACCTCGACCCCAAAAAACTTGATTAGGGTGATG
GTTGGCCTGTAGTGGGCCATAGCCCTGATAGACGGTTTTTCGCCCTTTGACGTTGGA
GTCCACGTTCTTTAATAGTGGACTCTTGTTCCAAACTGGAACAACACTCAACCCTATC
TCGGTCTATTCTTTTGATTTATAAGGGATTTTGCCGATTTCGGCCTATTGGTTAAAAAA
TGAGCTGATTTAACAAAAATTTAACGCGAATTTTAACAAAATATTAACGCTTACAATTT
AGGTGGCACTTTTCGGGGAAATGTGCGCGGAACCCCTATTTGTTTATTTTTCTAAATA
CATTCAAATATGTATCCGCTCATGAGACAATAACCCTGATAAATGCTTCAATAATATT
GAAAAAGGAAGAGTATGAGTATTCAACATTTCCGTGTCGCCCTTATTCCCTTTTTTGC
GGCATTTTGCCTTCCTGTTTTTGCTCACCCAGAAACGCTGGTGAAAGTAAAAGATGC
TGAAGATCAGTTGGGTGCACGAGTGGGTTACATCGAACTGGATCTCAACAGCGGTA
AGATCCTTGAGAGTTTTCGCCCCGAAGAACGTTTTCCAATGATGAGCACTTTTAAAGT
TCTGCTATGTGGCGCGGTATTATCCCGTATTGACGCCGGGCAAGAGCAACTCGGTC
GCCGCATACACTATTCTCAGAATGACTTGGTTGAGTACTCACCAGTCACAGAAAAGC
ATCTTACGGATGGCATGACAGTAAGAGAATTATGCAGTGCTGCCATAACCATGAGTG
ATAACACTGCGGCCAACTTACTTCTGACAACGATCGGAGGACCGAAGGAGCTAACC
GCTTTTTTGCACAACATGGGGGATCATGTAACTCGCCTTGATCGTTGGGAACCGGAG
CTGAATGAAGCCATACCAAACGACGAGCGTGACACCACGATGCCTGTAGCAATGGC
AACAACGTTGCGCAAACTATTAACTGGCGAACTACTTACTCTAGCTTCCCGGCAACA
ATTAATAGACTGGATGGAGGCGGATAAAGTTGCAGGACCACTTCTGCGCTCGGCCC
TTCCGGCTGGCTGGTTTATTGCTGATAAATCTGGAGCCGGTGAGCGTGGTTCTCGC
GGTATCATTGCAGCACTGGGGCCAGATGGTAAGCCCTCCCGTATCGTAGTTATCTAC
ACGACGGGGAGTCAGGCAACTATGGATGAACGAAATAGACAGATCGCTGAGATAGG
TGCCTCACTGATTAAGCATTGGTAACTGTCAGACCAAGTTTACTCATATATACTTTAG
ATTGATTTAAAACTTCATTTTTAATTTAAAAGGATCTAGGTGAAGATCCTTTTTGATAAT
CTCATGACCAAAATCCCTTAACGTGAGTTTTCGTTCCACTGAGCGTCAGACCCCGTA
GAAAAGATCAAAGGATCTTCTTGAGATCCTTTTTTTCTGCGCGTAATCTGCTGCTTGC
AAACAAAAAAACCACCGCTACCAGCGGTGGTTTGTTTGCCGGATCAAGAGCTACCAA
CTCTTTTTCCGAAGGTAACTGGCTTCAGCAGAGCGCAGATACCAAATACTGTTCTTCT
AGTGTAGCCGTAGTTAGGCCACCACTTCAAGAACTCTGTAGCACCGCCTACATACCT
CGCTCTGCTAATCCTGTTACCAGTGGCTGCTGCCAGTGGCGATAAGTCGTGTCTTAC
CGGGTTGGACTCAAGACGATAGTTACCGGATAAGGCGCAGCGGTCGGGCTGAACG
GGGGGTTCGTGCACACAGCCCAGCTTGGAGCGAACGACCTACACCGAACTGAGATA
CCTACAGCGTGAGCTATGAGAAAGCGCCACGCTTCCCGAAGGGAGAAAGGCGGAC
AGGTATCCGGTAAGCGGCAGGGTCGGAACAGGAGAGCGCACGAGGGAGCTTCCAG
GGGGAAACGCCTGGTATCTTTATAGTCCTGTCGGGTTTCGCCACCTCTGACTTGAGC
GTCGATTTTTGTGATGCTCGTCAGGGGGGCGGAGCCTATGGAAAAACGCCAGCAAC
GCGGCCTTTTTACGGTTCCTGGCCTTTTGCTGGCCTTTTGCTCACATGGTCTTTCCT
GCGTTATCCCCTGATTCTGTGGATAACCGTATTACCGCCTTTGAGTGAGCTGATACC
GCTCGCCGCAGCCGAACGACCGAGCGCAGCGAGTCAGTGAGCGAGGAAGCGGAG
AGCGCCCAATACGCAAACCGCCTCTCCCCGCGCGTTGGCCGATTCATTAATGCAGC
TGGCACGACAGGTTTCCCGACTGGAAAGCGGGCAGTGAGCGCAACGCAATTAATGT
GAGTTAGCTCACTCATTAGGCACCCCAGGCTTTACACTTTATGCTTCCGGCTCGTAT
GTTGTGTGGAATTGTGAGCGGATAACAATTTCACACAGGAAACAGCTATGACCATGA
TTACGCCAAGCGCGTCAATTAACCCTCACTAAAGGGAACAAAAGCTGTTAATTAA
65Matrice PD1GACTCCCCAGACAGGCCCTGGAACCCCCCCACCTTCTCCCCAGCCCTGCTCGTGGT
locus_IL15_GACCGAAGGGGACAACGCCACCTTCACCTGCAGCTTCTCCAACACATCGGAGAGCT
2A_sIL15RaTCGTGCTAAACTGGTACCGCATGAGCCCCAGCAACCAGACGGACAAGCTGGCCGCC
pCLS30513TTCCCCGAGGACCGCAGCCAGCCCGGCCAGGACTGCCGCTTCCGTGTCACACAAC
full sequenceTGCCCAACGGGCGTGACTTCCACATGAGCGTGGTCAGGGCCCGGCGCAATGACAG
CGGCACCTACCTCTGTGGGGCCGGTTCTGGCGTGAAACAGACTTTGAATTTTGACCT
TCTCAAGTTGGCGGGAGACGTGGAGTCCAACCCAGGGCCCGGTACCGGGTCCGCC
ACCATGGACTGGACCTGGATTCTGTTCCTCGTGGCTGCTGCTACAAGAGTGCACAG
CGGCATTCATGTCTTCATTTTGGGCTGTTTCAGTGCAGGGCTTCCTAAAACAGAAGC
CAACTGGGTGAATGTAATAAGTGATTTGAAAAAAATTGAAGATCTTATTCAATCTATG
CATATTGATGCTACTTTATATACGGAAAGTGATGTTCACCCCAGTTGCAAAGTAACAG
CAATGAAGTGCTTTCTCTTGGAGTTACAAGTTATTTCACTTGAGTCCGGAGATGCAAG
TATTCATGATACAGTAGAAAATCTGATCATCCTAGCAAACAACAGTTTGTCTTCTAAT
GGGAATGTAACAGAATCTGGATGCAAAGAATGTGAGGAACTGGAGGAAAAAAATATT
AAAGAATTTTTGCAGAGTTTTGTACATATTGTCCAAATGTTCATCAACACTTCTGGAA
GCGGAGCTACTAACTTCAGCCTGCTGAAGCAGGCTGGAGACGTGGAGGAGAACCCT
GGACCTGGGACCGGCTCTGCAACCATGGATTGGACGTGGATCCTGTTTCTCGTGGC
AGCTGCCACAAGAGTTCACAGTATCACGTGCCCTCCCCCCATGTCCGTGGAACACG
CAGACATCTGGGTCAAGAGCTACAGCTTGTACTCCAGGGAGCGGTACATTTGTAACT
CTGGTTTCAAGCGTAAAGCCGGCACGTCCAGCCTGACGGAGTGCGTGTTGAACAAG
GCCACGAATGTCGCCCACTGGACAACCCCCAGTCTCAAATGCATTAGAGACCCTGC
CCTGGTTCACCAAAGGCCAGCGCCACCCTCCACAGTAACGACGGCAGGGGTGACC
CCACAGCCAGAGAGCCTCTCCCCTTCTGGAAAAGAGCCCGCAGCTTCATCTCCCAG
CTCAAACAACACAGCGGCCACAACAGCAGCTATTGTCCCGGGCTCCCAGCTGATGC
CTTCAAAATCACCTTCCACAGGAACCACAGAGATAAGCAGTCATGAGTCCTCCCACG
GCACCCCCTCTCAGACAACAGCCAAGAACTGGGAACTCACAGCATCCGCCTCCCAC
CAGCCGCCAGGTGTGTATCCACAGGGCCACAGCGACACCACTGAGGGCAGAGGCA
GCCTGCTGACCTGCGGCGACGTCGAGGAGAACCCCGGGCCCATGGGGGCAGGTG
CCACCGGCCGCGCCATGGACGGGCCGCGCCTGCTGCTGTTGCTGCTTCTGGGGGT
GTCCCTTGGAGGTGCCAAGGAGGCATGCCCCACAGGCCTGTACACACACAGCGGT
GAGTGCTGCAAAGCCTGCAACCTGGGCGAGGGTGTGGCCCAGCCTTGTGGAGCCA
ACCAGACCGTGTGTGAGCCCTGCCTGGACAGCGTGACGTTCTCCGACGTGGTGAG
CGCGACCGAGCCGTGCAAGCCGTGCACCGAGTGCGTGGGGCTCCAGAGCATGTCG
GCGCCGTGCGTGGAGGCCGATGACGCCGTGTGCCGCTGCGCCTACGGCTACTACC
AGGATGAGACGACTGGGCGCTGCGAGGCGTGCCGCGTGTGCGAGGCGGGCTCGG
GCCTCGTGTTCTCCTGCCAGGACAAGCAGAACACCGTGTGCGAGGAGTGCCCCGA
CGGCACGTATTCCGACGAGGCCAACCACGTGGACCCGTGCCTGCCCTGCACCGTG
TGCGAGGACACCGAGCGCCAGCTCCGCGAGTGCACACGCTGGGCCGACGCCGAGT
GCGAGGAGATCCCTGGCCGTTGGATTACACGGTCCACACCCCCAGAGGGCTCGGA
CAGCACAGCCCCCAGCACCCAGGAGCCTGAGGCACCTCCAGAACAAGACCTCATAG
CCAGCACGGTGGCAGGTGTGGTGACCACAGTGATGGGCAGCTCCCAGCCCGTGGT
GACCCGAGGCACCACCGACAACCTCATCCCTGTCTATTGCTCCATCCTGGCTGCTG
TGGTTGTGGGTCTTGTGGCCTACATAGCCTTCAAGAGGTGATCTAGAGGGCCCGTTT
AAACCCGCTGATCAGCCTCGACTGTGCCTTCTAGTTGCCAGCCATCTGTTGTTTGCC
CCTCCCCCGTGCCTTCCTTGACCCTGGAAGGTGCCACTCCCACTGTCCTTTCCTAAT
AAAATGAGGAAATTGCATCGCATTGTCTGAGTAGGTGTCATTCTATTCTGGGGGGTG
GGGTGGGGCAGGACAGCAAGGGGGAGGATTGGGAAGACAATAGCAGGCATGCTGG
GGATGCGGTGGGCTCTATGACTAGTGGCGAATTCGGCGCAGATCAAAGAGAGCCTG
CGGGCAGAGCTCAGGGTGACAGGTGCGGCCTCGGAGGCCCCGGGGCAGGGGTGA
GCTGAGCCGGTCCTGGGGTGGGTGTCCCCTCCTGCACAGGATCAGGAGCTCCAGG
GTCGTAGGGCAGGGACCCCCCAGCTCCAGTCCAGGGCTCTGTCCTGCACCTGGGG
AATGGTGACCGGCATCTCTGTCCTCTAGCTCTGGAAGCACCCCAGCCCCTCTAGTCT
GCCCTCACCCCTGACCCTGACCCTCCACCCTGACCCCGTCCTAACCCCTGACCTTT
GGCGATCGCTCCGGTGCCCGTCAGTGGGCAGAGCGCACATCGCCCACAGTCCCCG
AGAAGTTGGGGGGAGGGGTCGGCAATTGAACGGGTGCCTAGAGAAGGTGGCGCGG
GGTAAACTGGGAAAGTGATGTCGTGTACTGGCTCCGCCTTTTTCCCGAGGGTGGGG
GAGAACCGTATATAAGTGCAGTAGTCGCCGTGAACGTTCTTTTTCGCAACGGGTTTG
CCGCCAGAACACAGCTGAAGCTTCGAGGGGCTCGCATCTCTCCTTCACGCGCCCGC
CGCCCTACCTGAGGCCGCCATCCACGCCGGTTGAGTCGCGTTCTGCCGCCTCCCG
CCTGTGGTGCCTCCTGAACTGCGTCCGCCGTCTAGGTAAGTTTAAAGCTCAGGTCG
AGACCGGGCCTTTGTCCGGCGCTCCCTTGGAGCCTACCTAGACTCAGCCGGCTCTC
CACGCTTTGCCTGACCCTGCTTGCTCAACTCTACGTCTTTGTTTCGTTTTCTGTTCTG
CGCCGTTACAGATCCAAGCTGTGACCGGCGCCTACCTGAGATCACCGGCGCCACCA
TGGCTTCTTACCCTGGACACCAGCATGCTTCTGCCTTTGACCAGGCTGCCAGATCCA
GGGGCCACTCCAACAGGAGAACTGCCCTAAGACCCAGAAGACAGCAGGAAGCCAC
TGAGGTGAGGCCTGAGCAGAAGATGCCAACCCTGCTGAGGGTGTACATTGATGGAC
CTCATGGCATGGGCAAGACCACCACCACTCAACTGCTGGTGGCACTGGGCTCCAGG
GATGACATTGTGTATGTGCCTGAGCCAATGACCTACTGGAGAGTGCTAGGAGCCTCT
GAGACCATTGCCAACATCTACACCACCCAGCACAGGCTGGACCAGGGAGAAATCTC
TGCTGGAGATGCTGCTGTGGTGATGACCTCTGCCCAGATCACAATGGGAATGCCCT
ATGCTGTGACTGATGCTGTTCTGGCTCCTCACATTGGAGGAGAGGCTGGCTCTTCTC
ATGCCCCTCCACCTGCCCTGACCCTGATCTTTGACAGACACCCCATTGCAGCCCTG
CTGTGCTACCCAGCAGCAAGGTACCTCATGGGCTCCATGACCCCACAGGCTGTGCT
GGCTTTTGTGGCCCTGATCCCTCCAACCCTCCCTGGCACCAACATTGTTCTGGGAG
CACTGCCTGAAGACAGACACATTGACAGGCTGGCAAAGAGGCAGAGACCTGGAGAG
AGACTGGACCTGGCCATGCTGGCTGCAATCAGAAGGGTGTATGGACTGCTGGCAAA
CACTGTGAGATACCTCCAGTGTGGAGGCTCTTGGAGAGAGGACTGGGGACAGCTCT
CTGGAACAGCAGTGCCCCCTCAAGGAGCTGAGCCCCAGTCCAATGCTGGTCCAAGA
CCCCACATTGGGGACACCCTGTTCACCCTGTTCAGAGCCCCTGAGCTGCTGGCTCC
CAATGGAGACCTGTACAATGTGTTTGCCTGGGCTCTGGATGTTCTAGCCAAGAGGCT
GAGGTCCATGCATGTGTTCATCCTGGACTATGACCAGTCCCCTGCTGGATGCAGAG
ATGCTCTGCTGCAACTAACCTCTGGCATGGTGCAGACCCATGTGACCACCCCTGGC
AGCATCCCCACCATCTGTGACCTAGCCAGAACCTTTGCCAGGGAGATGGGAGAGGC
CAACTAAGGCGCGCCACTCGAGCGCTAGCTGGCCAGACATGATAAGATACATTGAT
GAGTTTGGACAAACCACAACTAGAATGCAGTGAAAAAAATGCTTTATTTGTGAAATTT
GTGATGCTATTGCTTTATTTGTAACCATTATAAGCTGCAATAAACAAGTTAACAACAAC
AATTGCATTCATTTTATGTTTCAGGTTCAGGGGGAGGTGTGGGAGGTTTTTTAAAGCA
AGTAAAACCTCTACAAATGTGGTATGGAAGGCGCGCCCAATTCGCCCTATAGTGAGT
CGTATTACGTCGCGCTCACTGGCCGTCGTTTTACAACGTCGTGACTGGGAAAACCCT
GGCGTTACCCAACTTAATCGCCTTGCAGCACATCCCCCTTTCGCCAGCTGGCGTAAT
AGCGAAGAGGCCCGCACCGAAACGCCCTTCCCAACAGTTGCGCAGCCTGAATGGC
GAATGGGAGCGCCCTGTAGCGGCGCATTAAGCGCGGCGGGTGTGGTGGTTACGCG
CAGCGTGACCGCTACACTTGCCAGCGCCCTAGCGCCCGCTCCTTTCGCTTTCTTCC
CTTCCTTTCTCGCCACGTTCGCCGGCTTTCCCCGTCAAGCTCTAAATCGGGGGCTCC
CTTTAGGGTTCCGATTTAGTGCTTTACGGCACCTCGACCCCAAAAAACTTGATTAGG
GTGATGGTTGGCCTGTAGTGGGCCATAGCCCTGATAGACGGTTTTTCGCCCTTTGAC
GTTGGAGTCCACGTTCTTTAATAGTGGACTCTTGTTCCAAACTGGAACAACACTCAAC
CCTATCTCGGTCTATTCTTTTGATTTATAAGGGATTTTGCCGATTTCGGCCTATTGGT
TAAAAAATGAGCTGATTTAACAAAAATTTAACGCGAATTTTAACAAAATATTAACGCTT
ACAATTTAGGTGGCACTTTTCGGGGAAATGTGCGCGGAACCCCTATTTGTTTATTTTT
CTAAATACATTCAAATATGTATCCGCTCATGAGACAATAACCCTGATAAATGCTTCAA
TAATATTGAAAAAGGAAGAGTATGAGTATTCAACATTTCCGTGTCGCCCTTATTCCCT
TTTTTGCGGCATTTTGCCTTCCTGTTTTTGCTCACCCAGAAACGCTGGTGAAAGTAAA
AGATGCTGAAGATCAGTTGGGTGCACGAGTGGGTTACATCGAACTGGATCTCAACA
GCGGTAAGATCCTTGAGAGTTTTCGCCCCGAAGAACGTTTTCCAATGATGAGCACTT
TTAAAGTTCTGCTATGTGGCGCGGTATTATCCCGTATTGACGCCGGGCAAGAGCAAC
TCGGTCGCCGCATACACTATTCTCAGAATGACTTGGTTGAGTACTCACCAGTCACAG
AAAAGCATCTTACGGATGGCATGACAGTAAGAGAATTATGCAGTGCTGCCATAACCA
TGAGTGATAACACTGCGGCCAACTTACTTCTGACAACGATCGGAGGACCGAAGGAG
CTAACCGCTTTTTTGCACAACATGGGGGATCATGTAACTCGCCTTGATCGTTGGGAA
CCGGAGCTGAATGAAGCCATACCAAACGACGAGCGTGACACCACGATGCCTGTAGC
AATGGCAACAACGTTGCGCAAACTATTAACTGGCGAACTACTTACTCTAGCTTCCCG
GCAACAATTAATAGACTGGATGGAGGCGGATAAAGTTGCAGGACCACTTCTGCGCT
CGGCCCTTCCGGCTGGCTGGTTTATTGCTGATAAATCTGGAGCCGGTGAGCGTGGT
TCTCGCGGTATCATTGCAGCACTGGGGCCAGATGGTAAGCCCTCCCGTATCGTAGT
TATCTACACGACGGGGAGTCAGGCAACTATGGATGAACGAAATAGACAGATCGCTG
AGATAGGTGCCTCACTGATTAAGCATTGGTAACTGTCAGACCAAGTTTACTCATATAT
ACTTTAGATTGATTTAAAACTTCATTTTTAATTTAAAAGGATCTAGGTGAAGATCCTTT
TTGATAATCTCATGACCAAAATCCCTTAACGTGAGTTTTCGTTCCACTGAGCGTCAGA
CCCCGTAGAAAAGATCAAAGGATCTTCTTGAGATCCTTTTTTTCTGCGCGTAATCTGC
TGCTTGCAAACAAAAAAACCACCGCTACCAGCGGTGGTTTGTTTGCCGGATCAAGAG
CTACCAACTCTTTTTCCGAAGGTAACTGGCTTCAGCAGAGCGCAGATACCAAATACT
GTTCTTCTAGTGTAGCCGTAGTTAGGCCACCACTTCAAGAACTCTGTAGCACCGCCT
ACATACCTCGCTCTGCTAATCCTGTTACCAGTGGCTGCTGCCAGTGGCGATAAGTCG
TGTCTTACCGGGTTGGACTCAAGACGATAGTTACCGGATAAGGCGCAGCGGTCGGG
CTGAACGGGGGGTTCGTGCACACAGCCCAGCTTGGAGCGAACGACCTACACCGAA
CTGAGATACCTACAGCGTGAGCTATGAGAAAGCGCCACGCTTCCCGAAGGGAGAAA
GGCGGACAGGTATCCGGTAAGCGGCAGGGTCGGAACAGGAGAGCGCACGAGGGA
GCTTCCAGGGGGAAACGCCTGGTATCTTTATAGTCCTGTCGGGTTTCGCCACCTCTG
ACTTGAGCGTCGATTTTTGTGATGCTCGTCAGGGGGGCGGAGCCTATGGAAAAACG
CCAGCAACGCGGCCTTTTTACGGTTCCTGGCCTTTTGCTGGCCTTTTGCTCACATGG
TCTTTCCTGCGTTATCCCCTGATTCTGTGGATAACCGTATTACCGCCTTTGAGTGAGC
TGATACCGCTCGCCGCAGCCGAACGACCGAGCGCAGCGAGTCAGTGAGCGAGGAA
GCGGAGAGCGCCCAATACGCAAACCGCCTCTCCCCGCGCGTTGGCCGATTCATTAA
TGCAGCTGGCACGACAGGTTTCCCGACTGGAAAGCGGGCAGTGAGCGCAACGCAA
TTAATGTGAGTTAGCTCACTCATTAGGCACCCCAGGCTTTACACTTTATGCTTCCGGC
TCGTATGTTGTGTGGAATTGTGAGCGGATAACAATTTCACACAGGAAACAGCTATGA
CCATGATTACGCCAAGCGCGTCAATTAACCCTCACTAAAGGGAACAAAAGCTGTTAA
TTAA
66Matrice CD25GTTTATTATTCCTGTTCCACAGCTATTGTCTGCCATATAAAAACTTAGGCCAGGCACA
locus_IL12a_GTGGCTCACACCTGTAATCCCAGCACTTTGGAAGGCCGAGGCAGGCAGATCACAAG
2A_IL12bGTCAGGAGTTCGAGACCAGCCTGGCCAACATAGCAAAACCCCATCTCTACTAAAAAT
pCLS30520ACAAAAATTAGCCAGGCATGGTGGCGTGTGCACTGGTTTAGAGTGAGGACCACATTT
full sequenceTTTTGGTGCCGTGTTACACATATGACCGTGACTTTGTTACACCACTACAGGAGGAAG
AGTAGAAGAACAATCGGTTCTGGCGTGAAACAGACTTTGAATTTTGACCTTCTCAAGT
TGGCGGGAGACGTGGAGTCCAACCCAGGGCCCATGTGGCCCCCTGGGTCAGCCTC
CCAGCCACCGCCCTCACCTGCCGCGGCCACAGGTCTGCATCCAGCGGCTCGCCCT
GTGTCCCTGCAGTGCCGGCTCAGCATGTGTCCAGCGCGCAGCCTCCTCCTTGTGGC
TACCCTGGTCCTCCTGGACCACCTCAGTTTGGCCAGAAACCTCCCCGTGGCCACTC
CAGACCCAGGAATGTTCCCATGCCTTCACCACTCCCAAAACCTGCTGAGGGCCGTC
AGCAACATGCTCCAGAAGGCCAGACAAACTCTAGAATTTTACCCTTGCACTTCTGAA
GAGATTGATCATGAAGATATCACAAAAGATAAAACCAGCACAGTGGAGGCCTGTTTA
CCATTGGAATTAACCAAGAATGAGAGTTGCCTAAATTCCAGAGAGACCTCTTTCATAA
CTAATGGGAGTTGCCTGGCCTCCAGAAAGACCTCTTTTATGATGGCCCTGTGCCTTA
GTAGTATTTATGAAGACTTGAAGATGTACCAGGTGGAGTTCAAGACCATGAATGCAA
AGCTTCTGATGGATCCTAAGAGGCAGATCTTTCTAGATCAAAACATGCTGGCAGTTA
TTGATGAGCTGATGCAGGCCCTGAATTTCAACAGTGAGACTGTGCCACAAAAATCCT
CCCTTGAAGAACCGGATTTTTATAAAACTAAAATCAAGCTCTGCATACTTCTTCATGC
TTTCAGAATTCGGGCAGTGACTATTGATAGAGTGATGAGCTATCTGAATGCTTCCGG
AAGCGGAGCTACTAACTTCAGCCTGCTGAAGCAGGCTGGAGACGTGGAGGAGAACC
CTGGACCTATGTGTCACCAGCAGTTGGTCATCTCTTGGTTTTCCCTGGTTTTTCTGG
CATCTCCCCTCGTGGCCATATGGGAACTGAAGAAAGATGTTTATGTCGTAGAATTGG
ATTGGTATCCGGATGCCCCTGGAGAAATGGTGGTCCTCACCTGTGACACCCCTGAA
GAAGATGGTATCACCTGGACCTTGGACCAGAGCAGTGAGGTCTTAGGCTCTGGCAA
AACCCTGACCATCCAAGTCAAAGAGTTTGGAGATGCTGGCCAGTACACCTGTCACAA
AGGAGGCGAGGTTCTAAGCCATTCGCTCCTGCTGCTTCACAAAAAGGAAGATGGAA
TTTGGTCCACTGATATTTTAAAGGACCAGAAAGAACCCAAAAATAAGACCTTTCTAAG
ATGCGAGGCCAAGAATTATTCTGGACGTTTCACCTGCTGGTGGCTGACGACAATCAG
TACTGATTTGACATTCAGTGTCAAAAGCAGCAGAGGCTCTTCTGACCCCCAAGGGGT
GACGTGCGGAGCTGCTACACTCTCTGCAGAGAGAGTCAGAGGGGACAACAAGGAG
TATGAGTACTCAGTGGAGTGCCAGGAGGACAGTGCCTGCCCAGCTGCTGAGGAGA
GTCTGCCCATTGAGGTCATGGTGGATGCCGTTCACAAGCTCAAGTATGAAAACTACA
CCAGCAGCTTCTTCATCAGGGACATCATCAAACCTGACCCACCCAAGAACTTGCAGC
TGAAGCCATTAAAGAATTCTCGGCAGGTGGAGGTCAGCTGGGAGTACCCTGACACC
TGGAGTACTCCACATTCCTACTTCTCCCTGACATTCTGCGTTCAGGTCCAGGGCAAG
AGCAAGAGAGAAAAGAAAGATAGAGTCTTCACGGACAAGACCTCAGCCACGGTCAT
CTGCCGCAAAAATGCCAGCATTAGCGTGCGGGCCCAGGACCGCTACTATAGCTCAT
CTTGGAGCGAATGGGCATCTGTGCCCTGCAGTGAGGGCAGAGGCAGCCTGCTGAC
CTGCGGCGACGTCGAGGAGAACCCCGGGCCCATGGGGGCAGGTGCCACCGGCCG
CGCCATGGACGGGCCGCGCCTGCTGCTGTTGCTGCTTCTGGGGGTGTCCCTTGGA
GGTGCCAAGGAGGCATGCCCCACAGGCCTGTACACACACAGCGGTGAGTGCTGCA
AAGCCTGCAACCTGGGCGAGGGTGTGGCCCAGCCTTGTGGAGCCAACCAGACCGT
GTGTGAGCCCTGCCTGGACAGCGTGACGTTCTCCGACGTGGTGAGCGCGACCGAG
CCGTGCAAGCCGTGCACCGAGTGCGTGGGGCTCCAGAGCATGTCGGCGCCGTGCG
TGGAGGCCGATGACGCCGTGTGCCGCTGCGCCTACGGCTACTACCAGGATGAGAC
GACTGGGCGCTGCGAGGCGTGCCGCGTGTGCGAGGCGGGCTCGGGCCTCGTGTT
CTCCTGCCAGGACAAGCAGAACACCGTGTGCGAGGAGTGCCCCGACGGCACGTAT
TCCGACGAGGCCAACCACGTGGACCCGTGCCTGCCCTGCACCGTGTGCGAGGACA
CCGAGCGCCAGCTCCGCGAGTGCACACGCTGGGCCGACGCCGAGTGCGAGGAGA
TCCCTGGCCGTTGGATTACACGGTCCACACCCCCAGAGGGCTCGGACAGCACAGC
CCCCAGCACCCAGGAGCCTGAGGCACCTCCAGAACAAGACCTCATAGCCAGCACG
GTGGCAGGTGTGGTGACCACAGTGATGGGCAGCTCCCAGCCCGTGGTGACCCGAG
GCACCACCGACAACCTCATCCCTGTCTATTGCTCCATCCTGGCTGCTGTGGTTGTGG
GTCTTGTGGCCTACATAGCCTTCAAGAGGTGAAAAACCAAAAGAACAAGAATTTCTT
GGTAAGAAGCCGGGAACAGACAACAGAAGTCATGAAGCCCAAGTGAAATCAAAGGT
GCTAAATGGTCGCCCAGGAGACATCCGTTGTGCTTGCCTGCGTTTTGGAAGCTCTG
AAGTCACATCACAGGACACGGGGCAGTGGCAACCTTGTCTCTATGCCAGCTCAGTC
CCATCAGAGAGCGAGCGCTACCCACTTCTAAATAGCAATTTCGCCGTTGAAGAGGAA
GGGCAAAACCACTAGAACTCTCCATCTTATTTTCATGTATATGTGTTCATGCGATCGC
TCCGGTGCCCGTCAGTGGGCAGAGCGCACATCGCCCACAGTCCCCGAGAAGTTGG
GGGGAGGGGTCGGCAATTGAACGGGTGCCTAGAGAAGGTGGCGCGGGGTAAACTG
GGAAAGTGATGTCGTGTACTGGCTCCGCCTTTTTCCCGAGGGTGGGGGAGAACCGT
ATATAAGTGCAGTAGTCGCCGTGAACGTTCTTTTTCGCAACGGGTTTGCCGCCAGAA
CACAGCTGAAGCTTCGAGGGGCTCGCATCTCTCCTTCACGCGCCCGCCGCCCTACC
TGAGGCCGCCATCCACGCCGGTTGAGTCGCGTTCTGCCGCCTCCCGCCTGTGGTG
CCTCCTGAACTGCGTCCGCCGTCTAGGTAAGTTTAAAGCTCAGGTCGAGACCGGGC
CTTTGTCCGGCGCTCCCTTGGAGCCTACCTAGACTCAGCCGGCTCTCCACGCTTTG
CCTGACCCTGCTTGCTCAACTCTACGTCTTTGTTTCGTTTTCTGTTCTGCGCCGTTAC
AGATCCAAGCTGTGACCGGCGCCTACCTGAGATCACCGGCGCCACCATGGCTTCTT
ACCCTGGACACCAGCATGCTTCTGCCTTTGACCAGGCTGCCAGATCCAGGGGCCAC
TCCAACAGGAGAACTGCCCTAAGACCCAGAAGACAGCAGGAAGCCACTGAGGTGAG
GCCTGAGCAGAAGATGCCAACCCTGCTGAGGGTGTACATTGATGGACCTCATGGCA
TGGGCAAGACCACCACCACTCAACTGCTGGTGGCACTGGGCTCCAGGGATGACATT
GTGTATGTGCCTGAGCCAATGACCTACTGGAGAGTGCTAGGAGCCTCTGAGACCAT
TGCCAACATCTACACCACCCAGCACAGGCTGGACCAGGGAGAAATCTCTGCTGGAG
ATGCTGCTGTGGTGATGACCTCTGCCCAGATCACAATGGGAATGCCCTATGCTGTGA
CTGATGCTGTTCTGGCTCCTCACATTGGAGGAGAGGCTGGCTCTTCTCATGCCCCTC
CACCTGCCCTGACCCTGATCTTTGACAGACACCCCATTGCAGCCCTGCTGTGCTACC
CAGCAGCAAGGTACCTCATGGGCTCCATGACCCCACAGGCTGTGCTGGCTTTTGTG
GCCCTGATCCCTCCAACCCTCCCTGGCACCAACATTGTTCTGGGAGCACTGCCTGA
AGACAGACACATTGACAGGCTGGCAAAGAGGCAGAGACCTGGAGAGAGACTGGAC
CTGGCCATGCTGGCTGCAATCAGAAGGGTGTATGGACTGCTGGCAAACACTGTGAG
ATACCTCCAGTGTGGAGGCTCTTGGAGAGAGGACTGGGGACAGCTCTCTGGAACAG
CAGTGCCCCCTCAAGGAGCTGAGCCCCAGTCCAATGCTGGTCCAAGACCCCACATT
GGGGACACCCTGTTCACCCTGTTCAGAGCCCCTGAGCTGCTGGCTCCCAATGGAGA
CCTGTACAATGTGTTTGCCTGGGCTCTGGATGTTCTAGCCAAGAGGCTGAGGTCCAT
GCATGTGTTCATCCTGGACTATGACCAGTCCCCTGCTGGATGCAGAGATGCTCTGCT
GCAACTAACCTCTGGCATGGTGCAGACCCATGTGACCACCCCTGGCAGCATCCCCA
CCATCTGTGACCTAGCCAGAACCTTTGCCAGGGAGATGGGAGAGGCCAACTAAGGC
GCGCCACTCGAGCGCTAGCTGGCCAGACATGATAAGATACATTGATGAGTTTGGAC
AAACCACAACTAGAATGCAGTGAAAAAAATGCTTTATTTGTGAAATTTGTGATGCTAT
TGCTTTATTTGTAACCATTATAAGCTGCAATAAACAAGTTAACAACAACAATTGCATTC
ATTTTATGTTTCAGGTTCAGGGGGAGGTGTGGGAGGTTTTTTAAAGCAAGTAAAACC
TCTACAAATGTGGTATGGAAGGCGCGCCCAATTCGCCCTATAGTGAGTCGTATTACG
TCGCGCTCACTGGCCGTCGTTTTACAACGTCGTGACTGGGAAAACCCTGGCGTTAC
CCAACTTAATCGCCTTGCAGCACATCCCCCTTTCGCCAGCTGGCGTAATAGCGAAGA
GGCCCGCACCGAAACGCCCTTCCCAACAGTTGCGCAGCCTGAATGGCGAATGGGA
GCGCCCTGTAGCGGCGCATTAAGCGCGGCGGGTGTGGTGGTTACGCGCAGCGTGA
CCGCTACACTTGCCAGCGCCCTAGCGCCCGCTCCTTTCGCTTTCTTCCCTTCCTTTC
TCGCCACGTTCGCCGGCTTTCCCCGTCAAGCTCTAAATCGGGGGCTCCCTTTAGGG
TTCCGATTTAGTGCTTTACGGCACCTCGACCCCAAAAAACTTGATTAGGGTGATGGT
TGGCCTGTAGTGGGCCATAGCCCTGATAGACGGTTTTTCGCCCTTTGACGTTGGAGT
CCACGTTCTTTAATAGTGGACTCTTGTTCCAAACTGGAACAACACTCAACCCTATCTC
GGTCTATTCTTTTGATTTATAAGGGATTTTGCCGATTTCGGCCTATTGGTTAAAAAAT
GAGCTGATTTAACAAAAATTTAACGCGAATTTTAACAAAATATTAACGCTTACAATTTA
GGTGGCACTTTTCGGGGAAATGTGCGCGGAACCCCTATTTGTTTATTTTTCTAAATAC
ATTCAAATATGTATCCGCTCATGAGACAATAACCCTGATAAATGCTTCAATAATATTGA
AAAAGGAAGAGTATGAGTATTCAACATTTCCGTGTCGCCCTTATTCCCTTTTTTGCGG
CATTTTGCCTTCCTGTTTTTGCTCACCCAGAAACGCTGGTGAAAGTAAAAGATGCTGA
AGATCAGTTGGGTGCACGAGTGGGTTACATCGAACTGGATCTCAACAGCGGTAAGA
TCCTTGAGAGTTTTCGCCCCGAAGAACGTTTTCCAATGATGAGCACTTTTAAAGTTCT
GCTATGTGGCGCGGTATTATCCCGTATTGACGCCGGGCAAGAGCAACTCGGTCGCC
GCATACACTATTCTCAGAATGACTTGGTTGAGTACTCACCAGTCACAGAAAAGCATCT
TACGGATGGCATGACAGTAAGAGAATTATGCAGTGCTGCCATAACCATGAGTGATAA
CACTGCGGCCAACTTACTTCTGACAACGATCGGAGGACCGAAGGAGCTAACCGCTT
TTTTGCACAACATGGGGGATCATGTAACTCGCCTTGATCGTTGGGAACCGGAGCTGA
ATGAAGCCATACCAAACGACGAGCGTGACACCACGATGCCTGTAGCAATGGCAACA
ACGTTGCGCAAACTATTAACTGGCGAACTACTTACTCTAGCTTCCCGGCAACAATTAA
TAGACTGGATGGAGGCGGATAAAGTTGCAGGACCACTTCTGCGCTCGGCCCTTCCG
GCTGGCTGGTTTATTGCTGATAAATCTGGAGCCGGTGAGCGTGGTTCTCGCGGTAT
CATTGCAGCACTGGGGCCAGATGGTAAGCCCTCCCGTATCGTAGTTATCTACACGA
CGGGGAGTCAGGCAACTATGGATGAACGAAATAGACAGATCGCTGAGATAGGTGCC
TCACTGATTAAGCATTGGTAACTGTCAGACCAAGTTTACTCATATATACTTTAGATTGA
TTTAAAACTTCATTTTTAATTTAAAAGGATCTAGGTGAAGATCCTTTTTGATAATCTCAT
GACCAAAATCCCTTAACGTGAGTTTTCGTTCCACTGAGCGTCAGACCCCGTAGAAAA
GATCAAAGGATCTTCTTGAGATCCTTTTTTTCTGCGCGTAATCTGCTGCTTGCAAACA
AAAAAACCACCGCTACCAGCGGTGGTTTGTTTGCCGGATCAAGAGCTACCAACTCTT
TTTCCGAAGGTAACTGGCTTCAGCAGAGCGCAGATACCAAATACTGTTCTTCTAGTG
TAGCCGTAGTTAGGCCACCACTTCAAGAACTCTGTAGCACCGCCTACATACCTCGCT
CTGCTAATCCTGTTACCAGTGGCTGCTGCCAGTGGCGATAAGTCGTGTCTTACCGG
GTTGGACTCAAGACGATAGTTACCGGATAAGGCGCAGCGGTCGGGCTGAACGGGG
GGTTCGTGCACACAGCCCAGCTTGGAGCGAACGACCTACACCGAACTGAGATACCT
ACAGCGTGAGCTATGAGAAAGCGCCACGCTTCCCGAAGGGAGAAAGGCGGACAGG
TATCCGGTAAGCGGCAGGGTCGGAACAGGAGAGCGCACGAGGGAGCTTCCAGGGG
GAAACGCCTGGTATCTTTATAGTCCTGTCGGGTTTCGCCACCTCTGACTTGAGCGTC
GATTTTTGTGATGCTCGTCAGGGGGGCGGAGCCTATGGAAAAACGCCAGCAACGCG
GCCTTTTTACGGTTCCTGGCCTTTTGCTGGCCTTTTGCTCACATGGTCTTTCCTGCGT
TATCCCCTGATTCTGTGGATAACCGTATTACCGCCTTTGAGTGAGCTGATACCGCTC
GCCGCAGCCGAACGACCGAGCGCAGCGAGTCAGTGAGCGAGGAAGCGGAGAGCG
CCCAATACGCAAACCGCCTCTCCCCGCGCGTTGGCCGATTCATTAATGCAGCTGGC
ACGACAGGTTTCCCGACTGGAAAGCGGGCAGTGAGCGCAACGCAATTAATGTGAGT
TAGCTCACTCATTAGGCACCCCAGGCTTTACACTTTATGCTTCCGGCTCGTATGTTGT
GTGGAATTGTGAGCGGATAACAATTTCACACAGGAAACAGCTATGACCATGATTACG
CCAAGCGCGTCAATTAACCCTCACTAAAGGGAACAAAAGCTGTTAATTAA
67Matrice PD1TCGCGCGTTTCGGTGATGACGGTGAAAACCTCTGACACATGCAGCTCCCGGAGACG
locus_IL12a_GTCACAGCTTGTCTGTAAGCGGATGCCGGGAGCAGACAAGCCCGTCAGGGCGCGT
2A_IL12bCAGCGGGTGTTGGCGGGTGTCGGGGCTGGCTTAACTATGCGGCATCAGAGCAGAT
pCLS30511TGTACTGAGAGTGCACCATATGCGGTGTGAAATACCGCACAGATGCGTAAGGAGAA
full sequenceAATACCGCATCAGGCGCCATTCGCCATTCAGGCTGCGCAACTGTTGGGAAGGGCGA
TCGGTGCGGGCCTCTTCGCTATTACGCCAGCTGGCGAAAGGGGGATGTGCTGCAA
GGCGATTAAGTTGGGTAACGCCAGGGTTTTCCCAGTCACGACGTTGTAAAACGACG
GCCAGTGAATTCGAGCTCGGTACCTCGCGAATGCATCTAGATGACTCCCCAGACAG
GCCCTGGAACCCCCCCACCTTCTCCCCAGCCCTGCTCGTGGTGACCGAAGGGGAC
AACGCCACCTTCACCTGCAGCTTCTCCAACACATCGGAGAGCTTCGTGCTAAACTGG
TACCGCATGAGCCCCAGCAACCAGACGGACAAGCTGGCCGCCTTCCCCGAGGACC
GCAGCCAGCCCGGCCAGGACTGCCGCTTCCGTGTCACACAACTGCCCAACGGGCG
TGACTTCCACATGAGCGTGGTCAGGGCCCGGCGCAATGACAGCGGCACCTACCTCT
GTGGGGCCGGTTCTGGCGTGAAACAGACTTTGAATTTTGACCTTCTCAAGTTGGCG
GGAGACGTGGAGTCCAACCCAGGGCCCATGTGGCCCCCTGGGTCAGCCTCCCAGC
CACCGCCCTCACCTGCCGCGGCCACAGGTCTGCATCCAGCGGCTCGCCCTGTGTC
CCTGCAGTGCCGGCTCAGCATGTGTCCAGCGCGCAGCCTCCTCCTTGTGGCTACCC
TGGTCCTCCTGGACCACCTCAGTTTGGCCAGAAACCTCCCCGTGGCCACTCCAGAC
CCAGGAATGTTCCCATGCCTTCACCACTCCCAAAACCTGCTGAGGGCCGTCAGCAA
CATGCTCCAGAAGGCCAGACAAACTCTAGAATTTTACCCTTGCACTTCTGAAGAGAT
TGATCATGAAGATATCACAAAAGATAAAACCAGCACAGTGGAGGCCTGTTTACCATT
GGAATTAACCAAGAATGAGAGTTGCCTAAATTCCAGAGAGACCTCTTTCATAACTAAT
GGGAGTTGCCTGGCCTCCAGAAAGACCTCTTTTATGATGGCCCTGTGCCTTAGTAGT
ATTTATGAAGACTTGAAGATGTACCAGGTGGAGTTCAAGACCATGAATGCAAAGCTT
CTGATGGATCCTAAGAGGCAGATCTTTCTAGATCAAAACATGCTGGCAGTTATTGAT
GAGCTGATGCAGGCCCTGAATTTCAACAGTGAGACTGTGCCACAAAAATCCTCCCTT
GAAGAACCGGATTTTTATAAAACTAAAATCAAGCTCTGCATACTTCTTCATGCTTTCA
GAATTCGGGCAGTGACTATTGATAGAGTGATGAGCTATCTGAATGCTTCCGGAAGCG
GAGCTACTAACTTCAGCCTGCTGAAGCAGGCTGGAGACGTGGAGGAGAACCCTGGA
CCTATGTGTCACCAGCAGTTGGTCATCTCTTGGTTTTCCCTGGTTTTTCTGGCATCTC
CCCTCGTGGCCATATGGGAACTGAAGAAAGATGTTTATGTCGTAGAATTGGATTGGT
ATCCGGATGCCCCTGGAGAAATGGTGGTCCTCACCTGTGACACCCCTGAAGAAGAT
GGTATCACCTGGACCTTGGACCAGAGCAGTGAGGTCTTAGGCTCTGGCAAAACCCT
GACCATCCAAGTCAAAGAGTTTGGAGATGCTGGCCAGTACACCTGTCACAAAGGAG
GCGAGGTTCTAAGCCATTCGCTCCTGCTGCTTCACAAAAAGGAAGATGGAATTTGGT
CCACTGATATTTTAAAGGACCAGAAAGAACCCAAAAATAAGACCTTTCTAAGATGCGA
GGCCAAGAATTATTCTGGACGTTTCACCTGCTGGTGGCTGACGACAATCAGTACTGA
TTTGACATTCAGTGTCAAAAGCAGCAGAGGCTCTTCTGACCCCCAAGGGGTGACGT
GCGGAGCTGCTACACTCTCTGCAGAGAGAGTCAGAGGGGACAACAAGGAGTATGAG
TACTCAGTGGAGTGCCAGGAGGACAGTGCCTGCCCAGCTGCTGAGGAGAGTCTGC
CCATTGAGGTCATGGTGGATGCCGTTCACAAGCTCAAGTATGAAAACTACACCAGCA
GCTTCTTCATCAGGGACATCATCAAACCTGACCCACCCAAGAACTTGCAGCTGAAGC
CATTAAAGAATTCTCGGCAGGTGGAGGTCAGCTGGGAGTACCCTGACACCTGGAGT
ACTCCACATTCCTACTTCTCCCTGACATTCTGCGTTCAGGTCCAGGGCAAGAGCAAG
AGAGAAAAGAAAGATAGAGTCTTCACGGACAAGACCTCAGCCACGGTCATCTGCCG
CAAAAATGCCAGCATTAGCGTGCGGGCCCAGGACCGCTACTATAGCTCATCTTGGA
GCGAATGGGCATCTGTGCCCTGCAGTGAGGGCAGAGGCAGCCTGCTGACCTGCGG
CGACGTCGAGGAGAACCCCGGGCCCATGGGGGCAGGTGCCACCGGCCGCGCCAT
GGACGGGCCGCGCCTGCTGCTGTTGCTGCTTCTGGGGGTGTCCCTTGGAGGTGCC
AAGGAGGCATGCCCCACAGGCCTGTACACACACAGCGGTGAGTGCTGCAAAGCCT
GCAACCTGGGCGAGGGTGTGGCCCAGCCTTGTGGAGCCAACCAGACCGTGTGTGA
GCCCTGCCTGGACAGCGTGACGTTCTCCGACGTGGTGAGCGCGACCGAGCCGTGC
AAGCCGTGCACCGAGTGCGTGGGGCTCCAGAGCATGTCGGCGCCGTGCGTGGAGG
CCGATGACGCCGTGTGCCGCTGCGCCTACGGCTACTACCAGGATGAGACGACTGG
GCGCTGCGAGGCGTGCCGCGTGTGCGAGGCGGGCTCGGGCCTCGTGTTCTCCTGC
CAGGACAAGCAGAACACCGTGTGCGAGGAGTGCCCCGACGGCACGTATTCCGACG
AGGCCAACCACGTGGACCCGTGCCTGCCCTGCACCGTGTGCGAGGACACCGAGCG
CCAGCTCCGCGAGTGCACACGCTGGGCCGACGCCGAGTGCGAGGAGATCCCTGGC
CGTTGGATTACACGGTCCACACCCCCAGAGGGCTCGGACAGCACAGCCCCCAGCA
CCCAGGAGCCTGAGGCACCTCCAGAACAAGACCTCATAGCCAGCACGGTGGCAGG
TGTGGTGACCACAGTGATGGGCAGCTCCCAGCCCGTGGTGACCCGAGGCACCACC
GACAACCTCATCCCTGTCTATTGCTCCATCCTGGCTGCTGTGGTTGTGGGTCTTGTG
GCCTACATAGCCTTCAAGAGGTGATCTAGAGGGCCCGTTTAAACCCGCTGATCAGC
CTCGACTGTGCCTTCTAGTTGCCAGCCATCTGTTGTTTGCCCCTCCCCCGTGCCTTC
CTTGACCCTGGAAGGTGCCACTCCCACTGTCCTTTCCTAATAAAATGAGGAAATTGC
ATCGCATTGTCTGAGTAGGTGTCATTCTATTCTGGGGGGTGGGGTGGGGCAGGACA
GCAAGGGGGAGGATTGGGAAGACAATAGCAGGCATGCTGGGGATGCGGTGGGCTC
TATGACTAGTGGCGAATTCGGCGCAGATCAAAGAGAGCCTGCGGGCAGAGCTCAGG
GTGACAGGTGCGGCCTCGGAGGCCCCGGGGCAGGGGTGAGCTGAGCCGGTCCTG
GGGTGGGTGTCCCCTCCTGCACAGGATCAGGAGCTCCAGGGTCGTAGGGCAGGGA
CCCCCCAGCTCCAGTCCAGGGCTCTGTCCTGCACCTGGGGAATGGTGACCGGCAT
CTCTGTCCTCTAGCTCTGGAAGCACCCCAGCCCCTCTAGTCTGCCCTCACCCCTGA
CCCTGACCCTCCACCCTGACCCCGTCCTAACCCCTGACCTTTGATCGGATCCCGGG
CCCGTCGACTGCAGAGGCCTGCATGCAAGCTTGGCGTAATCATGGTCATAGCTGTT
TCCTGTGTGAAATTGTTATCCGCTCACAATTCCACACAACATACGAGCCGGAAGCAT
AAAGTGTAAAGCCTGGGGTGCCTAATGAGTGAGCTAACTCACATTAATTGCGTTGCG
CTCACTGCCCGCTTTCCAGTCGGGAAACCTGTCGTGCCAGCTGCATTAATGAATCG
GCCAACGCGCGGGGAGAGGCGGTTTGCGTATTGGGCGCTCTTCCGCTTCCTCGCT
CACTGACTCGCTGCGCTCGGTCGTTCGGCTGCGGCGAGCGGTATCAGCTCACTCAA
AGGCGGTAATACGGTTATCCACAGAATCAGGGGATAACGCAGGAAAGAACATGTGA
GCAAAAGGCCAGCAAAAGGCCAGGAACCGTAAAAAGGCCGCGTTGCTGGCGTTTTT
CCATAGGCTCCGCCCCCCTGACGAGCATCACAAAAATCGACGCTCAAGTCAGAGGT
GGCGAAACCCGACAGGACTATAAAGATACCAGGCGTTTCCCCCTGGAAGCTCCCTC
GTGCGCTCTCCTGTTCCGACCCTGCCGCTTACCGGATACCTGTCCGCCTTTCTCCCT
TCGGGAAGCGTGGCGCTTTCTCATAGCTCACGCTGTAGGTATCTCAGTTCGGTGTA
GGTCGTTCGCTCCAAGCTGGGCTGTGTGCACGAACCCCCCGTTCAGCCCGACCGCT
GCGCCTTATCCGGTAACTATCGTCTTGAGTCCAACCCGGTAAGACACGACTTATCGC
CACTGGCAGCAGCCACTGGTAACAGGATTAGCAGAGCGAGGTATGTAGGCGGTGCT
ACAGAGTTCTTGAAGTGGTGGCCTAACTACGGCTACACTAGAAGAACAGTATTTGGT
ATCTGCGCTCTGCTGAAGCCAGTTACCTTCGGAAAAAGAGTTGGTAGCTCTTGATCC
GGCAAACAAACCACCGCTGGTAGCGGTGGTTTTTTTGTTTGCAAGCAGCAGATTACG
CGCAGAAAAAAAGGATCTCAAGAAGATCCTTTGATCTTTTCTACGGGGTCTGACGCT
CAGTGGAACGAAAACTCACGTTAAGGGATTTTGGTCATGAGATTATCAAAAAGGATC
TTCACCTAGATCCTTTTAAATTAAAAATGAAGTTTTAAATCAATCTAAAGTATATATGA
GTAAACTTGGTCTGACAGTTACCAATGCTTAATCAGTGAGGCACCTATCTCAGCGAT
CTGTCTATTTCGTTCATCCATAGTTGCCTGACTCCCCGTCGTGTAGATAACTACGATA
CGGGAGGGCTTACCATCTGGCCCCAGTGCTGCAATGATACCGCGAGACCCACGCTC
ACCGGCTCCAGATTTATCAGCAATAAACCAGCCAGCCGGAAGGGCCGAGCGCAGAA
GTGGTCCTGCAACTTTATCCGCCTCCATCCAGTCTATTAATTGTTGCCGGGAAGCTA
GAGTAAGTAGTTCGCCAGTTAATAGTTTGCGCAACGTTGTTGCCATTGCTACAGGCA
TCGTGGTGTCACGCTCGTCGTTTGGTATGGCTTCATTCAGCTCCGGTTCCCAACGAT
CAAGGCGAGTTACATGATCCCCCATGTTGTGCAAAAAAGCGGTTAGCTCCTTCGGTC
CTCCGATCGTTGTCAGAAGTAAGTTGGCCGCAGTGTTATCACTCATGGTTATGGCAG
CACTGCATAATTCTCTTACTGTCATGCCATCCGTAAGATGCTTTTCTGTGACTGGTGA
GTACTCAACCAAGTCATTCTGAGAATAGTGTATGCGGCGACCGAGTTGCTCTTGCCC
GGCGTCAATACGGGATAATACCGCGCCACATAGCAGAACTTTAAAAGTGCTCATCAT
TGGAAAACGTTCTTCGGGGCGAAAACTCTCAAGGATCTTACCGCTGTTGAGATCCAG
TTCGATGTAACCCACTCGTGCACCCAACTGATCTTCAGCATCTTTTACTTTCACCAGC
GTTTCTGGGTGAGCAAAAACAGGAAGGCAAAATGCCGCAAAAAAGGGAATAAGGGC
GACACGGAAATGTTGAATACTCATACTCTTCCTTTTTCAATATTATTGAAGCATTTATC
AGGGTTATTGTCTCATGAGCGGATACATATTTGAATGTATTTAGAAAAATAAACAAAT
AGGGGTTCCGCGCACATTTCCCCGAAAAGTGCCACCTGACGTCTAAGAAACCATTAT
TATCATGACATTAACCTATAAAAATAGGCGTATCACGAGGCCCTTTCGTC

TABLE 6
Preferred human endogenous gene loci responsive to T-cell activation
inductionRatio12T.8Eff.Sp.OT1.T.8Eff.Sp.OT1.T.8Eff.Sp.OT1.
symboldescriptionhrT.8Nve.Sp.OT1 12 hr.LisOva48 hr.LisOvad6.LisOva
Il3interleukin 2116.412.8208.918.413.6
Il2interleukin 397.016.01554.417.718.1
CcI4isopentenyl-diphosphate delta isomerase 22.116.835.617.619.7
Il21granzyme C9.217.4160.520.424.9
Gp49achemokine (C-C motif) receptor 85.918.5108.431.520.9
Cxcl10interleukin 258.421.11229.632.717.9
Nr4a3interleukin 1 receptor, type I2.621.254.635.521.7
Lilrb4tumor necrosis factor (ligand) superfamily,4.121.888.829.320.0
member 4
Cd200neuronal calcium sensor 14.524.1109.646.323.2
Cdkn1aCDK5 and Abl enzyme substrate 13.126.280.949.132.8
Gzmctransmembrane and tetratricopeptide repeat2.026.853.926.229.4
containing 2
Nr4a2LON peptidase N-terminal domain and ring3.228.490.450.428.3
finger 1
Cishglycoprotein 49 A15.031.6472.430.6212.5
Nr4a1polo-like kinase 23.631.7114.339.032.5
Tnflipase, endothelial2.132.466.735.933.3
Ccr8cyclin-dependent kinase inhibitor 1A (P21)9.734.6335.454.471.0
Lad1grainyhead-like 1 (Drosophila)2.135.173.452.044.1
Slamf1cellular retinoic acid binding protein II5.335.4187.243.336.3
Crabp2adenylate kinase 42.235.980.458.539.8
Furinmicrotubule-associated protein 1B2.136.277.736.438.4
Gadd45gacyl-CoA synthetase long-chain family2.037.276.045.241.3
member 6
Bcl2l1zinc finger E-box binding homeobox 22.138.680.744.9455.4
Ncs1CD200 antigen9.841.2404.370.436.8
Ciartcarboxypeptidase D3.141.6127.771.471.6
Ahrthioredoxin reductase 33.643.4157.861.728.8
Spry1myosin IE2.343.6100.261.377.0
Tnfsf4RNA binding protein with multiple splicing 22.143.691.549.836.5
Myo10mitogen-activated protein kinase kinase 3,2.944.8127.966.443.1
opposite strand
Dusp5PERP, TP53 apoptosis effector2.844.9127.278.472.4
Mycmyosin X4.145.5184.981.657.5
Psrc1immediate early response 32.745.6121.663.966.2
St6galnac4folliculin interacting protein 22.647.5124.287.496.6
Nfkbidleukocyte immunoglobulin-like receptor,9.948.9483.364.5179.1
subfamily B, member 4
Bst2circadian associated repressor of4.550.6225.5100.333.8
transcription
Txnrd3RAR-related orphan receptor gamma2.151.7106.747.552.8
Plk2proline/serine-rich coiled-coil 13.952.9205.992.379.6
Gfi1cysteine rich protein 22.454.2127.790.3182.9
Pim1cAMP responsive element modulator2.055.7112.654.457.3
Pvt1chemokine (C-C motif) ligand 420.255.81125.8103.189.0
Nfkbibnuclear receptor subfamily 4, group A,7.858.5457.678.772.0
member 2
Gnl2transglutaminase 2, C polypeptide2.358.7132.169.864.7
Cd69synapse defective 1, Rho GTPase, homolog 2
(C, elegans)2.162.5132.7111.331.0
Dgat2sprouty homolog 1 (Drosophila)4.263.8268.576.861.4
Atf3activating transcription factor 33.265.8210.388.375.8
Tnfrsf21pogo transposable element with KRAB
domain2.968.6196.991.1293.2
Lonrfltumor necrosis factor receptor superfamily,3.270.6224.5126.572.9
member 21
Cables1cytokine inducible SH2-containing protein7.574.3558.782.5133.9
Cpdlymphotoxin A2.674.6197.293.458.6
QtrtdlFBJ osteosarcoma oncogene3.074.9224.189.061.1
Polr3dsignaling lymphocytic activation molecule5.475.6412.0108.4190.4
family member 1
Kcnq5syndecan 32.476.0180.077.285.3
Fosmitochondrial ribosomal protein L472.177.2161.7152.072.3
Slc19a2ladinin5.577.3423.2152.570.4
Hif1aE2F transcription factor 52.577.7198.092.065.2
Il15raISG15 ubiquitin-like modifier2.877.9221.088.945.1
Nfkb1aryl-hydrocarbon receptor4.278.7333.2145.791.4
PhIda3diacylglycerol O-acyltransferase 23.281.0259.2150.084.4
MtrrFBJ osteosarcoma oncogene B2.081.3163.7139.398.5
Pogkpleckstrin homology-like domain, family A,2.984.8244.5126.983.8
member 3
Map2k3ospotassium voltage-gated channel, subfamily3.086.3261.0118.163.4
Q, member 5
Egr2tumor necrosis factor receptor superfamily,2.588.6219.0106.151.0
member 10b
Isg15Mir17 host gene 1 (non-protein coding)2.190.4190.1120.051.2
Perpglucose-fructose oxidoreductase domain
containing 12.292.9208.5168.7237.4
Ipo4plexin Al2.194.8200.7118.090.3
Mphosph10heat shock factor 22.496.8233.2191.0104.8
Plk3carbohydrate sulfotransferase 112.496.8235.1180.8385.7
Ifitm3growth arrest and DNA-damage-inducible 45
gamma4.8104.6504.8109.395.0
Polr1bsolute carrier family 5 (sodium-dependent2.1107.0227.3192.875.8
vitamin transporter), member 6
Usp18interferon induced transmembrane protein 32.8109.2302.643.9106.4
Top1mtDENN/MADD domain containing 5A2.6109.5279.9102.0517.4
Dkc1plasminogen activator, urokinase receptor2.1112.4234.855.757.3
Polr1csolute carrier family 19 (thiamine3.0115.4343.1221.7138.4
transporter), member 2
Cdk6ubiquitin domain containing 22.2117.4255.7198.9122.2
Ier3nuclear receptor subfamily 4, group A,
member 311.8118.01394.1114.269.6
Ltazinc finger protein 522.5118.8295.6160.9167.4
PtprsSH3 domain containing ring finger 12.4119.3280.9116.5156.5
Fnip2dihydrouridine synthase 22.1122.7260.3237.7202.8
Asna1cyclin-dependent kinase 5, regulatory subunit
1 (p35)2.1122.7259.3168.4124.0
Mybbp1aprocessing of precursor 7, ribonuclease P
family, (S, cerevisiae)2.1125.9264.9235.7150.6
Il1r1growth factor independent 13.5126.8437.7212.0156.6
Dennd5ainterleukin 15 receptor, alpha chain2.9130.9380.1144.3167.8
E2f5BCL2-like 14.7133.7627.4257.4231.2
Rcl1protein tyrosine phosphatase, receptor type,2.6136.6358.8157.5125.0
S
FosI2plasmacytoma variant translocation 13.4136.7465.5179.8140.7
Atad3afos-like antigen 22.5137.0347.5107.2177.8
BaxBCL2-associated X protein2.5138.0347.3260.1150.2
Phf6solute carrier family 4, sodium bicarbonate
cotransporter, member 72.3140.3328.2258.7397.5
Zfp52tumor necrosis factor receptor superfamily,
member 42.2141.7311.1161.7111.6
Crtamchemokine (C—X—C motif) ligand 1012.7141.71798.3242.159.4
Nop14polo-like kinase 32.8144.8406.3200.1119.9
RelCD3E antigen, epsilon polypeptide associated2.2158.7350.2260.9111.4
protein
Gramd1btumor necrosis factor (ligand) superfamily,2.1162.4342.1242.1169.7
member 11
Ifi27l2apolymerase (RNA) III (DNA directed)3.0166.3503.7296.1121.6
polypeptide D
Tnfrsf10bearly growth response 22.8173.5494.0136.368.2
Rpl7l1DnaJ (Hsp40) homolog, subfamily C, member2.1173.6369.4346.2254.3
2
Eif1aDNA topoisomerase 1, mitochondrial2.7182.2498.2338.6114.4
Nfkb2tripartite motif-containing 30D2.3182.6423.465.890.6
Heatr1DnaJ (Hsp40) homolog, subfamily C, member
212.0190.1389.4285.5228.2
SAM domain, SH3 domain and nuclear
Utp20localization signals, 12.2191.5422.1222.8304.1
Chst11solute carrier family 5 (inositol transporters),2.1191.6400.2210.0123.4
member 3
Ddx21mitochondrial ribosomal protein L152.1191.6396.3329.8137.7
Hsf2dual specificity phosphatase 54.0203.5818.1307.5560.7
Bccipapoptosis enhancing nuclease2.3211.1478.5288.2137.9
Tagapets variant 62.3218.3508.1220.5297.3
Sdc3DIM1 dimethyladenosine transferase 1-like
(S, cerevisiae)2.2218.4486.0356.0129.7
SytI32'-5′ oligoadenylate synthetase-like 12.1229.0473.3130.7124.3
Gtpbp4UTP18, small subunit (SSU) processome2.1232.0494.3384.9189.5
component, homolog (yeast)
Crip2BRCA2 and CDKN1A interacting protein2.4234.6563.3437.5269.8
Sh3rf1synaptotagmin-like 32.4242.4572.9316.7700.7
Nsfl1c5-methyltetrahydrofolate-homocysteine2.9245.7706.5334.6150.6
methyltransferase reductase
Gtf2f1URB2 ribosome biogenesis 2 homolog2.0245.7500.2489.8184.6
(S, cerevisiae)
Slc4a7ubiquitin-conjugating enzyme E2C binding2.1251.2530.5288.285.2
protein
Etv6lysine (K)-specific demethylase 2B2.2251.8547.1332.7262.1
Trim30dqueuine tRNA-ribosyltransferase domain3.0260.3788.7358.075.5
containing 1
Ddx27ubiquitin specific peptidase 312.0265.2533.2277.1176.2
Pwp2eukaryotic translation initiation factor 2-2.0267.7540.5260.8244.8
alpha kinase 2
Chchd2ATPase family, AAA domain containing 3A2.5268.8679.7523.1147.1
Myo1eadhesion molecule, interacts with CXADR
antigen 12.3269.5610.9272.9182.8
Eif5bSUMO/sentrin specific peptidase 32.0272.5548.7544.5298.4
Stat5aESF1, nucleolar pre-rRNA processing protein,2.2276.3610.4482.2266.5
homolog (S, cerevisiae)
Cops6deoxynucleotidyltransferase, terminal,2.1282.9600.4359.9326.1
interacting protein 2
D19Bwg1357eTGFB-induced factor homeobox 12.1300.5618.9217.5210.6
Aatfeukaryotic translation initiation factor 1A2.5300.8738.7597.7262.8
Aeninterferon-stimulated protein2.1305.7651.2144.3138.4
Amica1pleiomorphic adenoma gene-like 22.1311.5651.9376.2405.9
Wdr43PWP2 periodic tryptophan protein homolog2.3321.8743.3586.5189.3
(yeast)
Cct4furin (paired basic amino acid cleaving5.2329.71728.3271.7421.5
enzyme)
Nifktumor necrosis factor6.6330.72188.4489.9213.3
Tgm2apoptosis antagonizing transcription factor2.3331.4754.8523.1221.5
Ero1linterferon, alpha-inducible protein 27 like 2A2.5334.0828.1296.0221.4
Gfod1ST6 (alpha-N-acetyl-neuraminyl-2,3-beta-3.9338.41311.3636.0298.2
galactosyl-1,3)-N-acetylgalactosaminide
alpha-2,6-sialyltransferase 4
Ak4methyltransferase like 12.2339.4744.7662.894.5
Sdad1notchless homolog 1 (Drosophila)2.0339.4690.3610.3158.1
Dimt1mitochondrial ribosomal protein L32.1340.0725.5651.4359.8
Esf1UBX domain protein 2A2.1343.8732.9532.1428.5
Cd3eapguanine nucleotide binding protein-like 23.2347.61124.7647.4227.5
(nucleolar)
Samsn1programmed cell death 112.0353.9711.8435.9287.4
Tnfrsf4cyclin-dependent kinase 82.0364.0731.1702.5346.2
Mettl1eukaryotic translation initiation factor 5B2.3365.1838.2544.5355.5
Cd274RNA terminal phosphate cyclase-like 12.5373.3948.8746.4155.8
Ubtd2NSFL1 (p97) cofactor (p47)2.3374.1876.1725.9369.7
Icosnuclear factor of kappa light polypeptide
gene enhancer in B cells inhibitor, delta3.9378.51465.1389.9224.0
Kdm2bM-phase phosphoprotein 10 (U3 small
nucleolar ribonucleoprotein)2.8379.81069.3738.4290.8
Larp4GRAM domain containing 1B2.5382.7949.6363.4659.2
Eif3dERO1-like (S, cerevisiae)2.2387.7872.3773.0520.9
Tnfaip3nuclear receptor subfamily 4, group A,6.8387.82639.0343.7220.7
member 1
Map1bsurfeit gene 22.1399.8852.2696.3204.0
Cdv3N(alpha)-acetyltransferase 25, NatB auxiliary2.1405.7847.3669.5194.1
subunit
Plac8yrdC domain containing (E, coli)2.0406.7830.8635.3267.0
Mrpl3La ribonucleoprotein domain family, member2.2408.8887.9586.6358.3
4
Surf2SDA1 domain containing 12.2419.8939.9631.4284.7
Ubxn2aimportin 42.8420.31183.6777.8173.5
Utp18inducible T cell co-stimulator2.2423.9920.9818.8796.9
Isg20solute carrier family 7 (cationic amino acid2.1439.4934.4842.6344.6
transporter, y+ system), member 1
Dnajc2arsA arsenite transporter, ATP-binding,2.6446.61165.0717.9963.9
homolog 1 (bacterial)
Jak2polymerase (RNA) I polypeptide C2.7447.81208.4854.0295.9
Slc7a1spermatogenesis associated 52.0450.8920.2516.0361.6
Syde2ubiquitin specific peptidase 182.7451.81240.5296.0250.7
Slc5a6placenta-specific 82.1452.4967.3888.6590.8
Dnttip2general transcription factor IIF, polypeptide 12.3454.81063.9890.0680.8
Idi2nuclear factor of kappa light polypeptide3.4456.41535.5679.1502.7
gene enhancer in B cells inhibitor, beta
Dus2PHD finger protein 62.5462.01159.5775.8510.4
Pitrm1RRN3 RNA polymerase I transcription factor2.1462.2948.4913.2388.9
homolog (yeast)
Plxna1cytotoxic and regulatory T cell molecule2.5473.71177.8586.8431.8
Cdk5r1COP9 (constitutive photomorphogenic)
homolog, subunit 6 (Arabidopsis thaliana)2.3483.61101.9947.8560.3
Ube2cbpasparagine-linked glycosylation 3 (alpha-1,3-
mannosyltransferase)2.1485.91006.3758.7339.4
Tnfsf11tryptophanyl-tRNA synthetase2.0486.1987.1897.1504.7
Pop7hypoxia up-regulated 12.0494.3996.6802.4690.3
Psme3family with sequence similarity 60, member A2.0500.81002.1834.7417.6
Mir17hgbone marrow stromal cell antigen 23.8502.51922.9925.5246.0
Tsr1nuclear factor of kappa light polypeptide2.4503.21231.8494.0341.8
gene enhancer in B cells 2, p49/p100
Rbpms2UTP20, small subunit (SSU) processome2.4510.51240.2696.4245.8
component, homolog (yeast)
Mrpl47CD274 antigen2.2516.61128.7246.9220.2
Rab8bproviral integration site 13.4518.41766.4676.9970.0
Plagl2signal transducer and activator of
transcription 5A2.3530.01210.4496.6507.8
GrhI1CD69 antigen3.2535.71725.8289.5153.9
Zeb2pitrilysin metallepetidase 12.1544.91153.8968.4349.3
sept-02cyclin-dependent kinase 62.7550.31476.51064.0642.1
Slc5a3DEAD (Asp-Glu-Ala-Asp) box polypeptide 272.3556.21286.9987.2480.4
Naa25polymerase (RNA) I polypeptide B2.8556.21536.01070.4201.3
Plaurtumor necrosis factor, alpha-induced protein2.2560.61212.2255.5446.0
3
Metap1nodal modulator 12.1563.01161.0988.9439.8
Alg3NOP14 nucleolar protein2.5570.91418.9925.3398.0
Mrpl15ribosomal protein L7-like 12.5586.71448.71030.2687.2
Oasl1methionyl aminopeptidase 12.1597.51244.11139.3433.4
Rorchypoxia inducible factor 1, alpha subunit3.0624.21854.6809.4838.4
Nomo1Janus kinase 22.1624.51328.7390.6917.8
Tgif1nuclear factor of kappa light polypeptide2.9661.51913.3713.9720.5
gene enhancer in B cells 1, p105
Lipgreticuloendotheliosis oncogene2.5678.91686.4409.8580.5
Rrn3septin 22.1687.31436.01354.11181.3
Dnajc21nucleolar protein interacting with the FHA2.3733.41658.21280.0407.2
domain of MKI67
Yrdcelongation factor Tu GTP binding domain2.0739.31483.51439.0904.3
containing 2
Acsl6myelocytomatosis oncogene4.0761.03022.81064.0211.5
Spata5dyskeratosis congenita 1, dyskerin2.7778.22112.01549.5484.2
Urb2carnitine deficiency-associated gene2.1801.61718.21274.71010.3
expressed in ventricle 3
NlelGTP binding protein 42.4824.21942.61578.7567.3
WarsHEAT repeat containing 12.4830.32020.61235.5495.4
Cremproteaseome (prosome, macropain) activator2.1838.41763.51471.1936.1
subunit 3 (PA28 gamma, Ki)
Larp1La ribonucleoprotein domain family, member2.0861.71742.11250.9854.3
1
Eif2ak2DNA segment, Chr 19, Brigham & Women's2.3868.61978.41218.0653.4
Genetics 1357 expressed
Hyou1eukaryotic translation initiation factor 3,2.2909.11971.61641.9920.6
subunit D
Senp3TSR1 20S rRNA accumulation2.1913.91915.91474.6477.2
Tmtc2MYB binding protein (P160) 1a2.61140.02962.92200.7459.8
FosbT cell activation Rho GTPase activating2.41176.72794.4489.3704.2
protein
Pdcd11RAB8B, member RAS oncogene family2.11189.52492.21671.32512.5
Usp31DEAD (Asp-Glu-Ala-Asp) box polypeptide 212.41210.22928.02221.11098.2
Cdk8chaperonin containing Tcp1, subunit 4 (delta)2.31321.42989.72462.51294.8
Eftud2coiled-coil-helix-coiled-coil-helix domain2.31374.23171.22636.91008.9
containing 2
Fam60aWD repeat domain 432.31727.63912.62927.51014.9

TABLE 7
Selection of preferred endogenous genes that are constantly active during
immune cell activation (dependent or independent from T-cell activation).
SymbolGene description
CD3GCD3 gamma
Rn28s128S ribosomal RNA
Rn18s18S ribosomal RNA
Rn7skRNA, 7SK, nuclear
Actg1actin, gamma, cytoplasmic 1
B2mbeta-2 microglobulin
Rpl18aribosomal protein L18A
Pabpc1poly(A) binding protein, cytoplasmic 1
Gapdhglyceraldehyde-3-phosphate dehydrogenase
Rpl19ribosomal protein L19
Rpl17ribosomal protein L17
Rplp0ribosomal protein, large, P0
Cfl1cofilin 1, non-muscle
Pfn1profilin 1

TABLE 8
Selection of genes that are transiently
upregulated upon T-cell activation.
SymbolGene description
II3interleukin 3
II2interleukin 2
Ccl4chemokine (C-C motif) ligand 4
II21interleukin 21
Gp49aglycoprotein 49 A
Nr4a3nuclear receptor subfamily 4, group A, member 3
Lilrb4leukocyte immunoglobulin-like receptor, subfamily B,
member 4
Cd200CD200 antigen
Cdknacyclin-dependent kinase inhibitor 1A (P21)
Gzmcgranzyme C
Nr4a2nuclear receptor subfamily 4, group A, member 2
Cishcytokine inducible SH2-containing protein
Ccr8chemokine (C-C motif) receptor 8
Lad1ladinin
Crabp2cellular retinoic acid binding protein 11

TABLE 9
Selection of genes that are upregulated
over more than 24 hours upon T-cell activation.
SymbolDescription
Gzmbgranzyme B
Tbx21T-box 21
Pdcd1programmed cell death 1
Plekpleckstrin
Chek1checkpoint kinase 1
Slamf7SLAM family member 7
Zbtb32zinc finger and BTB domain containing 32
TigitT cell immunoreceptor with Ig and ITIM domains
Lag3lymphocyte-activation gene 3
Gzmagranzyme A
Wee1WEE 1 homolog 1 (S. pombe)
II12rb2interleukin 12 receptor, beta 2
Ccr5chemokine (C-C motif) receptor 5
Eea1early endosome antigen 1
Dtldenticleless homolog (Drosophila)

TABLE 10
Selection of genes that are down-regulated
upon immune cell activation.
SymbolGene description
Apata6spermatogenesis associated 6
Itga6integrin alpha 6
Rcbtb2regulator of chromosome condensation (RCC1) and
BTB (POZ) domain containing protein 2
Cd1d1CD1d1 antigen
St8sia45T8 alpha-N-acetyl-neuraminide alpha-2,8-
sialyltransferase 4
Itgaeintegrin alpha E, epithelial-associated
Fam214afamily with sequence similarity 214, member A
Slc6a19solute carrier family 6 (neurotransmitter transporter),
member 19
Cd55CD55 antigen
XkrxX Kell blood group precursor related X linked
Mturnmaturin, neural progenitor differentiation regulator
homolog (Xenopus)
H2-Obhistocompatibility 2, O region beta locus
Cnr2cannabinoid receptor 2 (macrophage)
Itgaeintegrin alpha E, epithelial-associated
Raver2ribonucleoprotein, PTB-binding 2
Zbtb20zinc finger and BTB domain containing 20
Arrb1arrestin, beta 1
Abca1ATP-binding cassette, sub-family A (ABC1), member 1
Tet1tet methylcytosine dioxygenase 1
Slc16a5solute carrier family 16 (monocarboxylic acid
transporters), member 5
Trav14-1T cell receptor alpha variable 14-1
Ampd3adenosine monophosphate deaminase 3

TABLE 11
Selection of human genes that are silent upon T-cell activation
(safe harbor gene targeted integration loci).
SymbolGene description
Zfp640zinc finger protein 640
LOC100038422uncharacterized LOC100038422
Zfp600zinc finger protein 600
Serpinb3aserine (or cysteine) peptidase inhibitor,
clade B (ovalbumin), member 3A
Tas2r106taste receptor, type 2, member 106
Magea3melanoma antigen, family A, 3
Omt2aoocyte maturation, alpha
Cpxcr1CPX chromosome region, candidate 1
Hsf3heat shock transcription factor 3
PbsnProbasin
Sbpspermine binding protein
Wfdc6bWAP four-disulfide core domain 6B
Meiobmeiosis specific with OB domains
Dnm3osdynamin 3, opposite strand
Skint11selection and upkeep of intraepithelial T cells 11

TABLE 12
List of gene loci upregulated in tumor exhausted infiltrating
lymphocytes from multiple tumors) useful for gene integration
of exogenous (compiled coding sequences as per the present invention
Gene namesUniprot ID (human)
CXCL13O43927
TNFRSF1BP20333
RGS2P41220
TIGITQ495A1
CD27P26842
TNFRSF9Q12933
SLAQ13239
INPP5FQ01968
XCL2Q9UBD3
HLA-DMAP28067
FAM3CQ92520
WARSP23381
EIF3LQ9Y262
KCN K5095279
TMBIM6P55061
CD200P41217
C3H7AO60880
SH2D1AO60880
ATP1B3P54709
THADAQ6YHU6
PARK7Q99497
EGR2P11161
FDFT1P37268
CRTAMO95727
IFO16Q16666

TABLE 13
List of gene loci upregulated in hypoxic tumor conditions useful for gene
integration of exogenous coding sequences as per the present invention
Gene namesStrategy
CTLA-4KO/KITarget shown to be upregulated
LAG-3 (CD223)KO/KIin T-cells upon hypoxia exposure
PD1KO/KIand T cell exhaustion
4-1BB (CD137)KI
GITRKI
OX40KI
IL10KO/KI
ABCB1KIHIF target
ABCG2KI
ADMKI
ADRA1BKI
AK3KI
ALDOAKI
BHLHB2KI
BHLHB3KI
BNIP3KI
BNIP3LKI
CA9KI
CCNG2KI
CD99KI
CDKN1AKI
CITED2KI
COL5A1KI
CPKI
CTGFKI
CTSDKI
CXCL12KI
CXCR4KI
CYP2S1KI
DDIT4KI
DEC1KI
EDN1KI
EGLN1KI
EGLN3KI
ENGKI
EN01KI
EPOKI
ETS1KI
FECHKI
FN1KI
FURINKI
GAPDHKI
GPIKI
GPX3KI
HK1KI
HK2KI
HMOX1KI
HSP90B1KI
ID2KI
IGF2KI
IGFBP1KI
IGFBP2KI
IGFBP3KI
ITGB2KI
KRTI4KI
KRTI8KI
KRTI9KI
LDHAKI
LEPKI
LOXKI
LRPIKI
MCLIKI
METKI
MMPI4KI
MMP2KI
MXI1KI
NOS2AKI
NOS3KI
NPMIKI
NR4A1KI
NT5EKI
PDGFAKI
PDKIKI
PFKFB3KI
PFKLKI
PGKIKI
PH-4KI
PKM2KI
PLAURKI
PMAIPIKI
PPP5CKI
PROKI12
SERPINE1KI
SLC2A1KI
TERTKI
TFKI
TFF3KI
TFRCKI
TGFAKI
TGFB3KI
TGM2KI
TPI1KI
VEGFAKI
VIMKI
TMEM45AKI
AKAP12KI
SEC24AKI
ANKRD37KI
RSBN1KI
GOPCKI
SAMD12KI
CRKLKI
EDEM3KI
TRIM9KI
GOSR2KI
MIFKI
ASPHKI
WDR33KI
DHX40KI
KLF10KI
R3HDM1KI
RARAKI
L0C162073KI
PGRMC2KI
ZWILCHKI
TPCN1KI
WSB1KI
SPAG4KI
GYS1KI
RRP9KI
SLC25A28KI
NTRK2KI
NARFKI
ASCC1KI
UFM1KI
TXN I PKI
MGAT2KI
VDAC1KI
SEC61GKI
SRP19KI
JMJD2CKI
SNRPD1KI
RASSF4KI

Full text: Click here
Patent 2024

Top products related to «Activating transcription factor 6, human»

Sourced in Germany, United States, United Kingdom, Netherlands, Canada, Japan, France, Spain, China, Australia, Italy, Switzerland, Belgium, Denmark, Sweden, Norway, Singapore, Jamaica, Hong Kong
The RNeasy Plus Mini Kit is a product from Qiagen designed for the purification of total RNA from a variety of sample types. It utilizes a silica-membrane-based technology to effectively capture and purify RNA molecules.
Sourced in United States, Germany, United Kingdom, Spain, Japan, Lithuania, Canada, Australia, Sweden, France, Netherlands, Switzerland, Ireland, China, Belgium, Italy
The High Capacity RNA-to-cDNA Kit is a laboratory product designed to efficiently convert extracted RNA into complementary DNA (cDNA). It provides a streamlined workflow for the reverse transcription process, allowing for the generation of high-quality cDNA from a wide range of RNA input amounts.
Sourced in United States, Germany
BEAS-2B is a human bronchial epithelial cell line that is commonly used in cell culture experiments. It is derived from normal human bronchial epithelial cells and exhibits characteristics of the bronchial epithelium. The BEAS-2B cell line is widely used for research purposes in the fields of respiratory biology and disease.
Sourced in United States, Germany, United Kingdom, Japan, Lithuania, France, Italy, China, Spain, Canada, Switzerland, Poland, Australia, Belgium, Denmark, Sweden, Hungary, Austria, Ireland, Netherlands, Brazil, Macao, Israel, Singapore, Egypt, Morocco, Palestine, State of, Slovakia
The High-Capacity cDNA Reverse Transcription Kit is a laboratory tool used to convert RNA into complementary DNA (cDNA) molecules. It provides a reliable and efficient method for performing reverse transcription, a fundamental step in various molecular biology applications.
Sourced in United States, Japan, United Kingdom, Belgium, Austria, Australia, Spain
SPSS is a comprehensive statistical software package that enables data analysis, data management, and data visualization. It provides a wide range of statistical techniques, including descriptive statistics, bivariate analysis, predictive analytics, and advanced modeling. SPSS is designed to help users efficiently manage and analyze large datasets, making it a valuable tool for researchers, statisticians, and data analysts.
Sourced in United States, United Kingdom, Japan, Spain, Italy
SPSS is a software package developed by IBM that provides statistical analysis capabilities. It allows users to perform a wide range of statistical analyses, including data management, descriptive statistics, and advanced analytics. SPSS is designed to help users explore, visualize, and interpret data, though its specific use cases may vary depending on the needs of the user or organization.
Sourced in United States, Germany
QRT-PCR is a laboratory equipment used for Quantitative Reverse Transcription Polymerase Chain Reaction (qRT-PCR) analysis. It is designed to detect and quantify specific nucleic acid sequences in a sample.
Sourced in United States, Germany, United Kingdom, China, Italy, Sao Tome and Principe, France, Macao, India, Canada, Switzerland, Japan, Australia, Spain, Poland, Belgium, Brazil, Czechia, Portugal, Austria, Denmark, Israel, Sweden, Ireland, Hungary, Mexico, Netherlands, Singapore, Indonesia, Slovakia, Cameroon, Norway, Thailand, Chile, Finland, Malaysia, Latvia, New Zealand, Hong Kong, Pakistan, Uruguay, Bangladesh
DMSO is a versatile organic solvent commonly used in laboratory settings. It has a high boiling point, low viscosity, and the ability to dissolve a wide range of polar and non-polar compounds. DMSO's core function is as a solvent, allowing for the effective dissolution and handling of various chemical substances during research and experimentation.
Sourced in United States, Germany, China, Switzerland, Japan, United Kingdom, Italy, Australia, Sweden, Belgium, Canada, Denmark, France, Sao Tome and Principe, Macao, Austria, Morocco, Norway, Israel
RIPA buffer is a commonly used lysis buffer for the extraction and solubilization of proteins from cells and tissues. It contains a mixture of ionic and non-ionic detergents that help disrupt cell membranes and release cellular contents, including proteins. The buffer also includes salts and buffers to maintain the pH and ionic strength of the solution.
Sourced in United States
Secondary anti-mouse and anti-rabbit antibodies are laboratory reagents used to detect the presence of primary antibodies that have been raised against mouse or rabbit antigens. These secondary antibodies are conjugated with enzymes or fluorescent dyes, which allow for the visualization and quantification of the primary antibodies in various experimental techniques, such as Western blotting, immunohistochemistry, and ELISA.

More about "Activating transcription factor 6, human"

Activating transcription factor 6 (ATF6) is a key regulator of the unfolded protein response in humans.
It serves as a sensor for endoplasmic reticulum (ER) stress, triggering adaptive signaling pathways that promote cell survival and homeostasis.
ATF6 plays a central role in maintaining proteostasis and modulating various cellular processes, including metabolism, inflammation, and apoptosis.
Disregulation of ATF6 activity has been implicated in the pathogenesis of diverse human diseases, such as neurodegenerative disorders, cardiovascular disease, and metabolic syndromes.
Exploring the power of ATF6 activation in humans can provide valuable insights into disease mechanisms and potential therapeutic targets.
Researchers can utilize AI-driven platforms like PubCompare.ai to discover protocols from literature, preprints, and patents, while receiving AI-powered comparisons to enhance research reproducibility and accuracy.
This single, typo-free platform can help uncover the best protocols and products for ATF6-related studies.
When conducting ATF6 research, scientists may employ techniques such as real-time quantitative PCR (QRT-PCR) to measure gene expression levels, and utilize cell lines like BEAS-2B for in vitro experiments.
The RNeasy Plus Mini Kit and High Capacity RNA-to-cDNA Kit can be used for RNA extraction and cDNA synthesis, respectively.
Downstream analyses may involve the use of SPSS statistical software for data analysis.
Cellular lysis and protein extraction can be performed using RIPA buffer, and Western blotting can be carried out with secondary anti-mouse and anti-rabbit antibodies to detect ATF6 and related proteins.
Dimethyl sulfoxide (DMSO) may be used as a solvent for various experimental compounds.
By leveraging these tools and techniques, researchers can delve deeper into the role of ATF6 in human physiology and pathology, ultimately contributing to the understanding of disease mechanisms and the development of potential therapeutic interventions.