Caspase 3
It is responsible for the proteolytic cleavage of many key cellular proteins, ultimately leading to the characteristic morphological and biochemical changes observed in cells undergoing apoptosis.
Caspase 3 is considered a key mediator of apoptosis in mammalian cells and has been extensively studied as a potential therapeutic target for a variety of diseases, including cancer, neurodegenerative disorders, and autoimmune conditions.
Understanding the regulation and activation of Caspase 3 is crucial for develping effective interventions to modulate cell death pathways.
Most cited protocols related to «Caspase 3»
In the case of methotrexate and oligomycin, 1250 cells were plated in 20–120 µl of media per well, treated with a dilution series of drug, and imaged for 72 hours.
In the case of linsitinib, cells were treated with a dilution series of linsitinib either with or without 10µM batimastat using a D300 Digital Dispenser and imaged in an IncuCyte ZOOM live cell imager (Essen Bioscience) for an additional 72 hours.
In the case of paclitaxel, cells were treated with a dilution series of paclitaxel and 200 nM of NucView 488 caspase 3 substrate (Biotium) using a D300 Digital Dispenser (Hewlett-Packard) and imaged after drug in an IncuCyte ZOOM live cell imager (Essen Bioscience) for an additional 72 hours. For immunofluorescence experiments, cells were grown for 24 hours and then treated with a dilution series of paclitaxel using a D300 Digital Dispenser (Hewlett-Packard) and incubated for 3, 6, 12, and 24 hours. Cells were fixed for 30 min in 3% formaldehyde, permeabilized for 30 min in phosphate buffered saline (PBS) with 0.3% Triton X-100 (Sigma-Aldrich), washed twice in PBS with 0.1% Tween 20 (Sigma-Aldrich; PBS-T), and blocked for 60 min with Odyssey blocking buffer. Anti-active Caspase-3 antibody (BD Biosciences) was diluted 1:1000 in Odyssey blocking buffer and incubated for 16 h at 4°C. Cells were washed three times in PBS-T for 5 min and incubated with Alexa Fluor 488 conjugated goat anti-rabbit secondary antibody for 60 min at room. Cells were washed two times in PBS-T, once with PBS, and stained for 30 min with whole cell stain (Thermo Fisher Scientific) and Hoechst (Thermo Fisher Scientific), and washed three times in PBS.
Most recents protocols related to «Caspase 3»
Example 1
Three patients with recurrent glioblastoma were treated with L19-TNFα at a dose level of 10 μg/kg. Already twenty-four hours after the infusion, a decrease in overall tumor perfusion and an emerging tumor necrosis was detected, as shown in
The patient with progressive disease underwent re-section and the tissue from this surgery, i.e. after treatment with L19-TNFα, was compared with the tissue obtained during first surgery. By immunohistochemistry, a significant increase in tumor-infiltrating CD4 and CD8 T-cells in the tumor after L19-TNFα treatment was detected. Furthermore, increased levels of cleaved caspase-3 were found suggesting a higher number of dead tumor cells, as shown in
The nonparametric test was used in the study owing to the limited sample size. The Wilcoxon signed rank test was conducted to estimate within-group differences between data before and after HIIT, including exercise capacity function, CMR-LGE results (LV geometry, functions, and ECV fractions), and blood chemistry data. The Mann‒Whitney U test was used to estimate differences in selected protein amounts obtained from LC‒MS results and methylation levels between cells incubated in patient serum before and after HIIT. Relationships between the DNMT1 levels and health-related physical fitness and CMR-LGE findings were assessed by Spearman’s correlation analysis.
Relative protein expression (measurements/baseline) of VLCAD, Cyto C, CASP3, lamin B1, actin and Arp2 in HCFs between the original and knockdown of ACADVL was compared by the Mann‒Whitney U test. This test was also used to assess mitochondrial intensity in HCFs treated with patient serum before and after HIIT and in cells with and without ACADVL knockdown. Kruskall-Wallis test was conducted to assess cell migration speed in three different culture media and with different cell numbers at different times (baseline, 24 h and 48 h after inoculation). Multiple comparisons Dunn’s test was used to estimate differences of cell behaviours between each of the above sampling time. The relationships between normalized changes ( ) in exercise performance and CMR-LGE measurements after HIIT were estimated by Spearman correlation and partial correlation analysis after controlling LV mass. All statistical assessments were considered significant at p < 0.05.
Knockdown of DNMT1 leads to generally decreased DNA methylation and activates cascades of genotoxic stress [31 (link)] in cells, resulting in signal transduction unrelated to cardiac fibrosis. Thus, we preferred to downregulate the ACADVL gene expression to simulate the HIIT-associated inhibition of human cardiac fibroblast activities.
PDTO will be collected, resuspended in 2% extracellular matrix/PDTO culture medium and then platted in white and clear bottom 96-well plates previously coated with a 1:1 volume mix of PDTO treatment medium with extracellular matrix. In the case of evaluation of the response to radiotherapy, PDTO will be before irradiated using the CellRad System (FAXITRON Bioptics). In the case of evaluation of the response to chemotherapy or PARP inhibitors, drugs are prepared in 2% extracellular matrix/PDTO culture medium and added 1 hour after PDTO have been plated.
In the case of evaluation of the response to immunotherapies, PDTO will be co-cultured with PDTO specific T cells previously generated (see co-culture of PDTO with immune cells) at a 5:1 ratio. Treatments (such as Nivolumab or Pembrolizumab) will be added directly in the co-culture. A condition containing an MHC-I blocking antibody will be added to control for antigen specific killing.
PDTO morphology will be monitored by taking images during the required time using Incucyte S3 (Sartorius). At the endpoint, PDTO response will be assessed using CellTiter-Glo 3D cell viability assay (Promega) according to the manufacturer’s instruction and luminescence will be measured using GloMax Discover GM3000 (Promega) with the associated software. Results will be normalized to the control condition. IC50 will be calculated with GraphPad software. The ability of T cells to recognize and induce lysis of PDTO will be monitored via analysis of caspase 3 cleavage within PDTO and visualization of LAMP-1 on the membrane of CD8+ T cells.
The treatment response of the PDTO will be finally compared to the clinical response (PFS/DFS/OS) of the patient from whom they are derived in order to validate the predictive value of this model for HNSCC.
Protocol full text hidden due to copyright restrictions
Open the protocol to access the free full text link
Top products related to «Caspase 3»
More about "Caspase 3"
As a cysteine-aspartic acid protease, it plays a central role in the execution phase of cell apoptosis, responsible for the proteolytic cleavage of many key cellular proteins.
This ultimately leads to the characteristic morphological and biochemical changes observed in cells undergoing apoptosis.
Caspase-3 is considered a key mediator of apoptosis in mammalian cells and has been extensively studied as a potential therapeutic target for various diseases, including cancer, neurodegenerative disorders, and autoimmune conditions.
Understanding the regulation and activation of Caspase-3 is crucial for developing effective interventions to modulate cell death pathways.
Closely related terms include Cleaved caspase-3, Anti-cleaved caspase-3, Bcl-2, Bax, and GAPDH, which are all involved in the apoptotic process or serve as important markers.
Researchers can leverge AI-driven insights from PubCompare.ai to optimize their Caspase-3 research protocols for reproducibility and accuracy, ensuring confidence in their findings and advancing the field of cell death studies.