Cre recombinase
It catalyzes the site-specific recombination between two 34-base pair sequences known as loxP sites, allowing for precise genetic manipulations such as gene knockout, insertion, or conditional expression.
Cre recombianase is widely used in research to generate genetically modified organisms and cell lines, enabling the study of gene function and disease pathways.
Its versatility and precision make it an indispensable tool for advanced molecular biology and genetics investigations.
Most cited protocols related to «Cre recombinase»
The R26-EYFP strain (21 (link)) was provided by F. Costantini (Columbia University, New York, NY). The RBP-Jfl strain (19 (link)) was provided by L. Hennighausen (National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD), with permission from T. Honjo (Kyoto University, Kyoto, Japan). The Mx1-Cre strain was previously described (44 (link)). Cre-negative RBP-Jfl/fl littermates of CKO (RBP-Jfl/fl Cre+) mice were used as controls; in preliminary experiments, wild-type CD11c-Cre+ mice were used as controls and were found indistinguishable from CD11c-Cre− animals. For inducible RBP-J deletion, adult RBP-Jfl/fl Mx1-Cre+ or control RBP-Jfl/fl mice were injected with 0.25 mg poly(I):(C) three times, with 2-d intervals, and analyzed 3 wk later. For hematopoietic reconstitution, 3 × 106 total BM cells per mouse were injected i.v. into lethally irradiated C57BL/6 mice congenic for CD45.1. The recipient mice were analyzed 4–5 wk after reconstitution. Mice were maintained in a specific pathogen-free facility and used according to the protocol approved by the Columbia University's Institutional Animal Care and Use Committee.
To construct the Cas9-sgRNA expression plasmid shown in
Targeting vectors for single-copy transgene insertion on chromosome II were constructed in the pCFJ150 vector backbone20 (link) using Gateway cloning. We used site-directed mutagenesis with the Q5 site-directed mutagenesis kit (New England Biolabs) to delete a short region of the 3’ recombination arm comprising the Cas9 target sequence, to prevent the homologous repair templates from being cleaved by Cas9.
Homologous repair templates for GFP insertion and lin-31 mutagenesis were constructed in two steps. First, we PCR amplified a 3–4 kb region centered on the desired modification from N2 genomic DNA and cloned the resulting fragment into the pCR-Blunt vector using the ZeroBlunt TOPO Cloning Kit (Life Technologies). Second, we modified this genomic clone by inserting GFP (for GFP knock-ins) or a 3’ exon containing point mutations (for lin-31 mutagenesis), along with the unc-119(+) rescue gene flanked by LoxP sites. GFP and unc-119(+) fragments were generated by PCR, and LoxP sites were included in the unc-119(+) primers. The mutated lin-31 3’ exons were synthesized as gBlocks. These fragments were integrated into the genomic clones using Gibson assembly, which allows for seamless fusion of DNA fragments without the need to include any extra sequence (e.g. restriction sites). To avoid cleavage of the repair templates by Cas9, we deleted or mutated the Cas9 target site in all repair templates. Complete plasmid sequences of all targeting vectors are available from the authors upon request.
To construct the Peft-3::Cre::tbb-2 3’UTR plasmid used for removal of selectable markers with Cre recombinase, we first amplified the Cre ORF from the plasmid pEM3 (ref. 41 (link)) and cloned it into the Gateway donor vector pDONR221. We then performed a 3-fragment gateway reaction using our Cre donor vector, pCFJ386 (Peft-3; a gift from Christian Frøkjær-Jensen), pCM1.36 (tbb-2 3’UTR)42 (link) and the destination vector pCFJ212 (ref. 17 (link)), which contains an unc-119(+) rescue gene.
Splicer mice were generated with a transgene from pTet-Cre, which contains the Cre recombinase coding sequence from pBS185 (GIBCO BRL) cloned into the EcoRV site of pTet-Splice (GIBCO BRL) as a Klenow-blunted MluI-XhoI fragment. TIE2Cre transgenes were generated with a TIE2 kinase promoter/enhancer cassette described previously
All transgenic mice were generated on a (C3H × C57BL/6)F2 background. Screening of tail DNA for Cre recombinase transgene presence was by PCR with the following primers: forward, 5′-CGATGCAACGAGTGATGAGG-3′; and reverse, 5′-CGCATAACCAGTGAAACAGC-3′. Positive founder mouse lines were then crossed with C57BL/6 mice for two generations before interbreeding with VCAM-1 knock-in mice.
Most recents protocols related to «Cre recombinase»
Example 5
In examples of the invention, a bisBIA-producing yeast strain, that produces bisBlAs such as those generated using the pathway illustrated in (A), is engineered by integration of a single construct into locus YDR514C. Additionally,
The construct includes expression cassettes for P. somniferum enzymes 6OMT and CNMT expressed as their native plant nucleotide sequences. A third enzyme from P. somniferum, CPR, is codon optimized for expression in yeast. The PsCPR supports the activity of a fourth enzyme, Berberis stolonifera CYP80A1, also codon optimized for expression in yeast. The expression cassettes each include unique yeast constitutive promoters and terminators. Finally, the integration construct includes a LEU2 selection marker flanked by loxP sites for excision by Cre recombinase.
A yeast strain expressing Ps6OMT, PsCNMT, BsCYP80A1, and PsCPR is cultured in selective medium for 16 hours at 30° C. with shaking. Cells are harvested by centrifugation and resuspended in 400 μL breaking buffer (100 mM Tris-HCl, pH 7.0, 10% glycerol, 14 mM 2-mercaptoethanol, protease inhibitor cocktail). Cells are physically disrupted by the addition of glass beads and vortexing. The liquid is removed and the following substrates and cofactors are added to start the reaction: 1 mM (R,S)-norcoclaurine, 10 mM S-adenosyl methionine, 25 mM NADPH. The crude cell lysate is incubated at 30° C. for 4 hours and then quenched by the 1:1 addition of ethanol acidified with 0.1% acetic acid. The reaction is centrifuged and the supernatant analyzed by liquid chromatography mass spectrometry (LC-MS) to detect bisBlA products berbamunine, guattegaumerine, and 2′-norberbamunine by their retention and mass/charge.
Top products related to «Cre recombinase»
More about "Cre recombinase"
It catalyzes site-specific recombination between 34-base pair loxP sequences, enabling precise manipulations such as gene knockout, insertion, or conditional expression.
This powerful recombinase is widely used in research to generate genetically modified organisms and cell lines, facilitating the study of gene function and disease pathways.
Cre's precision and flexibility make it an indispensable resource for advanced molecular biology and genetics investigations.
Researchers often leverage Cre in conjunction with other techniques like Tamoxifen-inducible systems, C57BL/6J mouse models, and cell culture methods involving Lipofectamine 2000 and 4-hydroxytamoxifen in FBS-supplemented media.
By harnessing the capabilities of Cre recombinase, scientists can unravel complex biological processes, model human diseases, and develop innovative therapies.
This powerful tool continues to drive breakthroughs in our understanding of the genome and its role in health and disease.
Whether you're working with Cre in vivo or in vitro, exploring its applications can open new doors to groundbreaking discoveries.