Cysteine
It is involved in protein structure, redox regulation, and various metabolic pathways.
Cysteine is essential for the formation of disulfide bridges, which help stabilize protein tertiary structures.
It also serves as a precursor for the antioxidant glutathione and other important sulfur-containing compounds.
Cysteine research is vital for understanding its physiological functions and potential therapeutic applications in areas such as oxidative stress, protein folding, and metabolic disorders.
Researchers can leverage PubCompare.ai's innovative tools to streamline their cysteine studies, optimizing protocols and making data-driven decisions to enhance reproducibility and accuracy.
Most cited protocols related to «Cysteine»
Variants of the BG505 SOSIP.664 gp140 trimers bearing either a His-tag or a D7324 epitope-tag sequence at the C-terminus of gp41ECTO were also made by adding the amino acid sequences GSGSGGSGHHHHHHHH or GSAPTKAKRRVVQREKR, respectively, after residue 664 in gp41ECTO and preceding the stop codon. These proteins are designated SOSIP.664-His gp140 and SOSIP.664-D7324 gp140. We also made a His-tagged gp140 with the C501 and C605 cysteines replaced by their original residues, and with P559 similarly reverted to the original isoleucine (BG505 WT.664-His gp140). When expressed in the presence of excess furin to ensure efficient precursor cleavage, the absence of the SOS disulfide bond means the gp140 trimer is unstable and dissociates to gp120 and a trimeric form of His-tagged gp41ECTO (BG505 gp41ECTO-His); the latter can be used in a NiNTA-capture enzyme-linked immunosorbent assay (ELISA; see below).
A monomeric BG505 gp120 with a similar sequence to the gp120 components of the gp140 trimers was designed by: introducing a stop codon into the SOSIP.664 construct at residue 512; reverting the optimized cleavage site to wild type (RRRRRR→REKR at residues 508–511); reverting the A501C change; introducing the D7324 epitope into the C5 region (R500K+G507Q); and making a L111A substitution to decrease gp120 dimer formation [29] (link), [63] (link). A slightly modified version of BG505 gp120 that has been described previously [25] (link) was used in DSC experiments. For this modification, the BG505 gp120 gene was cloned downstream of an IgK secretion signal in a phCMV3 plasmid and upstream of a His-tag. The cleavage site was mutated to prevent the His-tag from being cleaved off, leading to the following C-terminal sequence: RAKRRVVGSEKSGHHHHHH.
The BG505 gp160 clone for generating Env-pseudoviruses for neutralization assays has been described elsewhere [29] (link). We modified this clone by inserting the same T332N substitution that is present in the BG505 SOSIP.664 trimers, and refer to the resulting virus as BG505.T332N.
Most recents protocols related to «Cysteine»
Example 24
For groups 1-12, see study design in
For groups 13-18 see study design in
Antibody siRNA Conjugate Synthesis Using Bis-Maleimide (BisMal) Linker
Step 1: Antibody Reduction with TCEP
Antibody was buffer exchanged with 25 mM borate buffer (pH 8) with 1 mM DTPA and made up to 10 mg/ml concentration. To this solution, 4 equivalents of TCEP in the same borate buffer were added and incubated for 2 hours at 37° C. The resultant reaction mixture was combined with a solution of BisMal-siRNA (1.25 equivalents) in pH 6.0 10 mM acetate buffer at RT and kept at 4° C. overnight. Analysis of the reaction mixture by analytical SAX column chromatography showed antibody siRNA conjugate along with unreacted antibody and siRNA. The reaction mixture was treated with 10 EQ of N-ethylmaleimide (in DMSO at 10 mg/mL) to cap any remaining free cysteine residues.
Step 2: Purification
The crude reaction mixture was purified by AKTA Pure FPLC using anion exchange chromatography (SAX) method-1. Fractions containing DAR1 and DAR2 antibody-siRNA conjugates were isolated, concentrated and buffer exchanged with pH 7.4 PBS.
Anion Exchange Chromatography Method (SAX)-1.
Column: Tosoh Bioscience, TSKGel SuperQ-5PW, 21.5 mm ID×15 cm, 13 um
Solvent A: 20 mM TRIS buffer, pH 8.0; Solvent B: 20 mM TRIS, 1.5 M NaCl, pH 8.0; Flow Rate: 6.0 ml/min
Gradient:
Anion Exchange Chromatography (SAX) Method-2
Column: Thermo Scientific, ProPac™ SAX-10, Bio LC™, 4×250 mm
Solvent A: 80% 10 mM TRIS pH 8, 20% ethanol; Solvent B: 80% 10 mM TRIS pH 8, 20% ethanol, 1.5 M NaCl; Flow Rate: 0.75 ml/min
Gradient:
Step-3: Analysis of the Purified Conjugate
The purity of the conjugate was assessed by analytical HPLC using anion exchange chromatography method-2 (Table 22).
In Vivo Study Design
The conjugates were assessed for their ability to mediate mRNA downregulation of Atrogin-1 in muscle (gastroc) in the presence and absence of muscle atrophy, in an in vivo experiment (C57BL6 mice). Mice were dosed via intravenous (iv) injection with PBS vehicle control and the indicated ASCs and doses, see
Quantitation of tissue siRNA concentrations was determined using a stem-loop qPCR assay as described in the methods section. The antisense strand of the siRNA was reverse transcribed using a TaqMan MicroRNA reverse transcription kit using a sequence-specific stem-loop RT primer. The cDNA from the RT step was then utilized for real-time PCR and Ct values were transformed into plasma or tissue concentrations using the linear equations derived from the standard curves.
Results
The data are summarized in
Conclusions
In this example, it was demonstrated that a TfR1-Atrogin-1 conjugates, after in vivo delivery, mediated specific down regulation of the target gene in gastroc muscle in a dose dependent manner. After induction of atrophy the conjugate was able to mediate disease induce mRNA expression levels of Atrogin-1 at the higher doses. Higher RISC loading of the Atrogin-1 guide strand correlated with increased mRNA downregulation.
Example 3
AAC contains two cysteine residues which are known to undergo post translational modification to form intra/intermolecular disulfide bonds resulting in HMW aggregates. As such, it was hypothesized that the formation of disulfide bonds could be prevented using a structure-guided design employing covalent bond forming cysteine-reactive drug-like compounds targeting the two cysteines in order to develop potent and selective SMDs of hAAC. Accordingly, irreversible electrophile cysteine-reactive compounds comprising acrylamides and chloro-acetamides functional groups were included in screening assays for SMDs. These compounds were made using the synthesis route shown below in Scheme 1.
The screening resulted in the identification of multiple compounds (
Example 2
Bovine serum albumin (BSA), erbB2 extracellular domain (HER2) and streptavidin (100 μl of 2 μg/ml) were separately coated on Maxisorp 96 well plates. After blocking with 0.5% Tween-20 (in PBS), biotinylated and non-biotinylated hu4D5Fabv8-ThioFab-Phage (2×1010 phage particles) were incubated for 1 hour at room temperature followed by incubation with horseradish peroxidase (HRP) labeled secondary antibody (anti-M13 phage coat protein, pVIII protein antibody).
Standard HRP reaction was carried out and the absorbance was measured at 450 nm. Thiol reactivity was measured by calculating the ratio between OD450 for streptavidin/OD450 for HER2. A thiol reactivity value of 1 indicates complete biotinylation of the cysteine thiol. In the case of Fab protein binding measurements, hu4D5Fabv8 (2-20 ng) was used followed by incubation with HRP labeled goat polyclonal anti-Fab antibodies.
Example 10
Three top double cysteine mutants were reduced with DTT (120 eq) and re-oxidized with dHAA (30 eq) as described for PEGylation. The partially reduced and re-oxidized antibody mutants were then first conjugated with BCN-PEG3-Maleimide linker at 20 eq and then a PROTAC linker, PROTAC BRD4 Degrader-5-CO-PEG3-N3, at 20 eq as described by Manerio et al. (ACS Chem Biol. 2020. 15(6): 1306-1312). The conjugates were analyzed using MALDI-TOF MS for intact protein analysis (linear positive mode). The DARs were calculated by dividing the differences in average masses between the conjugates and non-conjugated mutants by the mass of two linkers. The results are shown below in Table 6. The DAR values were lower than the PAR values for the same double cysteine mutations recited above. The PROTAC linker used in this study was of low quality, which contributed to the lower DAR values. Repeat analysis of these double cysteine mutations with PEGylation confirmed that the lower DAR values are not the result of a loss of activity at the engineered cysteine sites.
Example 2
Directed TpH Engineering
It was found that Homo sapiens TpH2, i.e., the fragment set forth as SEQ ID NO:13; hsTpH2, was sensitive to p-chlorophenylalanine. However, mutations at residues N97 and/or P99 were found to confer resistance to p-chlorophenylalanine and to exhibit improved 5HTP biosynthesis after growing cells in the presence of 100 mg/l of tryptophan overnight at 3TC. A further, saturated mutagenesis, study found that isoleucine (I) was a beneficial amino acid change at residue N97, while cysteine (C), aspartic acid (D), leucine (L) and glutamine (Q) were shown to be beneficial at residue P99. In particular, the combined changes 1\197I/P99D in hsTpH2 showed a >15% increase in 5HTP production in the presence of 100 mg/l tryptophan and the combined changes N97I/P99C in hsTpH2 showed a >25% increase in 5HTP biosynthesis, over the parent TPH2 sequence (SEQ ID NO:13) after acquiring the E2K mutation.
Top products related to «Cysteine»
More about "Cysteine"
It is involved in protein structure, redox regulation, and various metabolic pathways.
Cysteine is essential for the formation of disulfide bridges, which help stabilize protein tertiary structures.
It also serves as a precursor for the antioxidant glutathione and other important sulfur-containing compounds.
Cysteine research is vital for understanding its physiological functions and potential therapeutic applications in areas such as oxidative stress, protein folding, and metabolic disorders.
Researchers can leverage powerful tools like Proteome Discoverer and the Mascot search engine to streamline their cysteine studies.
Proteome Discoverer, a widely used proteomics software, can help analyze and quantify cysteine-containing proteins, while Mascot is a robust search engine for identifying and characterizing these proteins.
Additionally, techniques like trypsin digestion and FBS (fetal bovine serum) treatment can be employed to study cysteine-mediated protein interactions and modifications.
PubCompare.ai's innovative tools can further enhance the cysteine research workflow.
By leveraging AI-driven comparisons, researchers can locate the best protocols from literature, pre-prints, and patents, improving reproducibility and accuracy.
PubCompare.ai's intelligent protocol selection and optimization tools empower data-driven decision making, unlocking new insights and advancements in cysteine studies.
Whether exploring the role of cysteine in protein folding, oxidative stress, or metabolic pathways, researchers can rely on a suite of powerful techniques and tools to streamline their investigations.
From the fundamental amino acid cysteine to the sophisticated software like Proteome Discoverer 2.2 and Proteome Discoverer 1.4, the research community is well-equipped to unravel the complexities and unlock the potential of this vital biomolecule.