The largest database of trusted experimental protocols
> Chemicals & Drugs > Amino Acid > Cytokine

Cytokine

Cytokines are a diverse group of secreted proteins that play crucial roles in cell signaling, immune response, and inflammation.
These small, soluble proteins are produced by a variety of cell types, including immune cells, endothelial cells, and fibroblasts.
Cytokines exert their effects through binding to specific cell surface receptors, triggering intracellular signaling cascades that regulate gene expression and cellular functions.
Important cytokine families include interleukins, chemokines, interferons, and tumor necrosis factors.
Cytokines are involved in a wide range of physiological and pathological processes, such as host defense, tissue repair, autoimmune disorders, and cancer.
Optimizing cytokine research methods and products is critical for advancing our understanding of these key signaling molecules and their therapeutic potntial.
The AI-driven platform PubCompare.ai can help researchers locate the best cytokine research protocols and enhance the reproducibility and accuracy of their studies.

Most cited protocols related to «Cytokine»

Data used in this manuscript are either artificial (Figure 2), or from studies of HIV-specific T cell representation in infected subjects collected in our laboratory. Standard intracellular cytokine staining assays were used. As all data are purely for illustration of algorithms and displays, thus no information about the subjects nor assay results is provided. All human samples were collected under NIAID IRB approval. Flow cytometry data was analyzed using FlowJo v9.1 (TreeStar, Inc., Ashland, OR). Background subtraction and formatting of exported data from FlowJo was performed with Pestle v1.6.2 (see below). Statistical analysis and display of multicomponent distributions was performed with SPICE v5.1 (freely available from http://exon.niaid.nih.gov/spice/).
Publication 2011
Biological Assay Cytokine Exons Flow Cytometry Homo sapiens Protoplasm Spices T-Lymphocyte

Protocol full text hidden due to copyright restrictions

Open the protocol to access the free full text link

Publication 2010
Antibodies Antigens Cells Cytokine Flow Cytometry Germ Cells Monoclonal Antibodies neutravidin paraform Phagocytes secretion Technique, Dilution THP-1 Cells Tissues
Microarray expression data of 13,629 publicly available samples hybridized to Affymetrix HG-U133A and HG-U133 Plus 2.0 GeneChips (Affymetrix, Santa Clara, Ca.) were downloaded from the Gene Expression Omnibus.[14] (link) This set of samples comprises gene expression data of a wide variety of different tissues (e.g. primary patient material, cell lines, diseased as well as normal tissues, stem cells etc.) and varying experimental conditions (e.g. transfected/transduced cells, cytokine stimulated, cells under hypoxic conditions, ultraviolet treated cells, cells treated with chemotherapeutics or non cytotoxic drugs etc.). Probesets that were available on both platforms were converted to official gene symbols, averaging expression values of multiple probesets targeting the same gene. Next, quantile normalization was applied to the log2 transformed expression values.[15] (link) For each gene the CV of the expression was calculated. The CV equals the standard deviation divided by the mean (expressed as a percentage). The CV is used as a statistic for comparing the degree of variation between genes, even if the mean expressions are drastically different from each other.[16] (link) The calculated CVs for all genes were ranked. In addition, the MFC was calculated to reflect the minor variation in expression of those candidate housekeeping genes within the large dataset. For validation 2,543 publicly available mouse samples hybridized to Affymetrix Mouse Genome 430 2.0 GeneChips (Affymetrix) were downloaded from the Gene Expression Omnibus.[14] (link). Again, this validation set comprises a wide variety of different mouse tissues and varying experimental conditions.
Total RNA was extracted with Absolutely RNA Miniprep Kit (Stratagene, Amsterdam, The Netherlands), and reverse-transcribed to cDNA with random hexamer and RevertAidTM M-MuLV Reverse Transcriptase (Fermentas, Burlington, Ontario, Canada) according to the manufacturer's protocols. Table 4 shows primer sequences for RPL27, RPL30, OAZ1, RPL22 and RPS29. The same annealing temperature (i.e. 60 °C) and number of cycles (i.e. 25) was used for all primers. The PCR products were analyzed by electrophoresis in a 1.0% agarose gel.
Full text: Click here
Publication 2007
Cell Lines Cells Cytokine DNA, Complementary Electrophoresis Gene Expression Genes Genetic Diversity Genome Hypoxia Microarray Analysis Moloney Leukemia Virus Mus Oligonucleotide Primers Patients Pharmaceutical Preparations Pharmacotherapy RNA-Directed DNA Polymerase RPL22 protein, human Sepharose Stem Cells Tissues

Protocol full text hidden due to copyright restrictions

Open the protocol to access the free full text link

Publication 2009
Adult Cytokine Inflammation
ImmPort data is annotated with terms from several ontologies including Cell Ontology23 (link), Disease Ontology (disease-ontology.org), Ontology for Biomedical Investigations (OBI; obi-ontology.org), Protein Ontology24 (link), and Vaccine Ontology25 (link). MedDRA (www.meddra.org) is used for adverse event terms and the NCI Thesaurus supplies terms from a variety of sources (e.g., CDISC). The Antibody Ontology (AntiO) is a new resource developed from data curated in ImmPort to provide standardized representation of monoclonal antibodies used in immunology research26 (link). Along with updates to OBI, it exemplifies the ongoing development of data standardization facilitated by ImmPort. An analogous problem arises in the case of cytokines, where no public domain registry has thus far been available. To fill this gap, a registry of cytokines, chemokines and their receptors was compiled (http://www.immport.org/immport-open/public/reference/cytokineRegistry) for the purpose of collecting, integrating, and mapping between entity names and synonyms. The cytokine registry draws on resources such NCBI Gene, HGNC, MGI, Protein Ontology, and UniProt. ImmPort engages with several data standards communities such as the Human Immune Phenotyping Consortium (HIPC) Standards Working Group18 (link), BioSharing (fairsharing.org), the Patient Derived Tumor Xenograft Minimal Information (PDX-MI) working group27 (link) and the NIH Big Data to Knowledge (BD2K) initiative (datascience.nih.gov/bd2k/about) through its collaboration with CEDAR (http://metadatacenter.org).
Full text: Click here
Publication 2018
Cells Chemokine Cytokine Genes Homo sapiens Immunoglobulins Monoclonal Antibodies Neoplasms Patients Proteins Public Domain Vaccines Xenografting

Most recents protocols related to «Cytokine»

Example 12

As a proof of concept, the patient population of this study is patients that (1) have moderate to severe ulcerative colitis, regardless of extent, and (2) have had an insufficient response to a previous treatment, e.g., a conventional therapy (e.g., 5-ASA, corticosteroid, and/or immunosuppressant) or a FDA-approved treatment. In this placebo-controlled eight-week study, patients are randomized. All patient undergo a colonoscopy at the start of the study (baseline) and at week 8. Patients enrolled in the study are assessed for clinical status of disease by stool frequency, rectal bleeding, abdominal pain, physician's global assessment, and biomarker levels such as fecal calprotectin and hsCRP. The primary endpoint is a shift in endoscopy scores from Baseline to Week 8. Secondary and exploratory endpoints include safety and tolerability, change in rectal bleeding score, change in abdominal pain score, change in stool frequency, change in partial Mayo score, change in Mayo score, proportion of subjects achieving endoscopy remission, proportion of subjects achieving clinical remission, change in histology score, change in biomarkers of disease such as fecal calprotectin and hsCRP, level of adalimumab in the blood/tissue/stool, change in cytokine levels (e.g., TNFα, IL-6) in the blood and tissue.

FIG. 72 describes an exemplary process of what would occur in clinical practice, and when, where, and how the ingestible device will be used. Briefly, a patient displays symptoms of ulcerative colitis, including but not limited to: diarrhea, bloody stool, abdominal pain, high c-reactive protein (CRP), and/or high fecal calprotectin. A patient may or may not have undergone a colonoscopy with diagnosis of ulcerative colitis at this time. The patient's primary care physician refers the patient. The patient undergoes a colonoscopy with a biopsy, CT scan, and/or MRI. Based on this testing, the patient is diagnosed with ulcerative colitis. Most patients are diagnosed with ulcerative colitis by colonoscopy with biopsy. The severity based on clinical symptoms and endoscopic appearance, and the extent, based on the area of involvement on colonoscopy with or without CT/MRI is documented. Treatment is determined based on diagnosis, severity and extent.

For example, treatment for a patient that is diagnosed with ulcerative colitis is an ingestible device programmed to release a single bolus of a therapeutic agent, e.g., 40 mg adalimumab, in the cecum or proximal to the cecum. Prior to administration of the treatment, the patient is fasted overnight and is allowed to drink clear fluids. Four hours after swallowing the ingestible device, the patient can resume a normal diet. An ingestible device is swallowed at the same time each day. The ingestible device is not recovered.

In some embodiments, there may be two different ingestible devices: one including an induction dose (first 8 to 12 weeks) and a different ingestible device including a different dose or a different dosing interval.

In some examples, the ingestible device can include a mapping tool, which can be used after 8 to 12 weeks of induction therapy, to assess the response status (e.g., based on one or more of the following: drug level, drug antibody level, biomarker level, and mucosal healing status). Depending on the response status determined by the mapping tool, a subject may continue to receive an induction regimen or maintenance regimen of adalimumab.

In different clinical studies, the patients may be diagnosed with Crohn's disease and the ingestible devices (including adalimumab) can be programmed to release adalimumab in the cecum, or in both the cecum and transverse colon.

In different clinical studies, the patients may be diagnosed with illeocolonic Crohn's disease and the ingestible devices (including adalimumab) can be programmed to release adalimumab in the late jejunum or in the jejunum and transverse colon.

Full text: Click here
Patent 2024
Abdominal Pain Adalimumab Adrenal Cortex Hormones Biological Markers Biopsy BLOOD Cecum Colonoscopy C Reactive Protein Crohn Disease Cytokine Diarrhea Diet Endoscopy Endoscopy, Gastrointestinal Feces Homo sapiens Immunoglobulins Immunosuppressive Agents Jejunum Leukocyte L1 Antigen Complex Medical Devices Mesalamine Mucous Membrane Neoadjuvant Therapy Patient Care Management Patients Pharmaceutical Preparations Placebos Primary Care Physicians Safety Therapeutics Tissues Transverse Colon Treatment Protocols Tumor Necrosis Factor-alpha Ulcerative Colitis X-Ray Computed Tomography

Example 19

To confirm bioactivity of 3 and 7, experiments were performed with the HH cell line, a mature T cell line derived from peripheral blood of a patient with aggressive cutaneous T cell leukemia/lymphoma (ATCC® CRL-2105™) which been demonstrated to only express the IL-2Rβ/γ. One of the earliest events in cytokine mediated activation of lymphocytes such as CD8+ T cells and NK cells is Janus Associated Kinase mediated phosphorylation and activation of Signal transducer and activator of transcription (pSTAT5). Thus, pSTAT5 was used to measure biological activity of 3 and 7 alongside 12. 3 demonstrated clear bioactivity in IL-2Rβ/γ expressing HH cells (EC50: 773 ng/ml) that was approximately 3.5 fold lower than 12 (EC50: 233 ng/ml). Additionally, 7 induced bioactivity (EC50: 756 ng/ml) very similar to 3, demonstrating that 7 retains bioactivity after being released from prodrug 5 even after accelerated (stress) conditions.

Full text: Click here
Patent 2024
Biopharmaceuticals BLOOD CD8-Positive T-Lymphocytes Cell Lines Cells Cytokine IL19 protein, human Kinase, Janus Leukemia Lymphocyte Activation Lymphoma, T-Cell, Cutaneous Natural Killer Cells Patients Phosphorylation Prodrugs Transcription, Genetic Transducers

Example 3

Human T cells are infected with the pseudotyped CD28-CA125-PD1 VSV-G virus. 24 hrs to 48 hrs post viral infection, the T cell culture medium is collected and checked for the presence of proinflammatory cytokines. These results will show that T cells are activated by CD28-CA125-PD1 VSV-G, as evidenced by presence of proinflammatory cytokines such as IFN-β and IL-2 in the cell culture supernatant of CD28-CA125-PD1 VSV-G infected human T cells.

EphA2-overexpressing gastric cancer cells, from KATO3 cell line, are infected with pseudotyped CD28-CA125-PD1 VSV-G or non-pseudotyped CD28-CA125-PD1 VSV virus and the cell proliferation is assessed. These results will show that cell proliferation is significantly reduced in cells KATO3 cells infected with pseudotyped CD28-CA125-PD1 VSV-G compared to KATO3 cells infected with non-pseudotyped CD28-CA125-PD1 VSV virus.

Full text: Click here
Patent 2024
CA-125 Antigen Cell Lines Cell Proliferation Cells Culture Media Cytokine Gastric Cancer Gastrin-Secreting Cells Homo sapiens Neoplasms T-Lymphocyte Thomsen-Friedenreich antibodies Virus Virus Diseases

Example 2

With reference to FIG. 2, in an embodiment, the sensors 220, 222, 224 may each sense a different analyte. For example, the sensor 220 could be for sensing an inflammatory marker, such as cytokine, that changes slowly in the body and slowly in interstitial fluid, the sensor 222 could be a fluorometric sensor for glucose in interstitial fluid, and the sensor 224 could be a sweat sensor for cortisol. The sensor 220 could measure the longer-term effects of stressors on the body (e.g., inflammation), whereas the sensor 224 could measure the short term effects of stress on the body. For example, if a patient had a panic attack, cortisol levels could rise rapidly, and the rate of rise of cortisol as sensed by the sensor 224 could provide an indication of the severity of the panic attack. The prolonged effect of the panic attack could also be measured by sensor 220 by measuring at least one cytokine level. The glucose sensor 222 could measure the effect of diet and health on the causality of the panic attack(s). Thus, in an embodiment, two or more of the sensors are for sensing a 1st analyte and 2nd analyte that are different, one sensor sensing the 1st analyte in a biofluid that is not sweat and the other sensor sensing the 2nd analyte in sweat.

Full text: Click here
Patent 2024
Cytokine Diet Fluorometry Glucose Human Body Hydrocortisone Inflammation Interstitial Fluid Longterm Effects Medical Devices Panic Attacks Patients Pets Sweat
Not available on PMC !

Example 11

IL-17A Enhances BM-MSC-Mediated Immunosuppression on T-Cell Proliferation.

To test if the IL-17A enhanced iNOS expression is functional or not, a MSC-T cell co-culture system was performed to evaluate the immunosuppressive activity of MSCs. As shown in FIG. 7, supplementation with IFNγ and TNFα could decrease T-cell proliferation in a cytokine concentration dependent manner. Strikingly, addition of IL-17A enhanced the suppression of MSCs on T-cell proliferation. Therefore, IL-17A is functional in the enhancement of MSC-mediated immunosuppression.

Full text: Click here
Patent 2024
Cell Proliferation Coculture Techniques Cytokine Immunosuppression Immunosuppressive Agents Interferon Type II Interleukin-11 Interleukin-17A Mesenchymal Stem Cells NOS2A protein, human Response, Immune T-Lymphocyte Tumor Necrosis Factor-alpha

Top products related to «Cytokine»

Sourced in United States, Germany, United Kingdom, Macao, France, Italy, China, Canada, Switzerland, Sao Tome and Principe, Australia, Japan, Belgium, Denmark, Netherlands, Israel, Chile, Spain
Ionomycin is a laboratory reagent used in cell biology research. It functions as a calcium ionophore, facilitating the transport of calcium ions across cell membranes. Ionomycin is commonly used to study calcium-dependent signaling pathways and cellular processes.
Sourced in United States, United Kingdom, Germany, France, Macao, Switzerland, Canada, Belgium, Australia, China, Denmark
GolgiPlug is a laboratory product designed to inhibit protein transport from the Golgi apparatus to the cell surface. It functions by blocking the secretory pathway, preventing the release of proteins from the Golgi complex. GolgiPlug is intended for use in cell biology research applications.
Sourced in United States, Germany, United Kingdom, France, Italy, China, Canada, Switzerland, Sao Tome and Principe, Macao, Poland, Japan, Australia, Belgium, Hungary, Netherlands, India, Denmark, Chile
The PMA is a versatile laboratory equipment designed for precision measurement and analysis. It functions as a sensitive pressure transducer, accurately measuring and monitoring pressure levels in various applications. The PMA provides reliable and consistent data for research and testing purposes.
Sourced in United States, United Kingdom, Germany, Macao, France, Cameroon, China, Belgium, Canada, Japan, Switzerland, Uruguay
GolgiStop is a cell culture reagent that inhibits protein transport from the endoplasmic reticulum to the Golgi apparatus, thereby preventing the secretion of newly synthesized proteins. It is a useful tool for investigating protein trafficking and localization in cells.
Sourced in United States, United Kingdom, Germany, Canada, France, Belgium, Switzerland, China, Austria, Sweden, Australia, Japan, Italy
The Bio-Plex 200 system is a multiplex immunoassay platform that allows for the simultaneous detection and quantification of multiple analytes in a single sample. The system utilizes fluorescently-labeled magnetic beads and a dual-laser detection system to perform high-throughput, multiplexed analyses.
Sourced in United States, Germany, United Kingdom, Macao, Canada, Switzerland, France, Japan, Sao Tome and Principe, Israel, Italy, Chile
Brefeldin A is a fungal metabolite that inhibits the function of Golgi apparatus in eukaryotic cells. It acts by blocking the exchange of materials between the endoplasmic reticulum and Golgi compartments, leading to the collapse of the Golgi structure.
Sourced in United States, Germany, United Kingdom, Belgium, China, Australia, France, Japan, Italy, Spain, Switzerland, Canada, Uruguay, Netherlands, Czechia, Jersey, Brazil, Denmark, Singapore, Austria, India, Panama
The FACSCanto II is a flow cytometer instrument designed for multi-parameter analysis of single cells. It features a solid-state diode laser and up to four fluorescence detectors for simultaneous measurement of multiple cellular parameters.

More about "Cytokine"

Cytokines are a diverse group of signaling proteins that play crucial roles in cellular communication, immune response, and inflammation.
These small, soluble molecules are produced by a variety of cell types, including immune cells, endothelial cells, and fibroblasts.
Cytokines exert their effects by binding to specific cell surface receptors, triggering intracellular signaling cascades that regulate gene expression and cellular functions.
Key cytokine families include interleukins, chemokines, interferons, and tumor necrosis factors.
These signaling proteins are involved in a wide range of physiological and pathological processes, such as host defense, tissue repair, autoimmune disorders, and cancer.
Optimizing cytokine research methods and products is critical for advancing our understanding of these key signaling molecules and their therapeutic potential.
Ionomycin, a calcium ionophore, and PMA (phorbol 12-myristate 13-acetate), a protein kinase C activator, are commonly used to stimulate cytokine production in vitro.
GolgiPlug and GolgiStop, containing Brefeldin A, can be used to inhibit protein secretion and accumulate cytokines intracellularly.
The Bio-Plex 200 system is a multiplex assay platform that allows simultaneous measurement of multiple cytokines from a single sample.
By leveraging the AI-driven platform PubCompare.ai, researchers can locate the best cytokine research protocols from literature, pre-prints, and patents, enhancing the reproducibility and accuracy of their studies.
With its advanced comparison tools, PubCompare.ai helps identify the most effective cytokine research methods and products, enabling researchers to optimize their cytokine studies and unlock the full potential of these crucial signaling molecules.