The largest database of trusted experimental protocols

Enzymes

Enzymes are biological catalysts that accelerate chemical reactions within living organisms.
They are essential for a wide range of physiological processes, from digestion and metabolism to cell signaling and gene expression.
Enzymes are highly specific, able to recognize and bind to their target substrates with remarkable precision.
This selectivity allows enzymes to facilitate complex reactions with remarkable efficiency, often increasing reaction rates by several orders of magnitude.
Enzymes are composed of folded polypeptide chains, and their unique three-dimensional structures are critical to their function.
Disruption of an enzyme's structure can impair or abolish its activity.
Researchers rely on a variety of experimental techniques to study enzyme kinetics, structure, and regulation, with the goal of understanding their role in health and disease.
The field of enzyme research is constantly evolving, with new discoveries and applications being made all the time.

Most cited protocols related to «Enzymes»

One approach for simulating a small part of a large system (e.g.,
the enzyme active site region of a large protein) uses a solvent boundary
potential (SBP). In SBP simulations, the macromolecular system is separated
into an inner and an outer region. In the outer region, part of the
macromolecule may be included explicitly in a fixed configuration, while the
solvent is represented implicitly as a continuous medium. In the inner
region, the solvent molecules and all or part of the macromolecule are
included explicitly and are allowed to move using molecular or stochastic
dynamics. The SBP aims to “mimic” the average
influence of the surroundings, which are not included explicitly in the
simulation.27 ,28 There are several implementations of the SBP
method in CHARMM. The earliest implementation, called the stochastic
boundary potential (SBOU), uses a soft nonpolar restraining potential to
help maintain a constant solvent density in the inner or
“simulation” region while the molecules in a shell
or buffer region are propagated using Langevin dynamics.27 By virtue of its simplicity, this treatment
remains attractive and it is sufficient for many applications.320 (link),321 (link) To improve the treatment of systems with irregular
boundaries in which part of the protein is in the outer region, a refinement
of the method has been developed that first scales the exposed charges to
account for solvent shielding and then corrects for the scaling by
post-processing.307
The Spherical Solvent Boundary Potential (SSBP), which is part of
the Miscellaneous Mean Field Potential (MMFP) module (see Section III F), is
designed to simulate a molecular solute completely surrounded by an
isotropic bulk aqueous phase with a spherical boundary.28 In SSBP the radius of the spherical region is
allowed to fluctuate dynamically and the influence of long-range
electrostatic interactions is incorporated by including the dielectric
reaction field response of the solvent.28 ,29 This approach has
been used to study several systems.322 –325
Because SSBP incorporates the long-range electrostatic reaction field
contribution, the method is particularly useful in free energy calculations
that involve introducing charges.322 –325
Like the SBOU charge-scaling method,307 the Generalized Solvent Boundary Potential (GSBP) is
designed for irregular boundaries when part of the protein is outside the
simulation region.29 However, unlike
SBOU, GSBP includes long-range electrostatic effects and reaction fields. In
the GSBP approach, the influence of the outer region is represented in terms
of a solvent-shielded static field and a reaction field expressed in terms
of a basis set expansion of the charge density in the inner region, with the
basis set coefficients corresponding to generalized electrostatic
multipoles.29 ,326 The solvent-shielded static field from the
outer macromolecular atoms and the reaction field matrix representing the
coupling between the generalized multipoles are both invariant with respect
to the configuration of the explicit atoms in the inner region. They are
calculated only once (with the assumption that the size and shape of inner
region does not change during the simulation) using the finite-difference
Poisson-Boltzmann (PB) equation of the PBEQ module. This formulation is an
accurate and computationally efficient hybrid MD/continuum method for
simulating a small region of a large macromolecular system,326 and is also used in QM/MM approaches.281 (link),327 (link)
Publication 2009
Buffers Dietary Fiber Electrostatics Enzymes Hybrids Proteins Radius Solvents Staphylococcal Protein A
For all studies, we recalibrated serum creatinine values to the standardized creatinine measurements using the Roche enzymatic method (Roche-Hitachi P-Module instrument with Roche Creatininase Plus assay, Hoffman-La Roche, Ltd., Basel, Switzerland) at the Cleveland Clinic Research Laboratory (Cleveland, OH) as previously described (29 (link), 30 (link)). We compared new equations to the MDRD Study equation, given by: estimated GFR = 175 × standardized Scr −1.154 × age−0.203 × 1.212 [if black] × 0.742 [if female], where GFR is expressed as mL/min/1.73 m2 of body surface area41 and Scr is expressed in mg/dL(4 (link)).
Publication 2009
Biological Assay creatininase Creatinine Enzymes Females Human Body Serum
We have developed a protocol that builds on the RADseq method [19] (link) but which differs in two principal respects (Figure 2). First, our method eliminates random shearing and end repair of genomic DNA (an advantage shared with a family of partially overlapping protocols such as MSG, CrOPS, and other recent RADseq derivatives [9] , [20] (link), [21] (link)). Instead, we use a double restriction enzyme (RE) digest (i.e., a restriction digest with two enzymes simultaneously) that results in at least five-fold reduction in library production cost–complete ddRADseq libraries cost ∼$5 per sample, while the necessary enzymatic steps following the initial restriction digest and ligation in random shearing RAD libraries alone introduce a cost of ∼$25 per library (NEB, Ipswich, MA). Furthermore, the elimination of several high-DNA-loss steps permits construction of ddRAD libraries from 100 ng or less of starting DNA. Second, we introduced a precise selection for genomic fragments by size, which allows greater fine-scale control of the fraction of regions represented in the final library (see results). By combining precise and repeatable size selection with sequence-specific fragmentation, double digest Restriction-Site Associated DNA sequencing (ddRADseq) produces sequencing libraries consisting of only the subset of genomic restriction digest fragments generated by cuts with both REs (i.e., have one end from each cut) and which fall within the size-selection window (Figure 2B). This combination of requirements can be tuned to generate libraries consisting of fragments derived from hundreds to hundreds of thousands of regions genome-wide.
Precise, repeatable size selection offers two further advantages. First, because only a small fraction of restriction fragments will fall in the target size-selection regime (<5% in conditions described here), the probability of sampling both directions from the same restriction site is low. This reduces “duplicate” (i.e., immediately neighboring) region sampling, which effectively halves the number of reads that are required to reach high-confidence sampling of a SNP associated with a given RE cut site. Second, shared bias in region representation favoring fragments closest to the mean of size selection, in turn, biases independent samples (e.g., from different individuals) towards recovering the same genomic regions (Figure 2B). Because of this correlated recovery, regions are “filled in” with reads in approximately the same order across all individual samples, and samples with read recovery counts below saturation will still share a significant number of well-covered regions (“Experimental ddRADseq results” below; Analysis S1 Supporting Figure 4; Analysis S1 “Region recovery: ddRADseq vs. random shearing”). Both of these properties make the ddRADseq method robust to under-sampling with respect to read counts, which is a commonly observed problem arising from unequal read representation across individual samples in pooled sequencing experiments [9] , [22] (link), [23] .
Full text: Click here
Publication 2012
Crop, Avian derivatives DNA Library DNA Repair DNA Restriction Enzymes Enzymes Genome Ligation
The four modules (MDP, SDP, TSEA and PPD) are represented as four interactive circular buttons on the homepage of MicrobiomeAnalyst. Users must choose a module based on their data types. The MDP and PPD are designed for 16S rRNA maker gene survey data. Users need to provide a taxon or OTU abundance table together with a sample metadata file containing group information. The files can be uploaded as a tab delimited text (.txt) or in comma separated values (.csv). MicrobiomeAnalyst also accepts BIOM files as well as the common output files from the mothur software package. The SDP module requires the same formats for data input except that the features should be genes annotated by KEGG Orthology (KO), Enzyme Commission (EC) numbers or Cluster of Orthologous Groups (COG) IDs. For more details, users can go to the corresponding FAQs and tutorials, or download our test examples for inspection.
Publication 2017
Enzymes Genes Ribosomal RNA Genes
Library preparation was carried out using the Nextera XT DNA Sample Kit (Illumina) with custom indexing adapters, allowing 384 libraries to be simultaneously generated in a 384-well PCR plate. For each library, the amplified cDNA was normalized to 0.15–0.20 ng/µl. The tagmentation reaction consisted of 0.625 µl of cDNA mixed with 1.25 µl Tagment DNA Buffer and 0.625 µl Tagment DNA enzyme mix. The 2.5 µl reaction was incubated at 55° C for 10 min. The reaction was quenched with 0.625 µl Neutralize Tagment Buffer and incubated at room temperature for 5 min. The libraries were amplified by adding 1.875 µl Nextera PCR Master Mix, 0.625 µl 10 µM i5 adapter (5’-AATGATACGGCGACCACCGAGATCTACAC[i5]TCGTCGGCAGCGTC-3’, IDT, where [i5] signifies the 8 bp i5 barcode sequence (see below for sequences), and 0.625 µl 10 µM i7 adapter (5’-CAAGCAGAAGACGGCATACGAGAT[i7]GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTGGG-3’, IDT, where [i7] signifies the reverse-compliment of the 8 bp i7 barcode sequence (see below for sequences). The PCR was carried out with an initial incubation at 72° C for 3 min, 95° C for 30 sec, 12 cycles of (95° C for 10 sec, 55° C for 30 sec, 72° C for 1 min), and a final extension at 72° C for 5 min. Following PCR, 2 µl of each library were pooled in a 1.5 ml microcentrifuge tube. The pool was mixed with 690 µl (0.9X) Agencourt AMPureXP SPRI beads (Beckman-Coulter) and incubated at room temperature for 5 min. The pool was placed on a magnet (DynaMag-2, Life Technologies) and incubated for 5 min. The supernatant was removed, and the beads were washed twice in 1 ml of 70% ethanol. The ethanol was removed and the beads left to dry at room temperature for 10 min. The beads were resuspended in 50 µl of nuclease-free water. The tube was returned to the magnet, and the supernatant was transferred to a new 1.5 ml microcentrifuge tube. The concentration of the pooled libraries was measured using the High-Sensitivity DNA Qubit (Life Technologies), and the size distribution measured on a High-Sensitivity Bioanalyzer Chip (Agilent). Expected concentration of the pooled libraries was 10-30 ng/µl with size distribution of 300–700 bps.
i5 barcodes: AAGTAGAG, ACACGATC, TGTTCCGA, CATGATCG, CGTTACCA, TCCTTGGT, AACGCATT, ACAGGTAT, AGGTAAGG, AACAATGG, ACTGTATC, AGGTCGCA, GGTCCAGA, CATGCTTA, AGGATCTA, TCTGGCGA, AGGTTATC, GTCTGATG, CCAACATT, CAACTCTC, ATTCCTCT, CTAACTCG, CTGCGGAT, CTACCAGG
i7 barcodes: CTACCAGG, CATGCTTA, GCACATCT, TGCTCGAC, AGCAATTC, AGTTGCTT, CCAGTTAG, TTGAGCCT, ACCAACTG, GGTCCAGA, GTATAACA, TTCGCTGA, AACTTGAC, CACATCCT, TCGGAATG, AAGGATGT
Publication 2015
Buffers DNA, Complementary DNA Chips DNA Library Enzymes Ethanol Hypersensitivity

Most recents protocols related to «Enzymes»

Example 9

NEBT7EL-pA06238 was grown on LB with 50 μg/ml kanamycin. A 600 ml culture of TBkan50 was inoculated with NEBT7EL-pA06238 and incubated overnight at 37° C. at 200 rpm. The next morning, a 10 L fermentor was prepared with 9.5 L of TB and then inoculated with 500 ml of the overnight culture. The culture was grown at 37° C. The pH was maintained at 6.2 with NaOH and the dO2 was maintained ≥20%. After 2 hours of growth, the temperature was dropped to 25° C. The culture was grown for an additional 1 hour with the OD600 around 7. IPTG was added to a final concentration of 1 mM and CoCl2 was added to 25 μM. Additional CoCl2 was added 1 and 2 hours after induction to bring the final concentration to 300 μM. The cells were grown for 20 hours at which point the fermentor was chilled to 10° C. and the cells were harvested by centrifugation. The cell pellet was stored at −80° C. until use.

The cell pellet from the fermentation was lysed by stirring in buffer with lysozyme and DNAse. Cell debris was removed by centrifugation and the supernatant was filtered through a 0.45 micron filter. Filtered supernatant was incubated with Ni-NTA agarose resin and then enzyme was eluted with imidazole. Purified FC4E pA06238 was immobilized onto 5.25 grams of ECR8204F resin using the standard published protocol from Purolite.

The immobilized enzyme was loaded into a 11×300 mm glass fixed bed reactor and run for approximately 200 h at constant temperature (60° C.) with a constant feed composition of 30 wt % fructose+70 wt % aqueous buffer solution (20 mM KPO4, 50 mM NaCl, 300 uM CoCl2). Feed rate was held constant at 140 uL/min throughout the run. The fixed bed reaction reached a maximal conversion of approximately 30% tagatose and had a half-life of −50 hours (FIG. 15).

Full text: Click here
Patent 2024
ARID1A protein, human Buffers Cells Centrifugation Deoxyribonucleases Enzymes Enzymes, Immobilized Fermentation Fermentors Fructose imidazole Isopropyl Thiogalactoside Kanamycin Muramidase Resins, Plant Sepharose Sodium Chloride tagatose

Example 2

The next experiments asked whether inhibition of the same set of FXN-RFs would also upregulate transcription of the TRE-FXN gene in post-mitotic neurons, which is the cell type most relevant to FA. To derive post-mitotic FA neurons, FA(GM23404) iPSCs were stably transduced with lentiviral vectors over-expressing Neurogenin-1 and Neurogenin-2 to drive neuronal differentiation, according to published methods (Busskamp et al. 2014, Mol Syst Biol 10:760); for convenience, these cells are referred to herein as FA neurons. Neuronal differentiation was assessed and confirmed by staining with the neuronal marker TUJ1 (FIG. 2A). As expected, the FA neurons were post-mitotic as evidenced by the lack of the mitotic marker phosphorylated histone H3 (FIG. 2B). Treatment of FA neurons with an shRNA targeting any one of the 10 FXN-RFs upregulated TRE-FXN transcription (FIG. 2C) and increased frataxin (FIG. 2D) to levels comparable to that of normal neurons. Likewise, treatment of FA neurons with small molecule FXN-RF inhibitors also upregulated TRE-FXN transcription (FIG. 2E) and increased frataxin (FIG. 2F) to levels comparable to that of normal neurons.

It was next determined whether shRNA-mediated inhibition of FXN-RFs could ameliorate two of the characteristic mitochondrial defects of FA neurons: (1) increased levels of reactive oxygen species (ROS), and (2) decreased oxygen consumption. To assay for mitochondrial dysfunction, FA neurons an FXN-RF shRNA or treated with a small molecule FXN-RF inhibitor were stained with MitoSOX, (an indicator of mitochondrial superoxide levels, or ROS-generating mitochondria) followed by FACS analysis. FIG. 3A shows that FA neurons expressing an NS shRNA accumulated increased mitochondrial ROS production compared to EZH2- or HDAC5-knockdown FA neurons. FIG. 3B shows that FA neurons had increased levels of mitochondrial ROS production compared to normal neurons (Codazzi et al., (2016) Hum Mol Genet 25(22): 4847-485). Notably, inhibition of FXN-RFs in FA neurons restored mitochondrial ROS production to levels comparable to that observed in normal neurons. In the second set of experiments, mitochondrial oxygen consumption, which is related to ATP production, was measured using an Agilent Seahorse XF Analyzer (Divakaruni et al., (2014) Methods Enzymol 547:309-54). FIG. 3C shows that oxygen consumption in FA neurons was ˜60% of the level observed in normal neurons. Notably, inhibition of FXN-RFs in FA neurons restored oxygen consumption to levels comparable to that observed in normal neurons. Collectively, these preliminary results provide important proof-of-concept that inhibition of FXN-RFs can ameliorate the mitochondrial defects of FA post-mitotic neurons.

Mitochondrial dysfunction results in reduced levels of several mitochondrial Fe-S proteins, such as aconitase 2 (ACO2), iron-sulfur cluster assembly enzyme (ISCU) and NADH:ubiquinone oxidoreductase core subunit S3 (NDUFS3), and lipoic acid-containing proteins, such as pyruvate dehydrogenase (PDH) and 2-oxoglutarate dehydrogenase (OGDH), as well as elevated levels of mitochondria superoxide dismutase (SOD2) (Urrutia et al., (2014) Front Pharmacol 5:38). Immunoblot analysis is performed using methods known in the art to determine whether treatment with an FXN-RF shRNA or a small molecule FXN-RF inhibitor restores the normal levels of these mitochondrial proteins in FA neurons.

Full text: Click here
Patent 2024
Aconitate Hydratase Biological Assay Cells Cloning Vectors Enzymes EZH2 protein, human frataxin Genets HDAC5 protein, human Histone H3 Immunoblotting Induced Pluripotent Stem Cells inhibitors Iron Ketoglutarate Dehydrogenase Complex Mitochondria Mitochondrial Inheritance Mitochondrial Proteins MitoSOX NADH NADH Dehydrogenase Complex 1 NEUROG1 protein, human Neurons Oxidoreductase Oxygen Consumption Proteins Protein Subunits Psychological Inhibition Pyruvates Reactive Oxygen Species Repression, Psychology Seahorses Short Hairpin RNA Sulfur sulofenur Superoxide Dismutase Superoxides Thioctic Acid Transcription, Genetic
Not available on PMC !

Example 37

To improve inhibition potency relative to FAAH, various portions of the t-TUCB molecule were modified to identify potential FAAH pharmacophores. The 4-trifluoromethoxy group on t-TUCB was modified to the unsubstituted ring (A-3), 4-fluorophenyl (A-2) or 4-chlorophenyl (A-26). Potency on both sEH and FAAH increased as the size and hydrophobicity of the para position substituent increased, with 4-trifluoromethoxy being the most potent on both enzymes. Substituting the aromatic ring for a cyclohexane (A-3) or adamantane (A-4) resulted in a complete loss in activity against FAAH. Results are summarized in Table 1 below.

TABLE 1
Modification of the 4-trifluoromethoxy group of t-TUCB
[Figure (not displayed)]
Stereo-IC50 (nM)
R2—N(R3)—L1chemistryhsEHhFAAH
t-TUCB[Figure (not displayed)]
[Figure (not displayed)]
trans0.8140
A1-[Figure (not displayed)]
[Figure (not displayed)]
trans309,200
A-2[Figure (not displayed)]
[Figure (not displayed)]
trans184,600
A-26[Figure (not displayed)]
[Figure (not displayed)]
trans7380
A-3[Figure (not displayed)]
[Figure (not displayed)]
trans6>1,000
A-4[Figure (not displayed)]
[Figure (not displayed)]
trans3>10,000
A-10[Figure (not displayed)]
[Figure (not displayed)]
81,800

Next, the center portion of the molecule was modified to further investigate the specificity of t-TUCB on FAAH. Switching the cyclohexane linker to a cis conformation (A-5) resulted in a 20-fold loss of potency while removing the ring and replacing it with a butane chain (A-6) resulted in a completely inactive compound. While this suggests the compound must fit a relatively specific conformation in the active site to be active, we found the aromatic linker had essentially the same potency on FAAH (A-7). Although many potent urea-based FAAH inhibitors have a piperidine as the carbamoylating nitrogen, the modification to piperidine here reduced potency 13-fold. Results are summarized in Table 2 below.

TABLE 2
Modification of the central portion of t-TUCB
[Figure (not displayed)]
Stereo-IC50 (nM)
R2—N(R3)—L1chemistryhsEHhFAAH
t-TUCB[Figure (not displayed)]
[Figure (not displayed)]
trans0.8140
A-5[Figure (not displayed)]
[Figure (not displayed)]
cis22,800
A-6[Figure (not displayed)]
[Figure (not displayed)]
15>10,000
A-7[Figure (not displayed)]
[Figure (not displayed)]
7170

Since none of the modifications at this point improved potency towards FAAH, we focused on the benzoic acid portion of the molecule as shown in Table 3. To determine the importance of the terminal acid, the corresponding aldehyde (A-20) and alcohol (A-24) in addition to the amide (A-19) and nitrile (A-11) were tested. While the amide had slightly improved potency, the more reduced forms of the acid (A-20 and A-24) and amide (A-11) had substantially less activity on FAAH. Converting the benzoic acid to a phenol (A-21) increased potency while the anisole (A-22) was completely inactive. Since the amide and acid appeared to be active, the amide bioisostere oxadiazole (A-25) was tested and had 38-fold less potency than the initial compound.

TABLE 3
Modification of the benzoic acid portion of t-TUCB
[Figure (not displayed)]
IC50 (nM)
R1hsEHhFAAH
t-TUCB[Figure (not displayed)]
0.8140
A-11[Figure (not displayed)]
5>10,000
A-19[Figure (not displayed)]
270
A-20[Figure (not displayed)]
41,100
A-24[Figure (not displayed)]
35,800
A-21[Figure (not displayed)]
2120
A-22[Figure (not displayed)]
3>10,000
A-25[Figure (not displayed)]
45,300

Since the substrates for FAAH tend to be relatively hydrophobic lipids, we speculated that conversion of the acid and primary amide to the corresponding esters or substituted amides would result in improved potency. The methyl ester (A-12) had 4-fold improved potency relative to the acid. Improving the bulk of the ester with an isopropyl group (A-13) results in a 11-fold loss in potency relative to the methyl ester. However, the similar potency of the benzyl ester (A-14) to the methyl ester demonstrates the bulk but not the size affects potency. Reversing the orientation of the ester (A-23) reduces the potency 3.4-fold. Relative to the primary amide, the methyl (A-18), ethanol (A-15) and glycyl (A-16) amides were all slightly less potent; however, the benzyl amide (A-27) was substantially less potent (16-fold). Generating the methyl ester of the glycyl amide (A-17) increased the potency 4-fold compared to the corresponding acid.

TABLE 4
Potency of ester and amide conjugates of t-TUCB
[Figure (not displayed)]
IC50 (nM)
R1hsEHhFAAH
t-TUCB[Figure (not displayed)]
0.8140
A-12[Figure (not displayed)]
735
A-13[Figure (not displayed)]
5400
A-14[Figure (not displayed)]
324
A-23[Figure (not displayed)]
4120
A-18[Figure (not displayed)]
2170
A-15[Figure (not displayed)]
2100
A-16[Figure (not displayed)]
2130
A-17[Figure (not displayed)]
330
A-27[Figure (not displayed)]
51,100

Full text: Click here
Patent 2024
Acids Adamantane Aldehydes Amides anisole Benzoic Acid Butanes Cyclohexane Dietary Fiber Enzymes Esters Ethanol inhibitors Lipids Nitriles Nitrogen Oxadiazoles Phenol piperidine Psychological Inhibition SOCS2 protein, human Urea
Not available on PMC !

Example 4

Proteins, reactants, catalysts, etc. are attached to micro/nanocavities of a solid surface on an electromagnet. The enzymes are separately attached to magnetic micro/nanoparticles in the solution. Controlling a electromagnet that is fabricated/placed underneath controls the local pH values. The enzymatic reaction is triggered by introducing the corresponding enzyme substrate (as shown in FIG. 6). Alternatively electrochemically active enzymes are used. The pH change is localized on the cavities and the protein interactions, reaction rate, etc. are modulated.

Full text: Click here
Patent 2024
Dental Caries Electromagnets Enzymes Proteins

Example 6

The effect of direct plasma treatment time [min] with a distance of 2 mm on the activity of immobilized UPO (40 μL of 1 μM immobilized protein solution, over 60 min) is demonstrated in FIG. 16. Activity assay parameters: 10 nM UPO; 2.5 mM ABTS in 50 mM sodium acetate buffer, pH 5.5; 1 mM H2O2 while constant shaking at 1400 rpm.

The effect of enzyme immobilization and/or direct plasma treatment in comparison to free enzyme and/or samples without direct plasma treatment on the specific enzyme activity of UPO is illustrated in FIG. 17. (40 μL of 1 μM protein solution; 2 mm distance, 5 min treatment time).

Activity assay parameters: 5 nM UPO; 2.5 mM ABTS in 50 mM sodium acetate buffer, pH 5.5; 1 mM H2O2. Activity was calculated from linear slope in the absorption measurement.

In samples which were directly plasma-treated, the substrate conversion was determined by adding commercially available H2O2 to the sample after direct plasma treatment. The substrate used for the respective assay was added after direct plasma treatment.

Full text: Click here
Patent 2024
2-(4'-diethylaminophenyl)benzothiazole Biocatalysis Biological Assay Buffers enzyme activity Enzymes Immobilization Peroxide, Hydrogen Plasma Proteins Sodium Acetate Specimen Handling

Top products related to «Enzymes»

Sourced in United States, China, Japan, Germany, United Kingdom, Canada, France, Italy, Australia, Spain, Switzerland, Netherlands, Belgium, Lithuania, Denmark, Singapore, New Zealand, India, Brazil, Argentina, Sweden, Norway, Austria, Poland, Finland, Israel, Hong Kong, Cameroon, Sao Tome and Principe, Macao, Taiwan, Province of China, Thailand
TRIzol reagent is a monophasic solution of phenol, guanidine isothiocyanate, and other proprietary components designed for the isolation of total RNA, DNA, and proteins from a variety of biological samples. The reagent maintains the integrity of the RNA while disrupting cells and dissolving cell components.
Sourced in United States, China, United Kingdom, Germany, Australia, Japan, Canada, Italy, France, Switzerland, New Zealand, Brazil, Belgium, India, Spain, Israel, Austria, Poland, Ireland, Sweden, Macao, Netherlands, Denmark, Cameroon, Singapore, Portugal, Argentina, Holy See (Vatican City State), Morocco, Uruguay, Mexico, Thailand, Sao Tome and Principe, Hungary, Panama, Hong Kong, Norway, United Arab Emirates, Czechia, Russian Federation, Chile, Moldova, Republic of, Gabon, Palestine, State of, Saudi Arabia, Senegal
Fetal Bovine Serum (FBS) is a cell culture supplement derived from the blood of bovine fetuses. FBS provides a source of proteins, growth factors, and other components that support the growth and maintenance of various cell types in in vitro cell culture applications.
Sourced in United States
The SimpleChIP Enzymatic Chromatin IP Kit is a laboratory equipment product designed for chromatin immunoprecipitation (ChIP) experiments. The kit provides a standardized and simplified workflow for the preparation and immunoprecipitation of chromatin samples.
Sourced in Germany, United States, United Kingdom, Netherlands, Spain, Japan, Canada, France, China, Australia, Italy, Switzerland, Sweden, Belgium, Denmark, India, Jamaica, Singapore, Poland, Lithuania, Brazil, New Zealand, Austria, Hong Kong, Portugal, Romania, Cameroon, Norway
The RNeasy Mini Kit is a laboratory equipment designed for the purification of total RNA from a variety of sample types, including animal cells, tissues, and other biological materials. The kit utilizes a silica-based membrane technology to selectively bind and isolate RNA molecules, allowing for efficient extraction and recovery of high-quality RNA.
Sourced in United States, Germany, United Kingdom, China, Japan, France, Switzerland, Sweden, Italy, Netherlands, Spain, Canada, Brazil, Australia, Macao
Trypsin is a serine protease enzyme that is commonly used in cell culture and molecular biology applications. It functions by cleaving peptide bonds at the carboxyl side of arginine and lysine residues, which facilitates the dissociation of adherent cells from cell culture surfaces and the digestion of proteins.
Sourced in United States, Germany, China, Japan, United Kingdom, Canada, France, Italy, Australia, Spain, Switzerland, Belgium, Denmark, Netherlands, India, Ireland, Lithuania, Singapore, Sweden, Norway, Austria, Brazil, Argentina, Hungary, Sao Tome and Principe, New Zealand, Hong Kong, Cameroon, Philippines
TRIzol is a monophasic solution of phenol and guanidine isothiocyanate that is used for the isolation of total RNA from various biological samples. It is a reagent designed to facilitate the disruption of cells and the subsequent isolation of RNA.
Sourced in United States, Germany, United Kingdom, China, Canada, France, Japan, Australia, Switzerland, Israel, Italy, Belgium, Austria, Spain, Gabon, Ireland, New Zealand, Sweden, Netherlands, Denmark, Brazil, Macao, India, Singapore, Poland, Argentina, Cameroon, Uruguay, Morocco, Panama, Colombia, Holy See (Vatican City State), Hungary, Norway, Portugal, Mexico, Thailand, Palestine, State of, Finland, Moldova, Republic of, Jamaica, Czechia
Penicillin/streptomycin is a commonly used antibiotic solution for cell culture applications. It contains a combination of penicillin and streptomycin, which are broad-spectrum antibiotics that inhibit the growth of both Gram-positive and Gram-negative bacteria.
Sourced in United States, Germany, Switzerland, United Kingdom, Italy, Japan, Macao, Canada, Sao Tome and Principe, China, France, Australia, Spain, Belgium, Netherlands, Israel, Sweden, India
DNase I is a laboratory enzyme that functions to degrade DNA molecules. It catalyzes the hydrolytic cleavage of phosphodiester linkages in the DNA backbone, effectively breaking down DNA strands.
Sourced in United States, Germany, United Kingdom, China, Italy, Japan, France, Sao Tome and Principe, Canada, Macao, Spain, Switzerland, Australia, India, Israel, Belgium, Poland, Sweden, Denmark, Ireland, Hungary, Netherlands, Czechia, Brazil, Austria, Singapore, Portugal, Panama, Chile, Senegal, Morocco, Slovenia, New Zealand, Finland, Thailand, Uruguay, Argentina, Saudi Arabia, Romania, Greece, Mexico
Bovine serum albumin (BSA) is a common laboratory reagent derived from bovine blood plasma. It is a protein that serves as a stabilizer and blocking agent in various biochemical and immunological applications. BSA is widely used to maintain the activity and solubility of enzymes, proteins, and other biomolecules in experimental settings.
Sourced in United States, United Kingdom, Canada, Denmark, Macao, Belgium
TrypLE Express Enzyme is a recombinant trypsin-like protease designed for the dissociation and detachment of adherent cells. It is a ready-to-use liquid formulation that can be used as a substitute for traditional trypsin solutions in cell culture applications.

More about "Enzymes"

Enzymes are essential biological catalysts that accelerate chemical reactions within living organisms.
These highly specialized proteins play a crucial role in a wide range of physiological processes, from digestion and metabolism to cell signaling and gene expression.
Their unique three-dimensional structures allow them to recognize and bind to their target substrates with remarkable precision, facilitating complex reactions with remarkable efficiency.
Researchers rely on a variety of experimental techniques to study enzyme kinetics, structure, and regulation, with the goal of understanding their role in health and disease.
This includes the use of various reagents and kits such as TRIzol reagent for RNA extraction, FBS for cell culture, SimpleChIP Enzymatic Chromatin IP Kit for chromatin immunoprecipitation, RNeasy Mini Kit for RNA purification, and TrypLE Express Enzyme for cell dissociation.
Enzymes are composed of folded polypeptide chains, and their activity can be impaired or abolished by disruptions to their structure.
Trypsin, a proteolytic enzyme, is commonly used to cleave proteins, while DNase I is used to degrade DNA.
Bovine serum albumin (BSA) is often used as a stabilizing agent in enzyme-based assays and reactions.
The field of enzyme research is constantly evolving, with new discoveries and applications being made all the tiem.
Researchers can leverage the power of AI-driven platforms like PubCompare.ai to streamline their enzyme research, easily locate relevant protocols from literature, pre-prints, and patents, and optimize their workflows for enhanced reproducibility and efficiency.