In 1987-89, the ARIC Study recruited to a baseline examination a cohort of 15,792 men and women aged 45-64 years, predominantly whites or African Americans, from four U.S. communities (12 (link)). Participants were re-examined in 1990-92 (93% response), 1993-95 (86%) and 1996-98 (80%). Participants in the ARIC Visit 4 examination serve as the cohort for the present analysis.
CRP was measured in 2008 on plasma frozen at −70°C from Visit 4 by the immunoturbidimetric assay using the Siemens (Dade Behring) BNII analyzer (Dade Behring, Deerfield, Ill), performed according to the manufacturer's protocol. Approximately 4% of samples were split and measured as blinded replicates on different dates to assess repeatability. The reliability coefficient for blinded quality control replicates of CRP was 0.99 (421 blinded replicates). Body mass index was assessed as weight (kg) in a scrub suit divided by height (m) squared. Statins were assessed by reviewing participants' medication containers. After Visit 4, cholesterol-lowering medications were self-reported during annual telephone contact. Factor VIIIc and aPTT were not measured at Visit 4 so the Visit 1 value (3 (link), 13 (link)) was used. Factor V Leiden and the prothrombin G20210A polymorphism were not measured in the whole ARIC cohort.
Participants were followed from Visit 4 (1996-98, n = 11,573) through 2005 to identify hospitalized VTE events. These were validated by physician review using a standardized protocol (14 (link)). A total of 263 VTE events were identified, of which only 7 had been included in our previous analysis of baseline CRP and VTE through June 1997 (3 (link)). Excluding these 7 events had no impact on this analysis, so we chose to include them.
Our hypothesis was that CRP would be associated positively with VTE incidence. From the 11,573 participants at Visit 4, we excluded 320 who were missing CRP; 331 with CRP values >20 mg/L, due to possible acute phase response; 342 who had a prior history of VTE; or 204 who were taking warfarin. This left 10,505 at risk: 8,219 whites, 2,255 African Americans, and 31 others, who were grouped with African Americans for this analysis. Follow-up time ended when the participant had a VTE, died, was lost to follow-up, or else until December 31, 2005. Cox proportional hazards regression was used to model the association between CRP and VTE incidence, and to derive hazard ratios and 95% confidence intervals. Hazard ratios were calculated for each of the four highest quintile groups compared with the first, but also for high CRP categories (90th or 95th percentile) versus all others, to study the possible impact of high CRP on VTE. Covariates included previous VTE risk factors measured in the whole ARIC cohort, measured at Visit 4 unless otherwise specified: age (continuous), race (African American, white), sex/hormone replacement therapy (men, women taking HRT, women not taking HRT), diabetes (yes, no), body mass index (continuous), Visit 1 factor VIIIc, and Visit 1 aPTT. Other factors related to CRP (e.g., smoking, lipid levels, physical activity) were not VTE risk factors in ARIC, and thus not included.
CRP was measured in 2008 on plasma frozen at −70°C from Visit 4 by the immunoturbidimetric assay using the Siemens (Dade Behring) BNII analyzer (Dade Behring, Deerfield, Ill), performed according to the manufacturer's protocol. Approximately 4% of samples were split and measured as blinded replicates on different dates to assess repeatability. The reliability coefficient for blinded quality control replicates of CRP was 0.99 (421 blinded replicates). Body mass index was assessed as weight (kg) in a scrub suit divided by height (m) squared. Statins were assessed by reviewing participants' medication containers. After Visit 4, cholesterol-lowering medications were self-reported during annual telephone contact. Factor VIIIc and aPTT were not measured at Visit 4 so the Visit 1 value (3 (link), 13 (link)) was used. Factor V Leiden and the prothrombin G20210A polymorphism were not measured in the whole ARIC cohort.
Participants were followed from Visit 4 (1996-98, n = 11,573) through 2005 to identify hospitalized VTE events. These were validated by physician review using a standardized protocol (14 (link)). A total of 263 VTE events were identified, of which only 7 had been included in our previous analysis of baseline CRP and VTE through June 1997 (3 (link)). Excluding these 7 events had no impact on this analysis, so we chose to include them.
Our hypothesis was that CRP would be associated positively with VTE incidence. From the 11,573 participants at Visit 4, we excluded 320 who were missing CRP; 331 with CRP values >20 mg/L, due to possible acute phase response; 342 who had a prior history of VTE; or 204 who were taking warfarin. This left 10,505 at risk: 8,219 whites, 2,255 African Americans, and 31 others, who were grouped with African Americans for this analysis. Follow-up time ended when the participant had a VTE, died, was lost to follow-up, or else until December 31, 2005. Cox proportional hazards regression was used to model the association between CRP and VTE incidence, and to derive hazard ratios and 95% confidence intervals. Hazard ratios were calculated for each of the four highest quintile groups compared with the first, but also for high CRP categories (90th or 95th percentile) versus all others, to study the possible impact of high CRP on VTE. Covariates included previous VTE risk factors measured in the whole ARIC cohort, measured at Visit 4 unless otherwise specified: age (continuous), race (African American, white), sex/hormone replacement therapy (men, women taking HRT, women not taking HRT), diabetes (yes, no), body mass index (continuous), Visit 1 factor VIIIc, and Visit 1 aPTT. Other factors related to CRP (e.g., smoking, lipid levels, physical activity) were not VTE risk factors in ARIC, and thus not included.