The largest database of trusted experimental protocols
> Chemicals & Drugs > Amino Acid > Galiximab

Galiximab

Galiximab is a monoclonal antibody that targets the CD80 antigen, which is expressed on the surface of B cells and other antigen-presenting cells.
It has been investigated for its potential therapeutic applications in various diseases, including non-Hodgkin's lymphoma and autoimmune disorders.
Galiximab is believed to exert its effects by modulating the immune response and inhibiting the activation and proliferation of B cells.
Reseach on Galiximab's efficacy and safety is ongoing, with studies examining its use as a standalone therapy or in combination with other treatments.
The PubCompare.ai platform can help researchers streamline the process of identifying and comparing research protocols and product information related to Galiximab from the published literature, preprints, and patent data.

Most cited protocols related to «Galiximab»

Female CB17 mice at 6–8 weeks of age with severe combined immunodeficiency (SCID) were used for in vivo tumor modeling studies (Charles River Laboratories Inc., Holister, CA) and were housed in polycarbonate cages using a HEPA-filtered, ventilated rack system (Allentown Inc., Allentown, NJ). All animal studies and procedures were performed under an institutionally approved protocol for animal care and use (IACUC #SD12-04; Biogen Idec, Cambridge, MA). The Biogen Idec animal facility is accredited by the Association for Assessment and Accreditation of Laboratory Animal Care International.
Publication 2013
Animals Animals, Laboratory Females Institutional Animal Care and Use Committees Mice, Laboratory Neoplasms polycarbonate Rivers Severe Combined Immunodeficiency
Raji cells were treated with different concentrations of galiximab for 18 h and then treated with various concentrations of fludarabine or doxorubicin for an additional 18 h. The cells were harvested and examined by flow for apoptosis for the activation of caspase 3 as described previously (17 (link)).
Publication 2013
Apoptosis Caspase 3 Cells Doxorubicin fludarabine galiximab
Mice with SCID were subcutaneously (s.c.) injected in the flank with Raji cells (2×106) in 50% Matrigel basement membrane (BD Biosciences, Bedford, MA, USA) on day 0. After the tumors reached >100 mm3 in size, the mice were randomized into groups (n=10) and intraperitoneally injected with vehicle, control antibody (CE9.1), or various concentrations of galiximab (0.1, 1, 3 and 10 mg/kg) as a single agent to determine the optimum doses. Because the pharmacokinetic estimation indicated that galiximab has a half-life of 8.6 days (data not shown), galiximab was dosed once weekly. The mice received a total of 3 treatments. The tumors were measured biweekly with calipers and tumor volume was calculated using the formula: (length × width2)/2. The day-34 treatment effect was analyzed for statistical significance using an unpaired Student’s t-test with a 95% confidence interval.
In addition, to determine combination effects, when tumors reached 100–150 mm3 (early) or 200–400 mm3 (late), the mice were randomized into groups (n=10) and intraperitoneally injected with vehicle, control antibody (CE9.1), or galiximab (3 mg/kg per week). Some mice were then treated with intraperitoneal fludarabine (100 mg/kg per day) 3 days following the first antibody injection. These mice were treated with fludarabine for 5 consecutive days. Treatment effects were analyzed using an unpaired Student’s t-test with a 95% confidence interval.
Publication 2013
CE 9.1 Cells fludarabine galiximab Immunoglobulins matrigel Membrane, Basement Mus Neoplasms Passive Immunization SCID Mice Student
Galiximab 500 mg/m2 was administered via intravenous infusion over 60 min weekly for four consecutive weeks (induction) followed by once monthly (extended induction) doses until disease progression. All patients were premedicated with diphenhydramine 50 mg IV or PO (or equivalent) and acetaminophen 650 mg PO. Treatment was intended to be delivered for a minimum of 8 weeks, and responding patients (complete/partial response or stable disease) could continue on the extended induction treatment unless there was evidence of disease progression and/or toxicity. Patients experiencing infusion reactions could have the infusion rate slowed. There were no dose modifications for galiximab, and drug was discontinued for life-threatening toxicity. Routine supportive care interventions such as erythropoietin, blood transfusions and hematopoietic colony stimulating factors for treatment of cytopenias were permitted. Concomitant steroids were prohibited except for management of severe infusion reactions.
Publication 2013
Acetaminophen Blood Transfusion Colony-Stimulating Factors Diphenhydramine Disease Progression Erythropoietin galiximab Hematopoietic System Intravenous Infusion Patients Pharmaceutical Preparations Steroids
CALGB 50602 was an open-label phase II cooperative group study of single-agent galiximab in patients with relapsed/refractory HL. Institutional review boards at participating institutions approved the study, and written informed consent was required and obtained from all patients.
Publication 2013
Ethics Committees, Research galiximab Patients

Most recents protocols related to «Galiximab»

Example 35

The present example describes antibody therapeutics currently undergoing testing at Early-stage and also Late-stage trials that may be used in low viscosity formulations described herein.

Antibody therapeutics in Early-Stage and Late-Stage Trials and Development that can be formulated with viscosity-reducing agent(s) include: November-7, November-8 from Morphosys AG & Novartis; CHR-1201 (alternative name: GBR600) from Glenmark Pharmaceuticals S.A.; 3F8, 8H9 from United Therapeutics corporation; AAB 003, PF-05236812 and PF-5236812 from JANSSEN Alzheimer Immunotherapy and Pfizer; Abagovomab from Menarini; AbGn 7 from AbGenomics Corporation; Abituzumab from Merck Senero; Abrilumab (alternative name: AMG 181) from Amgen; ABT 981 from Abbott Laboratories, AbbVie; Actimab A M195 (alternative names: 225Ac-HuM-195; 225Ac-lintuzumab; AC225 MOAB M195; Ac225 monoclonal antibody M195; Lintuzumab Ac-225; Actimab-M; Actinium-225 (225Ac)-Lintuzumab; Actinium-225-labelled HuM195; HuM195-Ac-225; Lintuzumab-Ac225; SMART actinium-225-M-195) from Actinium Pharmaceuticals; Actoxumab (alternative names: 3D8; Bezlotoxumab; CDA-1/CDA-2; CDA 1; GS-CDA-1/MDX-1388; MBL-CDA1/MBL-CDB 1; MDX 066; MDX-066+MDX-1388; MDX-066/MDX-1388; MK-3415+MK-6072; MK-3415/MK-6072; MK-3415A) from Merck & Co; Adecatumumab (alternative names: Anti-EpCAM mAb MT201; Human anti-EpCAM monoclonal antibody MT201; Monoclonal antibody MT201; MT 201; MT201 antibody) from Amgen; Merck Serono; Aducanumab (alternative names: BART; BIIB 037; NI-10) from Biogen; Afasevikumab (Alternative name: MCAF-5352A, NI-1401, RG 7624) from NovImmune and Genentech; Afelimomab from Abbott GmbH & Co. KG; AGS 16C3F (AGS-16M8F) from Agensys; AGS-009 (NNC 0152-0000-0001) from Argos Therapeutics Inc; Alacizumab pegol (alternative names CDP-791, g165 DFM-PEG) from Celltech, UCB; Clazakizumab (alternative names ALD 518; ALD518-003; BMS-645429; BMS-945429) from Alder Biopharmaceuticals; ALT-836 (alternative names cH36; Sunol-cH36; TNX 832) from Altor BioScience Corporation; ALX 0141 (alternative name EDP-406), ALX 0171, ALX-0761 and ALX-0962 from Ablynx; ALXN 1007 from Alexion Pharmaceuticals; Amatuximab (alternative name: MORAb-009; MORAB-009-006) from Eisai Co Ltd; Morphotek; AMG 557, AMG 595, AMG 595, AMG 780, AMG 820, AMG 827, patritumab (AMG 888), AMG167 and AMG 172 from Amgen; Anatumomab mafenatox (alternative names ABR 214936; PNU 214936; TTS CD2) from Active Biotech; Anetumab ravtansine (alternative names BAY 94-9343; BAY-94-9343; BAY-94-9343-SPDB-DM4) from Bayer HealthCare; Anifrolumab (MEDI-546) from Medarex and MedImmune; Anrukinzumab from Pfizer and Wyeth; Anti-IL-21 (NN8828) from Novo Nordisk A/S; APN301 (hu14. 18-IL2) from APEIRON Biologics AG; Apolizumab (alternative Hu1D10; Remitogen; SMART 1D 10 antibody) from PDL BioPharma; Arcitumomab from Immunomedics; Ascrinvacumab from Pfizer; Aselizumab (alternative names: Anti-L-selectin monoclonal antibody DREG 200—PDL BioPharma; Anti-L-selectin monoclonal antibody DREG 55; Aselizumab; BNP 001; DREG 200—PDL BioPharma; DREG 55; hDREG-200—PDL BioPharma; hDREG-55; Hu DREG 55; SMART anti-L-selectin antibodies) from PDL BioPharma; ASG-5ME Agensys and Seattle Genetics; ATI 355 from Novartis; anti-thrombin gamma (KW-3357) Kyowa; Atinumab (alternative names: 1226761-65-4; ATI355; RTN4; reticulon 4; reticulon-4; ASY; KIAA0886) from Creative Biolabs; Atorolimumab from Creative Biolabs; AV-203 from AVEO; Avelumab from Merck KGaA; AVX 701 and AVX 901 from AlphaVax and Duke University Medical Center; BAN2401 from Biogen Idec/Eisai Co. LTD; Bapineuzumab from Pfizer; Johnson & Johnson; Bavituximab (PGN401) from University of Texas Southwestern Medical Center at Dallas, (U.S. Pat. No. 6,300,308), (U.S. Pat. Nos. 6,406,693 and 6,312,694); BAY2010112 (AMG 212) from Amgen; Bectumomab (LymphoScan™) from Immunomedics; Begelomab from Adienne; Benralizumab from Big Pharma, AstraZeneca, Teva and GlaxoSmithKline; Bertilimumab from Cambridge Antibody Technology & IMMUNE Pharmaceuticals; Besilesomab (Scintimun™) from Bayer Schering Pharma A. & CIS bio international; BHQ880 from Novartis; BI 1034020 from Ablynx and Boehringer Ingelheim Pharmaceuticals; BI 505 from BioInvent International; Biciromab (FibriScint™) from Centocor; BIIB 059 from Biogen; BIIB022 from Biogen; BIIB023 from Biogen; Bimagrumab (BYM338) from Novartis; Bimekizumab (CDP-4940; UCB-4940) from UCB; Bivatuzumab (KHK4083) from Kyowa Hakko Kirin; Bivatuzumab mertansine from Boehringer Ingelheim & ImmunoGen; BIW 8962 from Kyowa Hakko Kirin & Kyowa Hakko Kirin Korea; Bleselumab (ASKP 1240) from Astellas Pharma & Kyowa Hakko Kirin; Blontuvetmab (Blontress) from Aratana Pharmaceuticals; Blosozumab from Eli Lilly and Company; BMS 962476 from Adnexus Therapeutics & Bristol-Myers Squibb; Bococizumab from & Pfizer; Brazikumab (AMG 139) from Amgen and AstraZeneca; Briakinumab from Abbott Laboratories; Brodalumab from LEO Pharma; Brolucizumab from Alcon Laboratories; Brontictuzumab from OncoMed Pharmaceuticals; Burosumab from Ultragenyx; BVX 20 from Biocon and Vaccinex; Cabiralizumab from Bristol-Myers Squibb; Cantuzumab mertansine (alternative names: C-242 DM1; C-242 May; C242 maytansinoid conjugate; huC242 maytansinoid conjugate; huC242-DM1; Monoclonal antibody C-242 DM1 conjugate; Monoclonal antibody C-242 May conjugate; Monoclonal antibody huC242-May conjugate; SB-408075) from ImmunoGen; Cantuzumab ravtansine from ImmunoGen; Caplacizumab from Ablynx NV; Carlumab from Johnson & Johnson; Carotuximab from TRACON Pharmaceuticals; Coltuximab ravtansine (alternative names: SAR3419; Anti-CD19-DM4 immunoconjugate SAR3419; huB4-DM4; Maytansin-loaded anti-CD19 mAb) from ImmunoGen; cBR96-doxorubicin immunoconjugate from Seattle Genetics; Dapirolizumab pegol (alternative names: Anti-CD40L Fab; Anti-CD40L Fab-PEG; CD40L—Fab; CDP-7657; Pegylated anti-CD40L antibody) from Biogen; UCB; CDX-0401 from Celldex Therapeutics; Cedelizumab from Ortho-McNeil; Cergutuzumab amunaleukin from Roche; Ch. 14.18 mab from United Therapeutics; Citatuzumab bogatox from Viventia Biotech; Cixutumumab from ImClone Systems Inc. and Eli Lilly; Claudiximab (IMAB362) from Ganymed Pharmaceuticals AG; Clazakizumab (alternavtive names: ALD 518; ALD518-003; BMS-645429; BMS-945429) from Alder Biopharmaceuticals; Clenoliximab (alternavtive names: Anti-CD4 monoclonal antibody IDEC 151; IDEC 151; Lenoliximab; PRIMATIZED anti-CD4 antibody IDEC 151; SB 217969) from Biogen Idec; Clivatuzumab tetraxetan (alternavtive names: hPAM4-Cide) from Immunomedics, Inc; CNTO 5 from MorphoSys and Janssen Biotech; CNTO 5825 from Centocor Ortho Biotech and Janssen Biotech; CNTO3157 from Janssen Biotech; CNTO6785 from Janssen Biotech; Codrituzumab (alternavtive names: GC-33; RG 7686; RO 5137382) from Chugai Pharmaceutical and Roche; Coltuximab ravtansine from ImmunoGen, Inc; Conatumumab from Amgen Inc; concizumab from Novo Nordisk; Clenoliximab (alternavtive names: CR6261; Anti-CD4 monoclonal antibody IDEC 151; IDEC 151; Lenoliximab; PRIMATIZED anti-CD4 antibody IDEC 151; SB 217969) from Biogen Idec; Crenezumab from Genentech; crizanlizumab (Novartis SEG101) from Novartis and Selexys Pharmaceuticals; Crotedumab from Regeneron Pharmaceuticals; CT-P19, CT-P24, CT-P25 and CT-P26 from Celltrion; Dacetuzumab from Seattle Genetics, Inc; Dalotuzumab from Merck & Co., Inc.; Dapirolizumab pegol from Biogen Idec; UCB; Dectrekumab (QAX-576 and VAK 694) from Novartis; DEDN6526A (DEDN-6526A; RG7636) from Genentech; Demcizumab and Denintuzumab mafodotin from Seattle Genetics, Inc.; Depatuxizumab mafodotin from AbbVie; Derlotuximab Biotin from Peregrine Pharmaceuticals, Inc.; Detumomab from Creative Biolabs; DFRF4539A from Genentech, Inc.; DI17E6 from EMD Serono Inc, Diridavumab (alternative names: CR-6261; JNJ-54235025; mAb CR6261; Monoclonal antibody CR6261) from Johnson & Johnson; DKN 01 (LY-2812176) from Eli Lilly, Leap Therapeutics; Domagrozumab from Pfizer; Drozitumab from Genentech; Duligotuzumab (alternative names: Anti-HER3/EGFR DAF; MEHD-7945A; RG 7597; RO-5541078) from Genentech; Dupilumab from Regeneron Pharmaceuticals; Durvalumab from MedImmune; Dusigitumab from MedImmune; Ecromeximab from Kyowa Hakko Kogyo Co/Life Science Pharmaceuticals; Edobacomab (E5; Promune-ES; Xomen-E5) from XOMA Corporation; Edrecolomab (alternative names: 1083 17-1A; 17-1A; Adjuqual; C-1; CO17-1A; M-17-1A; Monoclonal antibody 17-1A; Panorex) from Ajinomoto and Centocor; Efungumab (Mycograb) from NeuTec Pharma; Eldelumab from Bristol-Myers Squibb; Elgemtumab (LJM-716; November-6) from MorphoSys and Novartis; Elsilimomab from OPi; Emactuzumab from Genentech and Roche; Emibetuzumab from Eli Lilly & Company; Emicizumab from Chugai; Enavatuzumab from Facet Biotech Corp.; Enfortumab vedotin from Seattle Genetics Inc.; Enlimomab pegol from Boehringer Ingelheim Pharmaceuticals; Enoblituzumab (MGA271) from MacroGenics, Inc; Enoticumab from Regeneron Pharmaceuticals; sanofi-aventis; Ensituximab (NEO-101; NEO-102; NPC-1C) from Neogenix Oncology; Epratuzumab (alternative names: AMG 412; Epratucyn; hCD22; Humanised monoclonal antibody LL2; Humanized anti-CD22 monoclonal antibody IgG1; IMMU 103; IMMU LL2; LymphoCide) from Immunomedics, Erenumab (AMG 334) from Amgen Novartis; Erlizumab from Genentech; Ertumaxomab (alternative names: Anti-CD3× anti-HER-2/neu; Rexomab®; Rexomun) from TRION Pharma; Etaracizumab (Abegrin™) from MedImmune; Etrolizumab from Genentech; Evinacumab from Regeneron Pharmaceuticals, Inc.; Exbivirumab (alternative names: HBV-AB17; HBV-AB19; HBV-XTL; Hepatitis B MAb-XTL; Human anti-HBV-XTL; libivirumab; Monoclonal antibody HBV-XTL; XTL-001; HepeX B) from XTL Biopharmaceuticals; Yeda; F 598 (SAR279356) from Alopexx Pharmaceuticals; Fanolesomab (NeutroSpec™) from Palatin Technologies; Farletuzumab from Morphotek, Inc.; Fasinumab (REGN475) from Regeneron Pharmaceuticals; FB 301 from Cytovance Biologics; Fountain BioPharma; FBTA 05 (Bi20; FBTA05; Lymphomun) from TRION Pharma; Felvizumab (alternative names: HuRSV19VHFNS/VK; RSHZ19; RSV monoclonal antibody; SB 209763) from Scotgen; Ferroportin & Hepcidin mab from Eli Lilly And Company; Fezakinumab (ILV-094; PF-5212367) from Wyeth, Pfizer; FG-3019 from FibroGen, Inc.; Ficlatuzumab (AV-299) from AVEO and Biodesix, Inc.; Figitumumab (CP-751871) from Pfizer; Firivumab Celltrion. Inc; Flanvotumab (20D7; 20D7S; IMC 20D7S) from Eli Lilly; Fletikumab from ZymoGenetics and Novo Nordisk; Flu mAB (CR6261) from Janssen & NIH; Fontolizumab from PDL BioPharma; Foralumab from NovImmune SA and Tiziana Life Sciences; Foravirumab from Sanofi/Crucell; Fresolimumab from Sanofi-Aventis; Fresolimumab from Genzyme & Sanofi; Fulranumab from Johnson & Johnson; Futuximab from Symphogen; Galcanezumab (LY2951742) from Eli Lilly & Co.; Galiximab from Biogen Idec; Ganitumab from Amgen; Gantenerumab from Chugai Pharmaceutical Co., Ltd. and Hoffmann-La Roche; Gavilimomab (ABX-CBL) from Abgenix; Gemtuzumab (Mylotarg™) from Pfizer; Gevokizumab from XOMA Corporation; Girentuximab (Rencarex™) from Wilex AG; Glembatumumab (alternative names: CDX-011; CR 011 ADC; CR 011-vcMMAE; CR011; Glemba; Glembatumumab vedotin; GV) from Celldex Therapeutics Inc; Gomiliximab from IDEC Pharmaceuticals Corporation; GS 5745 from Gilead Sciences, Kyowa Hakko Kirin; GSK 1070806 from GlaxoSmithKline; GSK 2398852 from Pentraxin Therapeutics, GSK; GSK 2618960 from GlaxoSmithKline; GSK 2862277 from GlaxoSmithKline; Guselkumab (CNTO-1959) from Janssen; HuL2G7 from Galaxy Biotech LLC; Ibalizumab from Genentech; Icrucumab (IMC-18F1) from ImClone Systems Inc.; Imalumab (BAY 79-4620) from Baxalta and Shire; IMC CS4 (IMCCS4; LY-3022855) from AstraZeneca, Eli Lilly and ImClone Systems; IMC TR1 (LY3022859) from ImClone Systems and Eli Lilly; Imciromab (Myoscint™) from Centocor; Imgatuzumab from Genentech/Roche; IMGN529 from ImmunoGen Inc; Inclacumab from Genentech/Roche; Indatuximab ravtansine from Biotest AG; Indusatumab vedotin from Takeda Oncology; Inebilizumab from MedImmune, LLC; Inolimomab from Orphan Pharma International; Inotuzumab ozogamicin from Pfizer and UCB; Intetumumab from Centocor, Inc.; Iomab-B from Actinium Pharmaceuticals; Iratumumab from Medarex, Inc.; Isatuximab (SAR-650984) from Sanofi-Aventis; istiratumab (MM-141) from Merrimack; J 591 Lu-177 from BZL Biologics LLC; KB 004 from KaloBios Pharmaceuticals; KD 247 from Kaketsuken; Keliximab from Biogen IDEC Pharmaceuticals, SKB; KHK6640 from Kyowa Hakko Kirin, Immunas Pharma; Labetuzumab (CEA-Cide) from Immunomedics, Inc.; Lambrolizumab (alternative names: Anti-PD-1 monoclonal antibody—Merck; Humanised monoclonal IgG4 antibody against PD-1—Merck; Keytruda; Pembrolizumab; MK-3475; SCH-900475) from Merck & Co; lampalizumab from Roche; Lanadelumab from Dyax Corp; Landogrozumab (LY-2495655) from Eli Lilly & Co.; Laprituximab emtansine from ImmunoGen; Lebrikizumab from Genentech; Lemalesomab from Creative Biolabs; Lendalizumab from Alexion Pharmaceuticals; Lenzilumab from KaloBios Pharmaceuticals Inc.; Lerdelimumab (CAT-152) from Cambridge Antibody Technology; Lexatumumab from HGS through a collaboration with Cambridge Antibody Technology; LFG316/Tesidolumab from Morphosys AG & Novartis AG; Libivirumab from XTL Biopharmaceuticals; Yeda; Lifastuzumab vedotin from Genentech/Roche; Ligelizumab from Novartis Pharma AG; Lilotomab satetraxetan from Nordic Nanovector; Lintuzumab (HuM195/rGel) from Seattle Genetics, Lirilumab from Bristol-Myers Squibb; Lodelcizumab from Novartis; Lokivetmab from Zoetis; Lorvotuzumab mertansine from Bristol-Myers Squibb; Lucatumumab from Novartis Pharmaceuticals Corp.; Lulizumab pegol from Bristol-Myers Squibb; Lumiliximab (alternative name IDEC-152, P5E8) from Biogen IDEC Pharmaceutical; Lumretuzumab from Genentech/Roche; LY 2928057, LY 3016859, LY2382770, LY2812176 and LY3015014 from Eli Lilly; MabVax/SKCC from MabVax Therapeutics; MAdCAM Mab (SHP 647) from Pfizer; Mapatumumab from Cambridge Antibody Technology (CAT) and Human Genome Sciences, Inc. (HGS); Margetuximab from Merck, MacroGenics, Inc.; Maslimomab from Creative Biolabs; Matuzumab from Merck Serono and Takeda Pharmaceutical; Mavrilimumab from Zenyth Therapeutics, MedImmune; MB-003 (alternative name: c13C6, h13F6 and c6D8) from National Microbiology Laboratory; MBL-HCV1 from MassBiologics; MCS110 from Novartis; MEDI 0639, MEDI 1814, MEDI 3617, MEDI 4212, MEDI 4893, MEDI 4920, MEDI 5117, MEDI 547, MEDI 565 (AMG-211 from Amgen), MEDI-570, MEDI 6469, MEDI 7814, MEDI 8897, MEDI 8968, MEDI-0680/AMP 514, MEDI-573 and MEDI-575 from MedImmune; Metelimumab from Genzyme; MFGR 1877S from Genentech and Roche; MHAA 4549A/MHAA-4549A; RG 7745 from Roche; Milatuzumab from Immunomedics, Inc; Minretumomab (CC49) from Creative Biolabs; MINT 1526A from Genentech; Mirvetuximab soravtansine (IMGN853; IMGN-853; M9346A-sulfo-SPDB-DM4) from ImmunoGen; Mitumomab (Anti-idiotype cancer vaccine—ImClone Systems/Merck KGaA; BEC-2; IMC-BEC2; LuVax; MelVax; Monoclonal antibody BEC-2) from ImClone Systems; MM 111, MM-121, MM-131, MM-151, MM-302 and MM-310 from Merrimack Pharmaceuticals, Inc; Mogamulizumab from Amgen; Monalizumab (Anti-NKG2A; IPH-2201; NN-8765; NNC 0141-0000-0100) from Innate Pharma and Novo Nordisk; MOR103 from Morphosys AG & GSK; Morolimumab from Creative Biolabs; Motavizumab (Numax) from MedImmune; Moxetumomab pasudotox from AstraZeneca and MedImmune; Nacolomab tafenatox (C242 Fab-SEA; LS 4565; PNU 214565; PNV 214565) from Pharmacia Corporation; Namilumab from Takeda Pharmaceuticals International GmbH; Naptumomab estafenatox (ABR-217620, ANYARA, TTS CD3) from Active Biotech AB; Naratuximab emtansine from ImmunoGen; Narnatumab from ImClone Systems; Navicixizumab (OMP-305B83) from OncoMed Pharmaceuticals; Navivumab (CT-P27═CT-P22+CT-P23) from Celltrion; Nebacumab from Centocor; Neihulizumab (AbGn-168H) from AbGenomics International Inc; Nemolizumab (CIM331) from Roche; Nerelimomab from Chiron Corporation, Celltech Group; Nesvacumab from Regeneron Pharmaceuticals; NN8209 & NN8210 from Argos Therapeutics Inc, Novo Nordisk; NN8555 from Janssen Biotech and Novo Nordisk; nofetumomab merpentan from Poniard Pharmaceuticals; Ocaratuzumab from Hoffmann-La Roche's subsidiary Genentech; Ocrelizumab from Roche; Odulimomab (afolimomab. ANTILFA®) from Pasteur-Merieux; Olokizumab from R-Pharm and UCB; Onartuzumab from Genentech, Inc; onclacumab from Creative Biolabs; Ontuxizumab from Morphotek and Ludwig Institute for Cancer Research; Opicinumab (BIIB033) from Biogen; Oportuzumab monatox (Proxinium; VB-4847; VB-845; VB4-845; Vicinium) from Eleven Biotherapeutics and Viventia Biotechnologies; Oregovomab (CA125) from AltaRex Corp.; Oregovomab (CA125) from AltaRex Corp. and Quest Pharmatech; Orticumab (BI-204; MLDL 1278A; RG 7418) from BioInvent International and Genentech; Otelixizumab from Abbott Laboratories, Otlertuzumab from Emergent BioSolutions; Oxelumab from Genentech/Roche; Ozanezumab (GSK1223249) from GlaxoSmithKline; Ozoralizumab from Pfizer Inc and Ablynx NV; Pagibaximab (A110; BSYX-A110; HU 96110) from Biosynexus; Pamrevlumab from FibroGen; Pankomab (GlycoOptimised IgG1 antibody—Glycotope; GT-MAB 2.5-GEX; Anti-TA-MUCI monoclonal antibody—Glycotope; PankoMab-GEX) from Glycotope; Panobacumab (AERUMAB 11; AR 101 (anti-Pa mAb); AR-101) from Aridis Pharmaceuticals; Parsatuzumab from Genentech/Roche; Pascolizumab (Anti-IL-4 monoclonal antibody—GlaxoSmithKline; Anti-IL-4 monoclonal antibody—Protein Design Labs; Anti-interleukin-4 monoclonal antibody—GlaxoSmithKline; Anti-interleukin-4 monoclonal antibody—Protein Design Labs; SB 240683) from GlaxoSmithKline; Pasotuxizumab from Micromet Inc, Amgen and Bayer HealthCare Pharmaceuticals; Pateclizumab from Genentech/Roche; Patritumab (AMG-888; U3-1287) from Amgen; U3 Pharma; Pemtumomab (R 1549; Monoclonal antibody HMFG1 yttrium 90 labelled; Pemtumomab; R1549; Theragyn; Yttrium 90 labelled monoclonal antibody HMFG1) from Cancer Research UK; Perakizumab from Genentech/Roche; Pexelizumab (5G1.1-SC; Anti-CS monoclonal antibody 5G1-1-SC; h5G1.1-scFV; Monoclonal antibody 5G1.1-SC; Short-acting monoclonal antibody 5G1.1) from Stanford University; PF-04605412 from Pfizer; Pidilizumab (CT-011; MDV 9300) from CureTech; Pinatuzumab vedotin from Genentech; PINTA 745 from Amgen; Pintumomab from Creative Biolabs; Placulumab from Teva Pharmaceutical Industries, Inc; Plozalizumab from Takeda Pharmaceuticals International Co; Pogalizumab from Roche/Genentech Inc; Polatuzumab vedotin from Genentech/Roche; Ponezuma from Pfizer; ponezumab from Pfizer and Rinat Neuroscience; Prezalizumab from Creative Biolabs; Priliximab from Centocor; Pritoxaximab (TAB-896) from Creative Biolabs; Pritumumab (ACA 11; CLN-IgG; CLNH 11; Monoclonal antibody ACA 11) from Nascent Biotech; PRO 140 from Cytodyn Inc; PSMA ADC from Peregrine Pharmaceuticals; Quilizumab from Genentech; Rabies mAB from Janssen and Sanofi; Racotumomab (Vaxira) from Center of Molecular Immunology; Radretumab from Philogen; Rafivirumab (CR57) from Crucell; Ralpancizumab from Pfizer; Raxibacumab from GlaxoSmithKline; Refanezumab from GlaxoSmithKline; Regavirumab from Teijin; REGN 1154 from Regeneron Pharmaceuticals and Sanofi; REGN 1400 from Regeneron Pharmaceuticals; REGN 1908 1909 from Regeneron Pharmaceuticals; REGN 2009 from Regeneron Pharmaceuticals; REGN 728 from Regeneron Pharmaceuticals; REGN 846 from Regeneron Pharmaceuticals; Reslizumab (Cinqair (US), Cinqaero (EU)) from Teva Pharmaceuticals; AMG 282 (RG 6149) from Amgen; RG 7212 from Roche; RG 7356 from Chugai Biopharmaceuticals and Roche; RG 7600 from Genentech; RG 7636 (DEDN-6526A) from Genentech; RG 7652 from Genentech and Roche; RG 7716 from Roche; RG 7841 from Genentech; RG 7882 (D-4064A; DMUC 4064A) from Genentech; Rilotumumab from Amgen and Astellas Pharma; rinucumab (REGN2176-3) from Regeneron Pharmaceuticals; Risankizumab (ABBV 066; BI-655066) from AbbVie; Boehringer Ingelheim; RN-307 from Labrys Biologics Inc.; RN6G/PF-04382923 from Pfizer; Robatumumab from KaloBios Pharmaceuticals; Roledumab from Merck & Co; Schering-Plough; Romosozumab (AMG 785) from Amgen; Rontalizumab from Chugai Pharmaceutical, Genentech; Rovalpituzumab tesirine from LFB Biotechnologies; Rovelizumab (LeukArrest; Hu23FG2) from Icos; Ruplizumab from AbbVie; Sacituzumab govitecan from Biogen; Samalizumab (ALXN 6000) from Alexion Pharmaceuticals; SAN 300 from Biogen Idec, Salix Pharmaceuticals; Sapelizumab from Alexion Pharmaceuticals; The Leukemia & Lymphoma Society; SAR 156597 from sanofi-aventis; SAR 228810 from Sanofi; SAR 252067 from Kyowa Hakko Kirin and Sanofi; SAR 566658 from ImmunoGen and Sanofi; SAR 113244 from Sanofi; SAR153191 REGN88 from Sanofi and Regeneron; Sarilumab from Sanofi and Regeneron Pharmaceuticals, Inc; Satumomab pendetide (CYT 103; Indium 111In-satumomab pendetide; OncoScint CR/OV; OncoScint CR103; OncoScint OV103) from Cytogen Corporation; seribantumab (SAR256212) from Merrimack; Setoxaximab from Chugai Pharmaceutical; Sevirumab from Novartis; SGN-CD70A from Seattle Genetics; SGN-LIV1A from Seattle Genetic; Sibrotuzumab from Novartis; Sifalimumab from MedImmune; Simtuzumab (GS 6624) from Gilead; Siplizumab from Boehringer Ingelheim; Sirukumab (CNTO-136) from Johnson & Johnson; Sofituzumab vedotin (RG7458) from Genentech; Solanezumab from Eli Lilly; Solitomab (AMG 110) from Amgen; Sonepcizumab (ASONEP; iSONEP; LT-1009; Sonepcizumab/LT1009; Sphingomab™) from Lpath and Pfizer; Sontuzumab from Lpath and Pfizer; Stamulumab (Anti-GDF-8 antibody; Anti-myostatin antibody; MYO 29; MYO-029) from Wyeth; STX-100 (BG-00011; STX-100) from Biogen; Sulesomab (LeukoScan) from Immunomedics; Suptavumab (REGN-2222; SAR-438584) from Regeneron Pharmaceuticals and sanofi; Suvizumab from Creative Biolabs; Tabalumab from Eli Lilly and Company; Tacatuzumab tetraxetan (AFP-Cide) from Immunomedics Inc.; Tadocizumab from Wyeth Pharmaceuticals; Talizumab from Houston-based Tanox; TALL-104 (ABIO-0501) from Abiogen Pharma; Tamtuvetmab from Yamanochi Pharma America, Inc; Tanezumab from Pfizer and Eli Lilly; Taplitumomab paptox (Tactress) from Aratana Therapeutics; Tarextumab from OncoMed and GlaxoSmithKline; TCN 202 from Theraclone Sciences; TCN-032 from Theraclone Sciences; Tefibazumab from University of Minnesota; Telimomab aritox from Inhibitex; Tenatumomab from Sigma-Tau; Teneliximab from Creative Biolabs; Teplizumab from MacroGenics, Inc/Eli Lilly; Teprotumumab from Genmab and Roche; Tetulomab from Norwegian company Nordic Nanovector ASA; Tezepelumab (AMG 157) from Amgen; AstraZeneca; MedImmune; TF2 (DOCK-AND-LOCK™, or DNL™) from Immunomedics, Inc.; TGN1412 (Anti-CD28 monoclonal antibody—TeGenero; CD28-SuperMAB™; TGN-1412) from TeGenero; Thravixa (AVP 21D9) from Avanir Pharmaceuticals; Emergent BioSolutions; Ticilimumab (tremelimumab) from pfizer/MedImmune; Tigatuzumab from Daiichi Sankyo Company; Tildrakizumab from Merck; Timolumab from TeGenero Immuno Therapeutics; Tisotumab vedotin from Genmab; TOL 101 from Tolera Therapeutics, Inc.; Toralizumab from IDEC Pharmaceuticals Corporation; Tosatoxumab from Biotie Therapies Corp; Tovetumab (Anti-PDGFRa MAb—MedImmune; MEDI-575) from MedImmune; Tralokinumab from MedImmune, Astrazeneca; TRBS07 from MedImmune; TRC 105 from TRACON Pharmaceuticals, Inc; Tregalizumab (BT-061) from Biotest AG, abbVie; Trevogrumab (REGN-1033; SAR-391786) from Regeneron Pharmaceuticals and Sanofi; Trevogrumab/REGN-1033; SAR-391786 from Regeneron Pharmaceuticals; Tucotuzumab celmoleukin (EMD-273066; huKS-IL2; KS-IL2; KS-interleukin-2) from EMD Lexigen and Merck KGaA; Tuvirumab (Hepatitis-B-MAb; Human anti-Hep B; OST 577; Ostavir; Ostavir human anti-hepatitis B antibody) from Novartis; U3 1565 from Amgen, U3 Pharma and Daiichi Sankyo Company; UB-421 from United Biomedical Inc; Ublituximab (1303; EMAB-6; LFB-R603; R603; TG-1101; TG-1303; TGTX-1101; Utuxin) from LFB Biotechnologies and TG Therapeutics Inc; ublituximab from TG Therapeutics Inc; Ulocuplumab from Bristol-Myers Squibb; Urelumab (BMS-663513) from Bristol-Myers Squibb; Urtoxazumab (Anti-verotoxin of 0-157; TMA-15) from Teijin Pharma; Utomilumab from Pfizer; Vadastuximab talirine from Seattle Genetics; Vandortuzumab vedotin (Anti-STEAP1-vc-MMAE; DSTP-3086S; RG-7450) from Genentech; vantictumab from OncoMed Pharmaceuticals Inc; Vanucizumab from Genentech/Roche; Vapaliximab from EMD Lexigen; Merck KGaA; Varlilumab from Celldex Therapeutics; Vatelizumab (GBR 500, SAR 339658) from Glenmark Pharmaceuticals S.A. and Sanofi; VB4-845 from Viventia Bio, Inc; Veltuzumab from BioTie Therapies; Vepalimomab from Immunomedics, Inc; Vesencumab from BioTie Therapies; VGX 100 from Vegenics, Ceres Oncology; Opthea; Visilizumab (Nuvion) from PDL BioPharma Inc.; Vobarilizumab (ALX-0061) from Ablynx; Volociximab (M200) from Abbott Biotherapeutics Corp; Biogen Idec; National Cancer Institute (USA); OphthoTech Corporation; PDL BioPharma, AbbVie; vorsetuzumab mafodotin from Seattle Genetics; Votumumab (HumaSPECT®) from Organon Teknika; VX 15 from Teva Pharmaceutical Industries; Vaccinex; Xentuzumab (BI 836845) from Boehringer Ingelheim; XmAb 5871XmAb 7195 and XmAb®2513 from Xencor; AMG 729 from Amgen; XmAb5574 (MOR00208, MOR208, anti-CD19 MAb XmAb5574; anti-CD19 MoAb XmAb5574; MOR-00208; MOR-208; XENP-5574) from MorphoSys and Xencor; XOMA 213 (LFA102) from Novartis; XOMA; XOMA 3AB from XOMA and National Institute for Allergy and Infectious Diseases; Zalutumumab (HuMax-EGFr) from Genmab; Zanolimumab from Genmab; Zatuximab from Creative Biolabs; ziralimumab from Creative Biolabs; ZMAb (mixture of three mouse mAbs: m1H3, m2G4 and m4G7) from National Microbiology Laboratory; Zmapp (c13C6 from MB-003 and two chimeric mAbs from ZMAb, c2G4 and c4G7) from National Microbiology Laboratory and Mapp Biopharmaceutical, Inc; Zolimomab aritox (Anti-CD5 monoclonal antibody-ricin-chain-A conjugate; Anti-CD5 ricin A chain immunotoxin; CD5 Plus; CD5+; Muromonab; Orthozyme CD5 Plus; Xomazyme CD5 Plus; XZ-CD5) from Ortho-McNeil and XOMA; anti-CD8 mAb (Cytolin®) from CytoDyn, Inc; 131I-chTNT-1/B (Cotara®) from Peregrine Pharmaceuticals; PD 360324 (formerly PD-360324) from Pfizer; GBR 830 from Glenmark Pharmaceuticals S.A.; Dorlimomab aritox from Medarex/Houston Biotechnolgy.

Biosimilars that are not approved are Adalimumab [ABP501 (Amgen), GP2017 (Novartis)], Atezolizumab [RG7446 (Roche)], Bevacizumab [ABP 215 (Amgen)], Evolucumab [AMG 145 (Amgen)] Infliximab [TNFmab (LGLS), CT-P13 (Celltrion), ABP 710 (Amgen)], Obinutuzumab [GA101 (Roche)], Rituximab [ABP 798 (Amgen), GP2013 (Novartis), TL011 (Teva/Lonza)], Trastuzumab [ABP 980 (Amgen)].

Patent 2023
Not available on PMC !

Example 1

Cholestosomes Applied to an Oral Protein or Peptide

Steps in the preparation of an oral drug molecule, oral protein, oral peptide, oral gene or construct of genetic material (the term “molecule” used to define one or all of these hereinafter in this example) and testing of said molecule for absorption in Caco2 cells are as follows:

    • 1. Prepare cholesteryl esters and composition elements for encapsulation;
    • 2. Obtain molecule targeted for encapsulation and test for purity and stability at 37 C-45° C.;
    • 3. Optimize components of cholesteryl esters in the cholestosome mixture using a computer model of interactions between esters and molecule to achieve maximum cholestosome loading of said molecule;
    • 4. Prepare cholestosome encapsulated molecule and include Fluorescein Isothicyanate (FITC) label for purposes of conducting biological studies including microscopy, said FITC label not a component of product intended for human testing or therapeutic use;
    • 5. Test FITC labeled molecule in Caco2 cell monolayer and collect chylomicron encapsulated FITC-cholestosome-molecules, now defined as incorporated into cholestosome loaded chylomicrons;
    • 6. Expose test cells to chylomicrons containing FITC-cholestosome-molecules and determine uptake of FITC-molecule by these test cells. While MCF-7 cells are often chosen because of their ease of use and relevance to cancer, workers will realize that testing many different cell lines for uptake in the case where cellular targeting is a subject of scientific investigation, as intracellular uptake of many bioactive molecules is novel and unanticipated from prior art in the field of drug delivery;
    • 7. Define, using microscopy, whether intracellular FITC-molecule is contained in endosomes or it is free in cytoplasm; Typical time points for imaging of endosomes is approximately 24 hr after the initial exposure.
    • 8. Define, using Western Blot expression of GLUT-transporters, whether the intracellular action of molecule is expressed as cell surface mediated uptake of additional substances or molecules controlled by actions of intracellular molecule;
    • 9. Prepare enteric coated pH 5.5 release capsule with FITC-molecule-cholestosomes for administration to an animal or human (the preferred oral administration form for acid labile proteins, peptides, genes or live constructs such as vaccines or viruses);
    • 10. Administer oral dosage form of FITC-molecule-cholestosome to mouse or human;
    • 11. In the experiments of step 10. Administer same dose of FITC-molecule-cholestosome orally as FITC-molecule-cholestosomes in enteric coated capsule, IV; administer same dose of FITC-molecule-cholestosome IV;
    • 12. Compare effects on a biomarker of molecule effect after administration of FITC-molecule-cholestosome between the three modes:
      • a. oral as FITC molecule cholestosomes which result in lymphatic chylomicrons loaded with FITC molecule cholestosomes, vs.
      • b. Intravenously administered as FITC-molecule cholestosomes which would not form chylomicrons and which may or may not facilitate absorption of molecules into cells vs.
      • c. FITC-molecule intravenously and not in cholestosomes and therefore not in chylomicrons) at the same dose of molecule for each mode.
    • 13. Using fluorescence microscopy, examine biodistribution of FITC-molecule in tissues taken from mice given the 3 modes of administration (a vs. b vs. c) in step 12 above. Tissues to be examined post mortem include liver, kidney, brain, pancreas, duodenum, ileum, colon, spleen, muscle, abdominal fat. It is anticipated that high intracellular concentrations of molecules can be achieved by this method, and that distribution in cells would be uniform instead of confined to endosomes or digestive vacuoles. Measurement of effect of molecule would be correlated with intracellular distribution profile and a measure of overall bioactivity vs. dose would be derived from the effect measurements.

FIG. 12. Structure of a Cholestosome with Encapsulated Protein

Shown in FIG. 12 is a loaded cholestosome structural model with encapsulated insulin as an example. It is assumed that these ideal lipid particles are aggregated into clumps of lipid, with raw production sizes of clumps of about 1000-5000 nm. Extrusion of these large particles down to uniformly sized 250 nm particles is a preferred embodiment. This can be effected using a standard high pressure extrusion device, well known in the art.

Example 2

Preliminary Studies of Cholesteryl Esters Considered for Use in Manufacture of Cholestosomes.

Define the melting point of each ester. By way of example, myristate has a melt transition temperature of 65 degrees centigrade, above which temperature the solid component melts.

The formulation objective was to use cholesteryl esters at temperatures below the melt temperature. (Consistent with liposome preparations), and considering that proteins begin to denature at temperatures about 40 degrees centigrade.

Further temperature testing was carried out on the chosen esters myristate and laurate. After the organic solvent was completely removed from the lipids in the rotovap, a DSC was conducted, which showed two melting temperatures, one approximately 60 degrees centigrade and a second melt at a higher Temperature.

On the basis of these findings and considering the stability of the proteins and peptides being formulated, the operating temperature of encapsulation procedures was kept between 45 and 55 degrees centigrade.

Selection of Cholesteryl Esters and Compositions for Encapsulation of Molecules in Cholestosomes

Selection of specific cholesteryl esters for the proper formation of encapsulating vesicles involves a novel approach and a computerized molecular model. Properties of the cholesteryl esters and the interaction between the target molecule for encapsulation and the inner hollow core of vesicle formed from the esters around the molecule can be used to define favorable cholestosome-molecule properties such as loading, either on a volume to volume basis or a weight to weight basis.

Cholestosome Vesicles prepared without molecules loaded inside, have an average diameter of 250 nm after extrusion. The size can be modified as a function of size of cholesteryl esters, mole ratios in mixtures of different cholesteryl esters, filtration techniques, sonication times, and temperature.

    • a. Cholesteryl esters claimed that form cholestosomes include: Any cholesteryl ester produced from cholesterol and a fatty acid, where a fatty acid includes both saturated and unsaturated fatty acids including but not limited to the following compounds in Table 2 below:

TABLE 2
Listing of fatty acids used to form cholesteryl esters, characterized by
structure, ratio of Carbons to number of double bonds the ratio C:D and
position of the double bonds
Position
Common of
name-double
AcidChemical structureC:Dbond
MyristoleicCH3(CH2)3CH═CH(CH2)7COOH14:1n-5
PalmitoleicCH3(CH2)5CH═CH(CH2)7COOH16:1n-7
SapienicCH3(CH2)8CH═CH(CH2)4COOH16:1n-10
OleicCH3(CH2)7CH═CH(CH2)7COOH18:1n-9
ElaidicCH3(CH2)7CH═CH(CH2)7COOH18:1n-9
VaccenicCH3(CH2)5CH═CH(CH2)9COOH18:1n-7
LinoleicCH3(CH2)4CH═CHCH2CH═18:2n-6
CH(CH2)7COOH
LinoelaidicCH3(CH2)4CH═CHCH2CH═18:2n-6
CH(CH2)7COOH
α-LinolenicCH3CH2CH═CHCH2CH═18:3n-3
CHCH2CH═CH(CH2)7COOH
ArachidonicCH3(CH2)4CH═CHCH2CH═20:4n-6
CHCH2CH═CHCH2CH═
CH (CH2)3COOHNIST
EicosapentaenoicCH3CH2CH═CHCH2CH═20:5n-3
CHCH2CH═CHCH2CH═
CHCH2CH═CH(CH2)3COOH
ErucicCH3(CH2)7CH═CH(CH2)11COOH22:1n-9
DocosahexaenoicCH3CH2CH═CHCH2CH═ 22:6n-3
CHCH2CH═CHCH2CH═
CHCH2CH═CHCH2CH═
CH(CH2)2COOH
CaprylicCH3(CH2)6COOH 8:0
CapricCH3(CH2)8COOH10:0
LauricCH3(CH2)10COOH12:0
MyristicCH3(CH2)12COOH14:0
PalmiticCH3(CH2)14COOH16:0
StearicCH3(CH2)16COOH18:0
ArachidicCH3(CH2)18COOH20:0
BehenicCH3(CH2)20COOH22:0
LignocericCH3(CH2)22COOH24:0
CeroticCH3(CH2)24COOH26:0

In the above table, C is the number of carbons and D is the number of double bonds in the alkyl chain of the fatty acid molecule, C:D ratio of the molecule as displayed. The position of the double bond is expressed as the number of carbon after the carbonyl, which is position 1 in the chain. In this manner, n-5 for myristoleic acid means that the double bond is found at position 14-5=position 9

The term “cholesterol” is used in the present invention to describe any cholesterol compound which may be used in the preparation of the cholesteryl esters which may be used to form cholestosomes pursuant to the present invention. The term “cholesterol” and includes the molecule identified as cholesterol itself, and any related cholesterol molecule with additional oxygenation sites (“an oxygenated analog of cholesterol”) as in for example (but not limited to), 7-ketocholesterol, 25-hydroxy cholesterol, 7-beta-hydroxycholesterol, cholesterol, 5-alpha, 6-alpha epoxide, 4-beta hydroxycholesterol, 24-hydroxycholesterol, 27-hydroxycholesterol, 24,25-epoxycholesterol. Oxysterols can vary in the type (hydroperoxy, hydroxy, keto, epoxy), number and position of the oxygenated functions introduced and in the nature of their stereochemistry. These various cholesterols may be used to provide cholesterol esters which vary in solubility characteristics so as to provide some flexibility in providing a cholestosome with a neutral surface and groups which can instill hydrophilicity in the cholesterol ester molecules. The cholesterol type molecule could also include any sterol structurally based compound containing the OH necessary for ester formation such as Vitamin D.

Molar ratios claimed in beneficial formation of cholestosomes range from 0.05 to 0.95 of any pair of esters (when a pair of esters is used) listed in table 2 above. Product ratios of composition between pairs of approximately equal alkyl chain length cholesteryl esters and active molecules range from about 2:2:96 to 48:48:4, often 45:45:10 to about 2:2:96, about 40:40:20 to about 5:5:90, about 40:40:20 to about 25:25:50. It is noted that in many cholestosome formulations when two (or more) cholesteryl esters are used, the ratio may vary above or below a 1:1 ratio for the cholesteryl esters used.

Filtration techniques claimed include vacuum filtration for initial size selection and then extrusion of preparations for finer size selection.

Sonication times range from 30 min to 120 minutes. This time is presented as a range, in that centrifuge time is a variable. Optimal sonication time depends on the ability to find the optimal sonication spot in the sonicator, and at optimal timing, the solution forms a cloudy appearance and the amount of solid material should be minimal as determined at this point by visual inspection.

Temperature range during production of cholestosome vesicles is 35° C. to 45° C. when working with most of the cholesteryl esters in Table 2. Temperature is held constant (+/−5C) throughout the preparation of the vesicles. Temperature is kept below the melt temperature of any of the individual esters. By way of example, for the preparation of cholestosomes using myristate/laurate, temperature is held at 40° C.+/−5 C. Addition of small amounts of between to the mixture prior to sonication increase overall yield of cholestosomes and facilitate the production of more uniform particles.

By means of example, the following principles define the basis for choice of a component ester in a cholestosome, a means of choosing an ester or ester pair for encapsulation purposes, and rely on the disclosed physiochemical properties of the listed cholesteryl esters in Table 2:

    • 1) The esters chosen for combination should be able to arrange themselves to optimize the ester link interactions between ester pairs. This electrostatic interaction is important for orientation purposes, with the necessary hydrophobic exterior and hydrophilic center of the vesicle.
    • 2) The alkyl interactions should be able to optimize van der Waals forces.
    • 3) The sum of electrostatic interactions and the alkyl interaction van der Waals forces are fundamental properties that hold the vesicle shape and thereby retain the molecule inside. A key additional factor for stability of cholestosome vesicles includes the degree of repulsion between the dual hydrophobic ends of the esters and the aqueous component containing the molecule(s) to be encapsulated.
    • 4) The overall size of the vesicle becomes a function of the length of the alkyl chain. The increased length of the esters chosen will increase the overall hydrophobic character of the entire vesicle.
    • 5) Using smaller chain length esters will actually increase the overall hydrophilic character of the vesicle (in terms of the overall structure of each ester).
    • 6) Molecules that require more hydrophobic areas to assist in encapsulation within the vesicle could benefit from esters having longer alkyl chains.
    • 7) Molecules that are smaller and require more hydrophilic components to assist in encapsulation would benefit from ester pairs that are shorter in length.
    • 8) An additional choice is the use of unsaturated alkyl chains such as those listed in Table 2, where these fatty acids are used to prepare ester side chains for use in forming cholesteryl esters.
    • 9) The use of an unsaturated fatty acid offers an additional structural modification in the vesicle structure which incorporates additional electrostatic interactions between the aqueous and the double bond character.
    • 10) In the process of selection of esters for vesicle formation, selection of CH2 chain lengths ranging for example from 2 CH2 units but less than 27 CH2 in length result in a structure that may not be as tight, as a result of the challenges in adapting the alkyl chains to maximize their interactions in a vesicle. The cholesterol component of the vesicle wall does not change. The van der Waals interactions within CH2 units governs the flexibility of the alkyl interactions. However, for beneficial hydrophilic vesicle center, the optimal configuration in this vesicle is longer alkyl chains, meaning that larger ester molecules have greater utility for stabilizing more hydrophilic vesicle centers of the vesicle exposed to the aqueous environment in formulation stability.

FIGS. 6-7 illustrate molecular modeling diagrams by means of an example of Cholestosome vesicle matrix formation from two different pairs of cholesteryl esters selected from Table 2. In FIGS. 8-10 of the myristate-laurate matrix example chosen here, the inventors used molecular modeling to illustrate the impact on a small water soluble molecule Ceftaroline. The cholestosomes formed for Ceftaroline have composition ratios of 5:5:90 with the chosen pair of cholesteryl esters. In FIGS. 11-13, the representative peptide molecule was Insulin, a peptide of 6 kd size that is generally water soluble. In FIGS. 14-15, the cholestosome vesicle structure was applied to encapsulate bevacizumab, a representative monoclonal antibody of size approximately 150 kd. In FIG. 16 all 3 representative molecules are shown in relation to the cholestosome vesicle formed from cholesteryl esters myristate and laurate.

For ester pairs that are greater than 6 CH2 units different in length (which is defined as intermediate) it is possible to maintain ester interactions and turn the molecules in opposite directions to still have alkyl chains packed into a vesicle. This arrangement would be useful for packing in molecules that have alternating structural regions of hydrophobic/hydrophilic character, and which when incorporated into said vesicle, could be relied upon to segregate different molecule types.

The choice of ester pairs is a function of the structure of the molecule needed to be encapsulated and its ability to interact with the vesicle.

In FIGS. 8-10, an outline structure of the entire cholestosome is shown, with inserted molecule ceftaroline. Insulin is shown in FIGS. 11-13, and in FIGS. 14-15 the molecule shown is bevacizumab. In FIG. 16, the matrix is shown around Ceftaroline, insulin and bevacizumab illustrated next to each other, which nicely illustrates the relative sizes of these molecules in relationship to the size of the cholestosome matrix. All three of these molecules can be effectively encapsulated by this methodology and used in humans after oral administration. In each case there is no known effective means of oral absorption, other than as disclosed in the present invention.

Example 3

In the present invention, molecules used for the treatment of infectious diseases would be generally suitable for encapsulation into cholestosomes and used orally. Most antibiotics need to be injected intravenously (IV), as the molecules are typically hydrophilic and not otherwise orally absorbed. Thus use in cholestosomes would make enable their oral absorption. Numerous antibiotics may be used in cholestosomes according to the present invention including Antibiotics for use in the present invention include Aminoglycosides, including Gentamicin, Kanamycin, Neomycin, Netilmicin. Tobramycin, Paromomycin, Spectinomycin; Ansamycins, including Geldanamycin, Herbimycin Rifaximin and Streptomycin; Carbapenems, including Ertapenem Doripenem Imipenem/Cilastatin and Meropenem; Cephalosporins, including Cefadroxil, Cefazolin, Cephalothin, Cephalexin, Cefaclor, Cefamandole, Cefoxitin, Cefprozil, Cefuroxime, Cefixime, Cefdinir, Cefditoren, Cefoperazone Cefotaxime Cefpodoxime, Ceftazadime, Ceftibuten, Ceftizoxime Ceftriaxone, Cefepime, Ceftaroline fosamil and Ceftobiprole; Glycopeptides, including Teicoplanin, Vancomycin and Telavancin; Lipopeptipdes, including Daptomycin, Oritavancin, WAP-8294A; Macrolides, including Azithromycin. Clarithromycin, Dirithromycin, Erythromycin, Roxithromycin, Telithromycin and Spiramycin; Lincosamides, including Clindamycin and Lincomycin; Monobactams, including Aztreonam; Nitrofurans, including Furazolidone and Nitrofurantoin; Oxazolidonones, including Linezolid, Posizolid, Radezolid and Torezolid; Penicillins, including Amoxicillin, Ampicillin, Azlocillin, Carbenicillin. Cloxacillin Dicloxacillin, Flucloxacillin, Mezlocillin, Methicillin, Nafcillin, Oxacillin, Penicillin G, Penicillin V, Piperacillin, Temocillin and Ticarcillin; Penicillin combinations including Amoxicillin/clavulanate, Ampicillin/sulbactam, Piperacillin/tazobactam and Ticarcillin/clavulanate; Polypeptides, including Bacitracin, Colistin and Polymyxin B; Quinolones/fluoroquinolines, including Ciprofloxacin, Enoxacin, Gatifloxacin, Gemifloxacin, Levofloxacin, Lomefloxacin, Moxifloxacin, Nalidixic acid, Norfloxacin, Ofloxacin, Trovafloxacin. Grepafloxacin, and Sparfloxacin;

Sulfonamides, including Mafenide, Sulfacetamide. Sulfadiazine, Sulfadimethoxine, Sulfamethizole, Sulfamethoxazole, Sulfasalazine, Sulfisoxazole, Trimethoprim-Sulfamethoxazole and Sulfonamidochrysoidine; Tetracyclines, including Demeclocycline, Doxycycline, Vibramycin Minocycline, Tigecycline, Oxytetracycline and Tetracycline; Anti-mycobacterial agents, including Clofazimine, Capreomycin, Cycloserine, Ethambutol, Rifampicin, Rifabutin, Rifapentine, Arsphenamine, Unclassified including Chloramphenicol, Fosfomycin, Fusidic acid, Metronidazole, Mupirocin, Platensimycin, Quinupristin/Dalfopristin, Thiamphenicol, Tigecycline, Tinidazole and Trimethoprim.

None of these molecules are orally absorbed in the native state, and in each case oral absorption would constitute a major advantage over the current need to inject them parenterally in treatment of infectious diseases.

Examples of anti-fungal compounds for use in the practice of the art as applied to cholestosome encapsulation include but are not limited to the following miconazole, terconazole, econazole, isoconazole, tioconazole, bifonazole, clotrimazole, ketoconazole, butaconazole, itraconazole, oxiconazole, fenticonazole, nystain, naftifine, amphotericin B, zinoconazole and ciclopiroxolamine, micafungin, caspofungin, and/or anidulafungin.

Examples of anti-viral compounds for use in the practice of the art as applied to cholestosome encapsulation include but are not limited to the following Ribavirin, telaprevir, daclatasvir, asunaprevir, boceprevir, sofosbuvir, BI201335, BI1335; ACH-2928, ACH1625; ALS-2158; ALS2200; BIT-225; BL-8020; Alisporivir; IDX19368; IDX184; IDX719; Simeprevir; BMS-790052; BMS-032; BMS-791325; ABT072; ABT333; TMC435; Danoprevir; VX222; mericitabine; MK-8742, GS-5885 or a mixture thereof, interferon, Pegylated Interferon, Pegylated interferon lambda or any other suitable formulation of said interferon.

Representative examples of anti-infective preparations in cholestosomes are disclosed herein, so as to illustrate the properties of anti-infective substances in cholestosomes.

Tobramycin

A preferred embodiment illustrative of the molecules disclosed herein is tobramycin, selected from this list for preparation and testing of cholestosome encapsulated tobramycin according to the principles enumerated in Example 1. The particular preparation was designed for oral use, and for increasing the overall action of the antibiotic tobramycin against target gram negative bacteria such as Pseudomonas aeruginosa.

By way of specific example, tobramycin cholestosomes with mean diameter of 250-1,000 nm were prepared in the manner of the present invention, as described in Example 1, with cholesteryl ester selection from the esters disclosed as preferred in Example 2. Cholestosomes containing tobramycin were prepared using a novel blend of two cholesteryl esters, cholesteryl myristate and cholesteryl laurate.

Tobramycin Formulation Properties

Batch Properties

DLLS particle size: 2700 nm

Zeta Potential: −21.7

Concentration of Lipids: 1.9 mg/ml. Concentration of Tobramycin: 2.0 mg/ml

Cell exposures: MCF-7 cells (See FIG. 23)

Cholestosomes alone; No effect on growth or viability over 24 hr

FITC alone: No effect on growth or viability over 24 hr

Tobramycin Alone: 10 mcg/ml to 0.01 mcg/ml No effect on growth or viability over 24 hr

FITC Tobramycin alone: 10 mcg/ml No effect on growth or viability over 24 hr

FITC Tobramycin cholestosomes: 3.0 mcg/ml 24 hr killing, repeated, same result. Postulated 100× inside vs outside, with intracellular killing threshold similar to renal tubular lining cells.

Conclusions: Cholestosomes alone, FITC cholestosomes alone, Tobramycin alone do not kill MCF-7 cells. FITC-tobramycin on MCF-7 cells also does not harm them. However, FITC-tobramycin-cholestosomes kills at 24 hr.

No chylomicron studies conducted with FITC tobramycin cholestosomes

FIG. 23 FITC Tobramycin Cholestosomes

Comparing MCF-7 cells by bright field vs FITC fluorescence imaging shows 1) an overall successful loading of MCF-7 cells after 24 hr exposure to FITC-cholestosomes, which has been shown repeatedly in our work with cholestosomes.

In 2), this response of approximately 100 fold greater concentration of tobramycin inside MCF-7 cells is unexpected, particularly when the loading of cells by cholestosomes is compared with the general lack of intracellular loading of MCF-7 cells w % ben exposed to FITC-tobramycin alone. Low loading is the expected result, as it is well known that tobramycin does not enter most body cells, and any cell that takes up tobramycin actively is subject to the intracellular killing from tobramycin by virtue of its effect on mitochondria and cell energy supply via ATP production. This is the basis for tobramycin's well known nephro and oto toxicity.

In 3) and of great interest, when MCF-7 cells were exposed to FITC-Tobramycin-cholestosomes for 24 hr, these MCF-7 cells all died, as can be seen in the last frame at both top and bottom. The purpose here is to show how tobramycin, when it enters cells, is a general toxin to the mitochondria and when tobramycin enters even cells otherwise resistant to its intracellular effects, there is potential for intracellular uptake and harm.

Ceftaroline

By way of a specific example concerning a cephalosporin antibiotic that is not absorbed orally and is therefore currently given by IV administration only, we chose the anti-MRSA cephalosporin antibiotic Ceftaroline fosamil.

Commercially available Ceftaroline was purchased from the hospital pharmacy, and Ceftaroline cholestosomes were prepared in the manner of the present invention, as described in Example 1, with cholesteryl ester selection from the esters disclosed as preferred in Example 2. We were unable to FITC label Ceftaroline, so the batches were tested for their antimicrobial properties as the primary means of defining the efficacy of the formulation.

Test batches of cholestosomes containing Ceftaroline were prepared using a novel blend of two cholesteryl esters, cholesteryl myristate and cholesteryl laurate. The choice of cholesteryl esters for composition is made from the disclosed compounds of Example 2, although this is not meant to be limiting and if there are other suitable cholesteryl esters for formulation with ceftaroline or similar molecules, they may be permitted in this formulation.

In the specific preparation of an optimal cholestosome formulation containing Ceftaroline, any cholesterol ester may be chosen as a component of the cholestosome and be within the spirit of the invention so long as the final Zeta Potential of the cholestosome product remains neutral charged.

Ceftaroline Formulation Properties

Batch:

FITC label fraction: not done

DLLS particle size not done and not extruded

Preparation dialyzed to remove free Ceftaroline: yes, but free Ceftaroline remains in the preparation

Percent yield 13% of starting amount of lipid

Zeta Potential: Not done

Bacterial testing with the dialyzed Ceftaroline; Retains anti-MRSA action, with MIC values at least 10× lower than parent Ceftaroline. Indicates active uptake by MRSA from cholestosome preparation.

Cells: MCF-7; 400,000 cells at 24 hr in a confluent prep. MCF-7 cell Size is 2000 nm

Cholestosomes alone; No effect on MCF-7 cell growth or viability over 24 hr

FITC alone: No effect on MCF-7 cell growth or viability over 24 hr

Ceftaroline Alone: No effect on MCF-7 cell growth or viability over 24 hr

FITC ceftaroline alone; Not prepared so not done

FITC ceftaroline cholestosomes: No effect on MCF-7 cell growth or viability over 24 hr

Postulate 100× inside vs outside.

Chylomicron forming Cells: Ceftaroline was/was not tested in Caco-2 cells

Vancomycin

By way of a specific example concerning a glycopeptide antibiotic that is not absorbed orally and is therefore currently given by IV administration only, we chose the anti-MRSA glycopeptides antibiotic vancomycin.

Commercially available Vancomycin was purchased from Sigma chemical, and FITC vancomycin cholestosomes were prepared in the manner of the present invention, as described in Example 1, with cholesteryl ester selection from the esters disclosed as preferred in Example 2. The batches were fully tested against MCF-7 cells, Caco-2 cells and also tested for their antimicrobial properties against MRSA as the second primary means of defining the efficacy of the formulation.

Test batches of cholestosomes containing FITC-vancomycin were prepared using a novel blend of two cholesteryl esters, cholesteryl myristate and cholesteryl laurate. The choice of cholesteryl esters for composition is made from the disclosed compounds of Example 2, although this is not meant to be limiting and if there are other suitable cholesteryl esters for formulation with vancomycin or similar glycopeptides antibiotic molecules, they may be permitted in this formulation.

In the specific preparation of an optimal cholestosome formulation containing vancomycin, any cholesterol ester may be chosen as a component of the cholestosome and be within the spirit of the invention so long as the final Zeta Potential of the cholestosome product remains neutral charged.

Vancomycin Formulation Properties

Batch: 756, made 10-23-13

DLLS particle size 1016 nm not extruded

DLLS particle size: 800 nm extruded

Preparation dialyzed to remove free vancomycin

Percent yield <1.0% of starting amount of lipid

Zeta Potential: −13

Volume to Volume calculation:

Concentration of Lipids: 1.0 mg in 10 ml. Concentration of Vancomycin: 5000 mcg/ml

Weight to Weight calculation:

Concentration of Lipids: <1.0 mg/ml. There is free vanco in this preparation

Bacterial testing with the dialyzed version of this, which killed MRSA very well, vancomycin was approximately 10 times more active in cholestosomes than used alone.

Cells: MCF-7; 400,000 cells at 24 hr in a confluent preparation. MCF-7 cell Size is 2000 nm.

Cholestosomes alone; No effect for 24 hr

FITC alone: No effect for 24 hr

Vancomycin Alone: no effect; up to 666 mcg/ml, highest tested

FITC vanco alone; 666 mcg/ml to 41 mcg/ml: No effect for 24 hr

FITC vanco cholestosomes: No effect at 24 hr. At a vancomycin concentration of 0.83 mcg/ml from cholestosomes, FITC label study shows a very high internal vancomycin concentration in MCF-7 cells, equal to the image labeling of 666 mcg/ml, see FIG. 24. From these data it is possible to observe FITC-vancomycin concentrations 1000× inside vs outside as the effect of cholestosome loading.
Microbiological Activity against 4 different MRSA Strains: MIC values of cholestosome vancomycin were equal to vancomycin or in some cases up to 10× lower than vancomycin alone
FIG. 24. FITC Vancomycin Cholestosomes.
As shown in FIG. 24, vancomycin has some effective properties inside cells. This figure shows vancomycin entry into MCF-7 cells at 24 hr. In this series of experiments, the original starting concentrations of vancomycin were between 41 and 666 mcg/ml. In each column, the top image is the fluorescence, the bottom is the darkfield. Displayed out of this FITC-vancomycin series in column B is FITC vancomycin at 83 mcg/ml. In column A, FITC-vancomycin-cholestosomes at 0.83 mcg/ml produced greater uptake at a value 100 fold lower than the vancomycin concentration in FITC-vancomycin column B. The fluorescence image in column A shows more loading than the image in column B, indicating that the MCF-7 cellular loading ratio is more than 100× greater with FITC-vancomycin-cholestosomes. When the extracellular concentration of FITC-vancomycin was increased to 666 mcg/ml in column C, these cells are still not loading as high as those in column A. The fluorescence data on loading of FITC vancomycin is therefore approaching 1000× greater when cholestosomes are used. It should be noted that there was no effect of high amounts of FITC vancomycin cholestosomes on these MCF-7 cells. The images in the three panels confirm our observed penetration of FITC vancomycin cholestosomes inside cells. Not only are the cell membranes dramatically more concentrating FITC vancomycin in this image, but the cytoplasm of these cells is loaded with FITC vancomycin as well. This is after only 24 hr exposure, confirming that cholestosomes load massively more vancomycin in the cells.
Chylomicron forming Cells: Vancomycin was not tested in Caco-2 cells
Conclusion: Vancomycin alone. FITC vancomycin, FITC-vancomycin cholestosomes, all at high concentrations, do not harm MCF-7 cells. Vancomycin retains its antimicrobial action on MRSA organisms when encapsulated into cholestosomes.

Example 4

Specific Steps in Preparation of Insulin in Cholestosomes.

By way of specific example, Regular Insulin (Humulin, Lilly) cholestosomes were prepared in the manner of the present invention, as described in Example 1, with cholesteryl ester selection from the esters disclosed as preferred in Example 2. Test batches of cholestosomes containing insulin were prepared using a novel blend of two cholesteryl esters, cholesteryl myristate and cholesteryl laurate. The choice of cholesteryl esters for composition is made from the disclosed compounds of Example 2, although this is not meant to be limiting and if there are other suitable cholesteryl esters for formulation with insulin or similar molecules, they may be permitted in this formulation.

In the specific preparation of an optimal cholestosome formulation containing insulin, any cholesterol ester may be chosen as a component of the cholestosome and be within the spirit of the invention so long as the final Zeta Potential of the cholestosome product remains neutral charged. The two esters chosen for insulin using the principles disclosed in Example 2 were myristate and laurate, which differ in ester chain length by only two CH2 units, and when combined as disclosed provide a large internal hydrophilic center to the cholestosome vesicle prepared in this manner.

Optimizing the amounts of specific cholesteryl esters is fully within the scope of the present invention for purposes of producing an optimal loading and release profile of the insulin containing cholestosome for in vivo use.

Initial starting conditions are based on a 1:1 molar ratio of laurate/myristate, while the final ratio in the formulation of the various insulin molecules is not limited to that. Each insulin molecule will need to be examined in terms of its own structure and the molecular interactions with the putative cholesteryl esters as a means of final selection of cholesteryl esters for optimal loading. In the event the optimal final formulation requires a more hydrophobic area, then a longer chain fatty acid ester is used, as the entire proportion of hydrophobic space will change based on the length of the alkyl chain. If we need more centralized hydrophilic structures for certain insulin molecules, the intention is to use one of the oxysterols such as 7-keto cholesterol made into an ester with fatty acids.

The encapsulation molecule is insulin, to include but not limited to regular insulin, NPN insulin, insulin glargine, insulin degludec or any formulation of insulin prepared and shown to be bioactive in testing for insulin effects. Steps in preparation of the cholestosome formulation included the following:

Prepare a water bath to appropriate temperature (35-45) C; Place aqueous insulin prep (1 mg/ml) in PBS into water bath to equilibrate temperature; Weigh out equimolar amounts of cholesteryl laurate and cholesteryl myristate (75 mg each) and place in round bottom flask; Add organic solvent (diethyl-ether) to dissolve esters; swirl by hand to dissolve; Place round bottom flask on rotovap and spin for five minutes; Place flask attached to rotovap in water bath; turn on vacuum and spin for 10 minutes; Turn off rotovap and vacuum and add aqueous to round bottom flask; Add Tween; Spin on rotovap (no vacuum) for twenty minutes in water bath; Sonicate for 10 to 30 minutes until cloudy prep is formed and minimum solid is found in flask; Remove from sonication and filter using vacuum filtration; Save the cloudy filtrate; Extrude filtrate; Store preparation in refrigerator until use.

FIG. 17 Caco-2 Studies in Transwell; Formation of Chylomicrons

Employ Corning Transwell Permeable Supports in a 12 well format with a pore size of 0.4 um. Begin each Transwell experiment after Caco2 cells are 80-90% confluent in a 75 cm2 flask. The cells are trypsinized as usual and counted using a hemocytometer. The cell concentration is adjusted to 2×105 cells/mL with culture media. The wells of the Transwell plate are seeded with 0.5 mL of the cell dilution. Media in a volume of 1.5 ml is added to the basolateral side. The cells are incubated as above and the media is changed every other day for 19-20 days. At this time the caco2 cells are differentiated and ready for treatment. All media from the upper and lower chambers of the Transwell plate is removed and both chambers are washed 3 times with PBS containing 1 mg/mL glucose (PBSG). PBSG is added to the upper and lower chamber of the plate and incubated for 1 hr. All PBSG is removed from both chambers and 1.5 mL of phosphate buffered saline with added glucose (PBSG) is added to the lower chamber.

The upper chamber receives 0.5 mL of the appropriate treatment (PBSG alone, FITC cholestosomes in PBSG or FITC-insulin cholestosomes in PBSG). All wells have a final concentration of 1.0 mg/mL glucose. The plate is then incubated for 2 hours. All solution is removed and viewed on the Zeiss confocal LSM 510 microscope.

FIG. 18 is an image of the apical side of the Transwell plate at 1 hr after exposure to FITC labeled insulin (i.e. not in a cholestosome)

In FIG. 19, the basolateral fluid is imaged on the confocal microscope. In this case the apical side had only PBS buffer and media (no FITC, no insulin, no cholestosomes) There is no visible fluorescence and this image represents image background for the basolateral images to follow.

In FIG. 20, the image is following FITC cholestosomes applied to the apical side for 2 hr, which shows small chylomicrons containing FITC in the basolateral fluid. It is important to note that this fluid was imaged after collection of the basolateral fluid and does not reflect microscopy across the entire preparation. Hence, these chylomicrons were clearly formed by the Caco2 cells.

In FIG. 21, the image is following FITC insulin cholestosomes applied to the apical side for 2 hr, which shows overall larger chylomicrons containing FITC-insulin in the basolateral fluid. It is important to note that this fluid was imaged after collection of the basolateral fluid and does not reflect microscopy across the entire preparation. Hence, these FITC insulin containing chylomicrons were clearly formed by the Caco2 cells.

Summary of Cholestosome Insulin Formulation Properties

Batch: 733 and pooled batch

DLLS particle size 1700 nm not extruded

DLLS particle size: 149-274 nm after extrusion

Percent yield 13.0% of starting amount of lipid

Zeta Potential: −24.7

Loading ratio: Loading weight to weight for regular insulin was 13% insulin to 87% sum of cholesteryl myristate plus cholesteryl laurate.

Cells: MCF-7; n=400,000 cells at 24 hr in a confluent preparation; Size is 2000 nm

Cholestosomes alone; No effect on growth or viability over 24 hr

FITC alone: No effect on growth or viability over 24 hr

Insulin Alone: 3 mcg/ml of 1.5 ml volume; (4.5 mcg) No effect for 24 hr

FITC Insulin alone; 466 mcg/ml No effect on growth or viability over 24 hr (see FIG. 22)

FITC Insulin cholestosomes: 0.46 mcg/ml; No effect on growth or viability over 24 hr Insulin uptake starting by 2 hrs. (see FIG. 22)

FITC Insulin cholestosome chylomicrons: Massive uptake with all cell membranes engaged at 2 hr, free insulin in cytoplasm. Concentration inside MCF-7 cells at least 1000× over concentration outside cells.

Cells: Caco-2

Concentration apical side: Pre: 350 ul of 0.46 mcg/ml cholestosome solution on apical

FITC Cholestosomes alone; No effect on Caco-2 cells over 24 hr; chylomicrons formed as in FIG. 20

FITC insulin alone; No effect on Caco-2 cells over 24 hr; no chylomicrons formed on basolateral side as in FIG. 18

FITC alone: No effect on Caco-2 cells for 24 hr; no Chylomicrons on Basolateral side (FIG. 19)

Insulin Cholestosomes: 0.46 mcg/ml with free insulin—transferred all cholestosomes to basal side as chylomicrons. (FIG. 21)

Chylomicrons formed with FITC Insulin cholestosomes: Insulin concentration 0.46 mcg/ml or lower. (FIG. 22)

FIG. 22: FITC Insulin Cholestosome Chylomicrons

FIG. 22. The original starting concentration for FITC-insulin exposure in MCF-7 cells was 466 mcg/ml, which did not result in measurable amounts of FITC insulin inside the MCF-7 cells in row A. For the two lower figures (rows B and C), the concentration of FITC insulin cholestosome was 0.46 mcg/ml, which is the same for the experiments summarized in the last 2 figures. The 0.46 mcg/ml from FITC insulin cholestosomes (row B) produced about the same intracellular fluorescence as 466 mcg/ml of FITC insulin without cholestosomes (row A). Compared to 466 mcg/ml of FITC insulin without cholestosomes (row A), the further processing of FITC insulin cholestosomes by Caco-2 cells into chylomicrons, produced a robust improvement in the amount of insulin inside cells from FITC insulin cholestosome-chylomicrons (row C), much greater than 1000 fold over the amount of FITC-insulin alone, and much greater than the effect of the 0.46 mcg/ml of insulin when not processed by Caco-2 cells. Assuming the amount passing Caco2 cells was all of the insulin administered to the apical side, the concentration of insulin in the FITC insulin cholestosome chylomicron row C was the same as the insulin concentration in the middle row Row B. This particular preparation had free insulin remaining, and if transfer across Caco-2 cells was less than 100%, then these intracellular loading ratios are even greater. Clearly. FITC insulin cholestosome-chylomicrons achieves greater loading inside the cells, once again demonstrating that cholestosomes alone do allow peptides to enter cells across the cell membrane, as was earlier shown with FITC cholestosomes alone. The image in the bottom row C reflects the observed penetration of FITC insulin cholestosome chylomicrons inside cells. Not only are the cell membranes dramatically more concentrating FITC insulin in this image, but the cytoplasm of these cells is loaded with FITC insulin as well. This is after only 2 hr exposure, confirming that chylomicrons not only load massively more, they load more quickly than cholestosomes on their own.

FIG. 25 FITC Insulin Cholestosome Chylomicrons Loading MCF-7 Cells

Cholestosomes containing encapsulated FITC-insulin were prepared as disclosed herein, using FITC labeled regular insulin purchased commercially. Caco-2 cells were used to ensure that Cholestosomes transfer intact insulin (i.e. insulin remains within the Cholestosome) across the enterocytes and enters chylomicrons, following which chylomicrons were detected on the basolateral side of the Caco-2 membrane. ELISA was used to demonstrate that acid protected insulin does not pass the apical Caco-2 barrier (<5%), and that all of the insulin on the basolateral side is within chylomicrons. FITC-insulin was used on the apical side to verify, that insulin alone does not pass the enterocyte barrier but that FITC insulin in cholestosomes passes the Caco2 enterocyte barrier. From these experiments, absorption efficiency was determined as the difference between basolateral side and apical side content of insulin. Further experiments compared the effect of altered pH and bile salts on the cholestosome encapsulated insulin. In addition, chylomicron stability when containing insulin loaded into cholestosomes was quantified and the conditions necessary for release of insulin from the loaded cholestosomes in vivo were studied.

In FIG. 25, the chylomicrons loaded with FITC insulin cholestosomes were placed adjacent to MCF-7 cells in order to demonstrate uptake into cells. These cells readily incorporate cholestosomes, and it appeared that distribution was uniform within the cell.

In this experiment FITC insulin cholestosome chylomicron loading of MCF-7 cells was improved over some of our previous experiments with FITC insulin cholestosomes, and here the loading was 1000× greater from FITC insulin cholestosome chylomicrons. In all cases, processing of FITC insulin cholestosomes by Caco-2 cells into chylomicrons, produces a robust improvement in the amount of insulin inside cells from FITC insulin cholestosome-chylomicrons (row B), Not only are the cell membranes dramatically more concentrating FITC insulin in this image, but the cytoplasm of these cells is loaded with FITC insulin as well. This is after only 2 hr exposure, confirming that chylomicrons not only load massively more, they load more quickly than cholestosomes on their own.

This particular formulation was administered to 4 mice.

FIG. 26. FITC Insulin Cholestosomes Given to 4 Mice.

Following completion of the in vitro studies in Caco-2 cells and MCF-7 cells, the cholestosome insulin formulations could be administered to mice; ELISA is used to define insulin absorption and release from chylomicrons and as a means of defining the biological residence of insulin circulating in cholestosomes in vivo.

Blood glucose is measured in the mice to define the effect of insulin in the mouse model after administration of the formulations.

FIG. 26 shows the blood glucose values of four mice, each given FITC-insulin-cholestosomes orally, with subsequent 30 minute glucose measurements using a glucometer. All mice tolerated the procedures well. In 3 of the 4 animals, the drop in blood glucose followed oral administration by 30-45 minutes. In the fourth animal, the drop in blood glucose began after 2 hrs, but had a similar decline and recovery time. In all cases, the glucose returned to baseline rapidly.

Overall, these data show oral insulin absorption and systemic effects on blood glucose, a demonstration of proof of concept for the cholestosome formulations in a murine model.

Example 5

The use of small and large molecules in the treatment of cancer is often limited by barriers that need to be crossed in order to reach target sites inside the cell. Inventors and specialists have long sought a means of delivering small and large molecules across the cell membrane barrier, as a means of treating cancers of all types.

Thus the use of cholestosomes to promote oral absorption of anti-cancer agents and enable distribution to intracellular pathways of molecular interaction with cellular processes is of great interest, as most of the molecules to be listed below have intracellular delivery problems, oral absorption problems, or both.

Described herein is a preferred embodiment of oral delivery and intracellular loading of anti-cancer molecules using endogenously formed chylomicrons. For the most part, the listed anti-cancer agents disclosed in this example are not proteins, genetic material or the like. These are considered small molecules, and the choice of a group of small molecules active against cancer should not be considered limiting, as small molecules in general will follow the principles of encapsulation and oral absorption and intracellular uptake described herein. In all cases, one skilled in the art that pertains to the present invention will understand that there are equivalent alternative embodiments, the important feature of the present invention being reliable oral absorption and intracellular delivery of the molecule in an intact form. In each of these representative cases, the molecule will be encapsulated using the methods disclosed in example 1 and example 2, developed and tested using similar models and processes defined for antibiotics in Example 3. These methods are not limiting and physical properties of some of the representative molecules given in this example may define a pathway outside the boundaries of the Examples heretofore. As such, these will remain in the spirit of the invention.

Preferred Anti-Cancer Agents for Cholestosome Encapsulation

Representative anti-cancer molecules might include 5-Azacytidine; Alitretinoin; Altretamine; Azathioprine; Amifostine; Amsacrine; Anagrelide; Asparaginase; N-(phosphonyl)L-aspartic acid; Bexarotene (Targretin); Bleomycin; Bryostatin; Busulfan; Capecitabine; Camptothecin; Carboplatin; Carmustine; Carboprost (Carboprost Tromethamine); Carglumic Acid; Carmofur; Chlorambucil; Cladribine; Clofarabine; Clofazimine; Colchicine; Curcumin; Difluorinated Curcumin (CDF); Cyclophosphamide; Cytarabine; Cytosine arabinoside; D-Aminolevulinic Acid; Dacarbazine; Daunorubicin/Daunomycin; Deferasirox; Denileukin diftitox (Ontak); Docetaxel/Taxotere; Doxifluridine; Doxorubicin/Adriamycin; Eflornithine; Epirubicin; Elephantopin; Estramustine; Etoposide Phosphate; Fludarabine; Fluorouracil; fluoroorotic acid; Fotemustine; Gemcitabine; Gusperimus; Hydroxycarbamide; Hydroxyurea; Idarubicin/4-Demethoxy Daunorubicin; Ifosfamide; Incadronate; Irinotecan, Peg-Irinotecan; Lapatinib/Lapatinib Ditosylate; Lomustine; Masoprocol; Melphalan Hcl; Mercaptopurine; Methotrexate (Amethopterin); Methyl Aminolevulinate; Mitomycin; Mitotane; Mitoxantrone; Nimustine Hydrochloride; Octadecylphosphocholine; Ormaplatin; Oxaliplatin; Paclitaxel; Peg-asparaginase; Pemetrexed; Pentostatin/Deoxycoformycin; Porfimer Sodium; Procarbazine; Protein Kinase C inhibitors; Raltitrexed; Phenylbutyrate Sodium; Staurosporine; Streptozocin; Tafluposide; Temozolomide; Teniposide; Thioguanine; Thiotepa; Thymopoietin; Tioguanine; Tomudex; Topotecan; Tretinoin; Tropisetron hydrochloride; Uramustine (Uracil Mustard); Valrubicin; Verteporfin; Vinblastine; Vincristine; Vindesine; Vinorelbine; and/or Vorinostat.

Example 6

Described herein is a preferred embodiment of oral delivery of macromolecules to include peptides, proteins including monoclonal antibodies, genetic material or the like. These are considered large biological molecules with molecular weight in excess of 6 kd and most frequently in excess of 100 kd, and the choice of a group of large biomolecules active against diseases should not be considered limiting use of the invention to a particular disease or treatment, as biomolecules in general will follow the principles of encapsulation and oral absorption and intracellular uptake described herein. In all cases, one skilled in the art that pertains to the present invention will understand that there are equivalent alternative embodiments, the important feature of the present invention being reliable oral absorption and intracellular delivery of the biomolecule in an intact form for the treatment of disease in human patients in the field of protein therapeutics. The monoclonal antibodies bevacizumab and trastuzumab have been the principle subjects of encapsulation, but these should not be considered limiting and in fact most monoclonal antibodies, being of similar length, charge and molecular weight, will behave similarly with respect to cholestosome encapsulation as described herein.

Bevacizumab in Cholestosomes

A preferred embodiment illustrative of the molecules disclosed herein is bevacizumab, selected from this list for preparation and testing of cholestosome encapsulated bevacizumab according to the principles enumerated in Example 1. The particular preparation was designed for oral use and intracellular delivery, and corresponding IV use for targeting of cell surface receptor target sites.

By way of specific example, bevacizumab cholestosomes with mean diameter of 250-10,000 nm can be prepared in the manner of the present invention, as described in Example 1, with cholesteryl ester selection from the esters disclosed as preferred in Example 2. Cholestosomes containing bevacizumab were prepared using a novel blend of two cholesteryl esters.

Alternative formulations of bevacizumab, as nanoparticles can be prepared as disclosed by Woitiski(6). These nanoparticles will be albumin coated for Caco-2 experiments, to enable what is anticipated to be maximal absorption capability, since coating improved the absorption of insulin in this particular nanoparticle formulation.

Loading and Cellular Uptake with Bevacizumab Cholestosomes.

The formulation protein bevacizumab was labeled with FITC prior to incorporation into cholestosomes in a manner described in example 1.

Cholestosome loading with Bevacizumab on a weight to weight basis was approximately 20% in particles ranging in size from 250-10,000 nm.

All formulations will be examined using confocal microscopy, scanning electron microscopy (SEM) and transwell experiments as disclosed by the inventors for insulin.

Caco-2 Cells for Testing Bevacizumab Cholestosomes

The Caco-2 cells used for the transwell experiments are cultured at 37° C. in an atmosphere of 5% CO2/95% O2 and 90% relative humidity in Dulbecco's Modified Eagle Medium (DMEM) supplemented with 100 IU/mL penicillin and 100 mcg/mL streptomycin, 2 mM 1-glutamine, 1% non-essential amino acids, and 10% heat inactivated fetal bovine serum. Caco-2 cells form an absorptive polarized monolayer, and develop an apical brush border and secrete enzymes after culture for 21 days.

In addition to inspection by microscopy, trans-epithelial electrical resistance is measured across cells growing on 1 cm2 polycarbonate filters of trans-well diffusion cells using an epithelial volt ohmmeter to evaluate tight junctions.

Cholestosomes containing encapsulated FITC-bevacizumab were prepared as disclosed herein, using FITC labeled bevacizumab purchased commercially. Caco-2 cells were used to ensure that Cholestosomes transfer intact bevacizumab (i.e. bevacizumab remains within the Cholestosome) across the enterocytes and enters chylomicrons, following which chylomicrons were detected on the basolateral side of the Caco2 membrane. Fluorescent readings of the FITC-bevacizumab preparation were used to demonstrate that free bevacizumab does not pass the apical Caco-2 barrier (<5%), and that much of the FITC-bevacizumab placed on the apical side encapsulated in cholestosomes was actually transferred to the basal side as chylomicrons containing the FITC-bevacizumab-cholestosomes.

Based on fluorescent readings, 75% of the FITC-bevacizumab-cholestosomes added to the apical side of the Caco-2 enterocyte barrier passes the Caco2 enterocyte barrier. From these experiments, absorption efficiency was determined as the difference between basolateral side and apical side content of FITC-bevacizumab-cholestosomes. At the end of the experiment at 24 hrs, all of the fluorescence readings added up to the starting amount of fluorescence of the FITC-bevacizumab-cholestosomes, thereby achieving mass balance in the experiment itself.

MCF-7 Cell Experiments for Bevacizumab Cholestosomes and Bevacizumab Cholestosome Chylomicrons

MCF-7 cells readily take up cholestosomes as shown in FIGS. 5, 22 and 23 all control experiments for the respective constructs. Others are not shown herein. Because this is a fluorescent image, the only content of the cholestosomes in this image was from FITC encapsulated in the cholestosomes. Note the outline of the cell membrane which is loaded by cholestosomes, and in later images the uniform distribution of FITC label throughout the cell and even to include its nucleus.

MCF-7 cells are relatively resistant to bevacizumab when subjected to in-vitro testing, having an IC50 value approximately 1.0 mcg/ml. Indeed the drug functions indirectly as a cytostatic agent, which is the net effect of blocking VEGF and decreasing the supply of blood vessels to growing tumors.

Entirely expected based on the aforementioned in-vitro resistance, MCF-7 cells show no uptake of FITC-bevacizumab at external concentrations of 173 mcg/ml, a concentration approximately 10 fold higher than the typical peak when a dose of 100 mg is given to a human under treatment for carcinoma. These data are part of FIG. 27.

These same MCF-7 cells were then exposed to FITC-bevacizumab cholestosomes, prepared according to the methods in Example 1, using myristate and laurate cholesteryl esters. These cholestosomes were approximately 5000-10,000 nm in size, while an MCF-7 cell is approximately 15,000 nm in size. Both darkfield and fluorescent images of these MCF-7 cells were taken for 24 hr, and displayed in FIG. 28. These cells do not measurably take up bevacizumab cholestosomes, and it appeared that FITC-bevacizumab distribution was uniform within the cell. The MCF-7 cells remained viable for 24 hrs in this experiment, indicating that FITC bevacizumab-cholestosomes did not increase the action of bevacizumab on these cells.

The same preparation of bevacizumab-FITC-cholestosomes was then exposed to Caco-2 cells, and the resulting chylomicrons containing FITC-bevacizumab-cholestosomes were collected from the transwell basolateral side after 24 hr exposure. In this experiment, 75% of the Bevacizumab-FITC-cholestosomes passed the Caco-2 barrier and were incorporated into the resulting chylomicrons.

Because 75% of the cholestosomes were inside the chylomicrons, the MCF-7 cells were exposed to a bevacizumab concentration similar to the concentration of bevacizumab in the cholestosome preparation shown earlier. Of interest, the uptake into the MCF-7 cells was dramatically greater when chylomicrons were used for intracellular delivery of FITC-bevacizumab-cholestosomes than when delivery was from cholestosomes alone or indeed from just exposing MCF-7 cells to free bevacizumab.

Furthermore, the MCF-7 cells exposed to chylomicron delivered FITC bevacizumab were non-viable in as little time as 4 hr after exposure. This is very remarkable because there is no known cytotoxic component to the mechanism of action of bevacizumab. Heretofore, this Monoclonal antibody has a cytostatic mechanism the functions indirectly of VEGF and blood vessel growth. Furthermore, as bevacizumab is unable to enter cells, the unexpected discovery of a rapid cytotoxic pathway from intracellular delivery creates a new product and a new pathway for this old protein.

Bevacizumab Formulation Properties

    • Date of manufacture: Aug. 3, 2013
    • DLLS particle size 10,510 nm; not extruded
    • Percent yield 20% of starting amount of lipid
    • Zeta Potential: Not done for bevacizumab. Trastuzumab: 6.4
    • Cells: MCF-7; 400.000 cells at 24 hr in a confluent prep. MCF-7 cell. Size is 2000 nm
    • MCF-7 cells with Cholestosomes alone: No effect on growth over 24 hr
    • FITC alone: No effect on growth 24 hr
    • Bevacizumab Alone: not tested
    • FITC bevacizumab alone; up to 173 mcg/ml: no effect on growth over 24 hr (FIG. 27)
    • FITC bevacizumab cholestosomes: ˜20 mcg/ml; Well tolerated by cells; visible intracellular uptake starting by 2 hrs.
    • FITC bevacizumab cholestosome chylomicrons from Caco-2 cells: 15 mcg/ml on MCF-7 cells for 4 hr with complete killing of all cells in field. (FIG. 28)
      FIG. 27. FITC Bevacizumab on MCF-7 Cells

FIG. 27 shows the dark field (top row) and fluorescent images at 2 hr, 4 hr and 24 hr from the application of a target concentration of 173 mcg/ml of FITC Bevacizumab to MCF-7 cells. These concentrations are 5-10 fold greater than typically observed in Bevacizumab treated patients. There was no evidence that FITC bevacizumab integrated with the cell membranes of these MCF-7 cells. There was no evidence of any fluorescence uptake of FITC bevacizumab at any time point by MCF-7 cells, and there was no evidence of effect of FITC-bevacizumab on these MCF-7 cells.

FIG. 28 FITC Bevacizumab Cholestosome Chylomicrons Kills MCF-7 Cells

FIG. 28. In this experiment, FITC bevacizumab cholestosomes were prepared and tested against MCF-7 cells. There was no effect at 2 hr, and the cells showed no uptake of FITC bevacizumab cholestosomes. Then these same FITC bevacizumab cholestosomes were placed on the apical side of the Caco-2 cells and the resulting FITC bevacizumab cholestosome chylomicrons were tested on MCF-7 cells. The first frame of the bottom row shows massive uptake of FITC bevacizumab cholestosome chylomicrons, and the other intensely observed effect was rapid cellular killing of the MCF-7 cells, as they were all killed by 4 hrs into the experiment.

Representative Monoclonal Antibodies and Large Proteins

Representative macromolecules for conversion to oral use or for improved action inside cells by use of the present invention might include any one or combinations of those listed here, and include similar sized and charged molecules that are discovered after disclosure of the compounds listed herein: Adalimumab (Humira); Abciximab; Alemtuzumab; Bevacizumab, (Avastin); Bapineuzumab; Cetuximab; Etanercept, (Enbrel); Elotuzumab; Gemtuzumab; Inotuzumab; Kynamro™ mipomersen by Isis-Genzyme; MabThera/Rituxan; Natalizumab. Tysabri by Elan/Biogen; Necitumumab by Eli Lilly; Palivizumab (Synagis); Panitumumab; RN316 (anti-PCSK9 by Pfizer) REGN727 (anti-PCSK9 by regeneron) for lowering LDL cholesterol; Solanezumab; Trastuzumab (Herceptin); Tositumomab; T-DM1, an antibody drug conjugate by Roche/Genentech, which consists of trastuzumab (Herceptin), DM1 (emtansine) and a linker that joins DM1 to trastuzumab; T-DM1 is designed to target and inhibit HER2 signaling and deliver DM1 directly inside HER2-positive cancer cells; Zelboraf® for BRAF V600 mutation-positive metastatic melanoma; Atorolimumab; Belimumab; Brodalumab; Carlumab; Dupilumab; Fresolimumab; Golimumab; Lerdelimumab, Lirilumab; vrilimumab; Metelimumab; Morolimumab; Namilumab; Oxelumab; Placulumab; Sarilumab; Sifalimumab; Tabalumab; Ipilimumab; Tremelimumab; Nivolumab; Urelumab; Bertilimumab; Zanolimumab; Afelimomab; Elsilimomab; Faralimomab; Gavilimomab; Inolimomab; Maslimomab; Nerelimomab; Odulimomab; Telimomab; Vepalimomab; Zolimomab aritox; Basiliximab; Clenoliximab; Galiximab; Gomiliximab; Infliximab (Remicade by Janssen); Keliximab; Lumiliximab; Priliximab; Teneliximab; Vapaliximab; Aselizumab; Apolizumab; Benralizumab; Cedelizumab; Certolizumab pegol; Daclizumab; Eculizumab; Efalizumab; Epratuzumab; Erlizumab; Etrolizumab; Fontolizumab; Itolizumab; Lampalizumab; Ligelizumab; Mepolizumab; Mogamulizumab; Natalizumab; Ocrelizumab; Ofatumumab; Omalizumab; Ozoralizumab; Pascolizumab; Pateclizumab; Pexelizumab; Pidilizumab; Reslizumab; Rontalizumab; Rovelizumab; Ruplizumab; Quilizumab; Samalizumab; Siplizumab; Talizumab; Teplizumab; Tocilizumab; Toralizumab; Tregalizumab; Vatelizumab; Vedolizumab; Visilizumab; Ibalizumab; Otelixizumab; Briakinumab; Canakinumab; Fezakinumab; Secukinumab; Sirukumab; Tralokinumab; Ustekinumab; Anrukinzumab; Clazakizumab; Enokizumab; Gevokizumab; Ixekizumab; Lebrikizumab; Olokizumab; Perakizumab; Tildrakizumab; Besilesomab; Fanolesomab; Lemalesomab; and/or Sulesomab.

Example 7

A preferred embodiment illustrative of the molecules disclosed herein is Alirocumab, also known as REGN727, a monoclonal antibody against PCSK-9. Alternative monoclonal antibodies against PCSK-9 include or Evolocumab or Bococizumab by way of non-limiting example.

Alirocumab, selected from this list for preparation and testing of cholestosome encapsulated antibodies to PCSK-9 according to the principles enumerated in Example 1. The particular preparation was designed for oral use and intracellular delivery, upon knowledge and belief that PCSK-9 is an intracellular target for an antibody against this compound.

By way of specific example. Alirocumab cholestosomes with mean diameter of 250-10,000 nm can be prepared in the manner of the present invention, as described in Example 1, with cholesteryl ester selection from the esters disclosed as preferred in Example 2. Cholestosomes containing Alirocumab are prepared using a novel blend of two cholesteryl esters.

In the treatment of hyperlipidemia, it is necessary to control cholesterol, which is defined in clinical guidelines as raising HDL and lowering LDL, and in addition it is necessary to lower plasma triglycerides. The oral combination product disclosed in this example will be the only available means of complete control of all aspects of hyperlipidemia, and in addition it will remove the major disadvantage of all members of the PCSK-9 monoclonal antibody treatments, the need for bi-weekly subcutaneous injection. Oral administration of PCSK-9 monoclonal antibodies will significantly improve patient acceptance of these new therapeutic modalities.

PCSK-9 Monoclonal Antibody Component of Combination Product

Specific to the proteins of therapeutic benefit disclosed in example Oral formulation of a monoclonal antibody to PCSK9 will control elevated LDL in a potent manner, and the selected protein for oral cholestosome encapsulation.

A preferred embodiment illustrative of the molecules disclosed herein is REGN727, also known in the art as Alirocumab selected from this list for preparation and testing of cholestosome encapsulation according to the principles enumerated in Example 1. The particular preparation was designed for oral use with exposure approximately 100 mg per month of treatment.
By way of specific example, REGN727 loaded cholestosomes with mean diameter of 250-450 nm can be prepared in the manner of the present invention, as described in example 1. Cholestosomes containing REGN727 will be prepared using a novel blend of two cholesteryl esters. This construct will be used lower LDL cholesterol. The construct will be given in combination with statin drugs and optionally in combination with ileal brake hormone releasing substances.
Statin Component of Combination Product

In order to raise HDL cholesterol and lower total cholesterol, the oral REGN727 will be co-formulated with an immediate release statin drug. A listing of statins suitable for combination with oral PCSK-9 treatment includes the following: lovastatin, atorvastatin, rosuvastatin, simvastatin, fluvastatin, pitavastatin, pravastatin. By way of example a 10 mg dose of atorvastatin is preferred but the invention of the combination is not limited only to atorvastatin as most of the available statin molecules will be suitable, as all are immediate release requiring only film-coating.

Brake Component of PCSK-9 Combination Product

In order to lower triglycerides, the formulation of REGN727 and statin will optionally be combined with approximately 10 grams of an ileal brake hormone releasing substance as disclosed in US2011/0268795, the complete contents of and complete formulation of which are hereby incorporated by reference. This formulation releases the contents of the active ileal brake hormone releasing substance at the ileum of the subject, and completely controls elevated triglyceride concentrations. The results of studies performed by the inventors show that chronic daily stimulation of the ileal hormones with Aphoeline Brake™, delivered directly into the ileum, tends to stabilize and maintain the body homeostasis, as well as decrease in the fasting state the abnormal levels of insulin, glucose, triglycerides and all of the measured liver enzymes. Also the significant decrease in alpha-fetoprotein seems to indicate a decrease in inflammation of the liver. Combining the decrease in insulin resistance, triglyceride and liver inflammation with decrease in liver enzymes indicates a significant improvement in liver health and signals a role for these hormones to play in regeneration of hepatocytes and maintaining liver health. Combining these beneficial properties with a Statin and a PCSK9 monoclonal antibody offers patients a novel and comprehensive approach to control of metabolic syndrome, which is a primary underlying cause of hyperlipidemia and the resulting atherosclerotic vascular disease.

The combination product resulting from these elements would be administered to patients with hyperlipidemia on a once daily basis, with the end result being a complete control of hyperlipidemia with minimal side effects.

Example 8

Genetic Material

In classical genetics, in a sexually reproducing organism (typically eukarya) the gamete has half the number of chromosomes of the somatic cell and the genome is a full set of chromosomes. The halving of the genetic material in gametes is accomplished by the segregation of homologous chromosomes during meiosis. Any material derived from either full or haploid chromosomes is genetic material.

The term genome can be applied specifically to mean what is stored on a complete set of nuclear DNA (i.e., the “nuclear genome”) but can also be applied to what is stored within organelles that contain their own DNA, as with the “mitochondrial genome” or the “chloroplastgenome”. Additionally, the genome can comprise non-chromosomal genetic elements such as viruses, plasmids, and transposable elements.

RNA and short chain RNA interference or insertions meant to alter functions of RNA are also considered genetic material for purposes of encapsulation into cholestosomes and for purposes of delivery of genetic materials to sites inside target cells.

By way of example we disclose a combination approach to the treatment of Hepatitis C, an RNA virus of genus Flaviviridae. Members of this genus have monopartite, linear, single-stranded RNA genomes of positive polarity, 9.6 to 12.3 kilobase in length. The 5′-termini of flaviviruses carry a methylated nucleotide cap, while other members of this family are uncapped and encode an internal ribosome entry site. Virus particles are enveloped and spherical, about 40-60 nm in diameter. Although over 60 viruses in this genus are known to cause disease, we wish to focus attention on Genus Hepacivirus (type species Hepatitis C virus)

Hepatitis C is a particularly interesting target for cholestosome therapy because this virus hides in the normally observed lipid particles and it appears necessary to follow the virus into these hiding sites if one wishes to interfere with its life cycle, invasiveness or passage between individuals.

These latter goals will lead to our preparation of specific constructs useful for the treatment of hepatitis C infections

A preferred embodiment illustrative of the molecules disclosed herein is miR-122, known in the art as Miravirsen. By way of non-limiting example, alternative genetic constructs against Hepatitis C and other viruses may be used as alternative treatments against the respective viruses, as long as there is a need for a novel means of gaining access to intracellular sites and additionally to other circulating lipid particles such as chylomicron remnants which are also known to shelter the Hepatitis C virus.

miR-122 was selected for preparation and testing of cholestosome encapsulated genetic materials targeting Hepatitis C, according to the principles enumerated in Example 1. The particular preparation was designed for oral use and intracellular delivery, upon knowledge and belief that Hepatitis C infected cells are a necessary intracellular target for a genetic modifying strategy against this virus. Even with less than optimal delivery, there is clinical evidence of effective response of Hepatitis C viral infections to treatment with miR-122 constructs given parenterally to patients. These results are presented below.

By way of specific example, miR-122 cholestosomes with mean diameter of 250-10,000 nm can be prepared in the manner of the present invention, as described in Example 1, with cholesteryl ester selection from the esters disclosed as preferred in Example 2. Cholestosomes containing miR-122 are prepared using a novel blend of two cholesteryl esters.

miR-122 for HepC in Cholestosomes

The stability and propagation of hepatitis C virus (HCV) is dependent on a functional-interaction between the HCV genome and liver-expressed microRNA-122 (miR-122). MicroRNAs are small non-coding RNAs encoded by the human genome that transcriptionally and post-transcriptionally modify gene expression. The microRNA-122 (miR-122) forms the dominant microRNA in the liver and is exclusively expressed in hepatocytes. It has been implicated in multiple different processes, including lipid metabolism, cell differentiation, iron metabolism and hepatic circadian regulation. The 50 untranslated region (UTR) of HCV is highly conserved across genotypes and contains two miR-122 binding sites, disruption of which blocks HCV replication.

Miravirsen is a locked nucleic acid-modified DNA phosphorothioate anti-sense oligonucleotide that sequesters mature miR-122 in a highly stable heteroduplex, thereby inhibiting its function. As a 15 nucleotide long oligonucleotide complementary to miR-122, miravirsen can form stable heteroduplexes with miR-122. Whether miravirsen exerts its antiviral effects predominantly through sequestration of available miR-122, indirectly through disrupting lipid pathways essential to the viral lifecycle, or through other mechanisms remains under active investigation.

Its efficacy against chronic HCV infection was first shown in studies in chimpanzees, the only natural HCV animal model. Chimpanzees that received the highest, 5 mg/kg, dose through a weekly infusion had a marked decrease in plasma and liver HCV RNA, which led to clinical testing of miravirsen. Janssen and colleagues reported their findings from a phase 2a study in treatment naive non-cirrhotic patients chronically infected with HCV genotype 1. They enrolled 36 patients who were randomized to 5 weekly subcutaneous injections with three different doses of miravirsen (3, 5 or 7 mg/kg) or placebo. They found that HCV RNA showed a dose-dependent decline, with 1 (11%) patient in the 5 mg/kg and 4 (44%) patients in the 7 mg/kg groups reaching undetectable HCV RNA levels, all after the fifth dose of miravirsen. Notably, the individual response curves shown by the authors were quite variable, even with the highest dose. Three of the patients whose HCV RNA became undetectable relapsed 4-5 weeks later and one patient went on to be treated with PegIFN/RBV. The long term outcome in the remaining patient who achieved an undetectable HCV RNA at study week 14 and remained undetectable through week 18 was not reported. Adverse events were generally mild with only injection site reactions being likely related to miravirsen administration.

The most likely explanation for the rather weak and variable response of HCV patients to miravirsen is irregular cellular uptake of miravirsen. This is not surprising in that failure to reach the cellular target complicates most attempts to commercialize antisense therapy. Poor intracellular penetration is the likely reason why the dose of the miR-122 formulation was 7 mg/kg. Effective intracellular delivery of the construct using cholestosomes could lower the effective dose to values 10-100× lower. Additionally, there would be the advantage of oral use in a lower overall dosage than currently employed for use parenterally.

Cholestosome formulations will be made for the current miravirsen construct, and the likely result of successful formulation will be a dramatically improved action on HCV viral load because of effective intracellular delivery. In addition, the cholestosome formulation will be used orally, which is a great improvement over subcutaneous injection. The unique feature of oral uptake of cholestosome-miR-122 would be complemented by intracellular delivery of cholestosome-miR-122, which would make the product effective at a lower dose. These nanoparticles would enter cells via chylomicron loading, and once inside silence the Hepatitis C virus.

There is much development work to be accomplished to successfully commercialize miR-122 antisense technology. While the impact of oral therapy with cholestosome encapsulated miR-122 will produce a much improved version of this construct, it is likely that the oral formulation will be co-administered with anti-HCV drugs such as sofosbuvir (Sovaldi), and these combinations are claimed for use in treatment of HCV infections.

Furthermore, there is additional likelihood that anti-HCV drug therapy will be improved by concomitant use of Brake formulations to manage concomitant metabolic syndrome manifestations, and in principle to repair and regenerate the liver of these patients, as was further detailed in Example 7 with reference to hyperlipidemia.

With respect to the use of Brake in combination regimens for Hepatitis C, the details of these formulations and strategy are found in WO 2013/063527, published May 2, 2013, WO/2012-118712 A2, published Sep. 7, 2012 and US2012 026561, the contents of which are herein incorporated by reference.

Accordingly, the ideal combination disclosed for management of HCV in all types of patients would be oral cholestosome-miR-122 combined with oral sofosbuvir, combined with oral Brake.

An example of an oral vaccine for HCV is provided in Example 9, and this vaccine could be given to the same HCV patients as defined in the present example.

Gene Editing in the Treatment of HIV Viremia

The ability to make site-specific modifications to (or “edit”) the human genome has been an objective in medicine since the recognition of the gene as the basic unit of heredity. The challenge of genome editing is the ability to generate a single double-strand break at a specific point in the DNA molecule. Numerous agents, including meganucleases, oligonucleotides that form DNA triplexes, and peptide nucleic acids, have been tested and shown to be limited by inefficiency. Another class of reagents, the zinc-finger nucleases (ZFNs), have proved versatile for genome editing, and the use of ZFNs is now well established in a number of model organisms and in human cells.

ZFNs are well suited for genome engineering because they combine the DNA recognition specificity of zinc-finger proteins (ZFPs) with the robust but restrained enzymatic activity of the cleavage domain of the restriction enzyme FokI (a nuclease). ZFPs, which provide DNA-binding specificity, contain a tandem array of Cys2His2 zinc fingers, each recognizing approximately 3 base pairs of DNA. By comparison, the bacterial type IIS restriction endonuclease, FokI, has no sequence specificity and must dimerize to cut the DNA. After the ZFN-mediated double-strand cut, the DNA can be repaired by either homologous recombination or nonhomologous end joining. Homologous recombination repairs the break while preserving the original DNA sequence. However, these cells are susceptible to recutting by ZFNs. In contrast, nonhomologous end joining can result in random insertion or deletion of nucleotides at the break site, resulting in permanent disruption of the primary DNA sequence. Therefore, nonhomologous end joining can be exploited to mutate a specific gene, leading to its functional knockout.

The design of a ZFN pair consisting of two 4-finger proteins that bind to a target site within the human chemokine (C—C motif) receptor 5 gene (CCR5) was reported previously. In preclinical tests, CCR5-modified CD4 T cells expanded and functioned normally in response to mitogens, were protected from human immunodeficiency virus (HIV) infection, and reduced HIV RNA levels in a humanized mouse model (involving xenotransplantation) of HIV infection.

Tebas and colleagues selected CCR5, which encodes a coreceptor for HIV entry, for several reasons. First, its disruption seemed likely to increase the survival of CD4 T cells; persons homozygous for a 32-bp deletion (delta32/delta32) in CCR5 are resistant to HIV infection. In vitro. CD4 T cells from such persons are highly resistant to infection with CCR5-using strains of HIV, which are the dominant strains in vivo. Moreover, persons who are heterozygous for CCR5 delta32 and who have HIV infection have a slower progression to the acquired immunodeficiency syndrome. Furthermore, the effectiveness of blocking or inhibiting CCR5 with the use of small-molecule inhibitors has been shown in humans. Finally, one person who underwent allogeneic transplantation with progenitor cells homozygous for the CCR5-delta32 deletion has remained off antiviral therapy for more than 4 years, with undetectable HIV RNA and proviral DNA in the blood, bone marrow, and rectal mucosa. Although the mechanism responsible for the apparent cure associated with this procedure remains to be established, acquired CCR5 deficiency is one possibility. Tebas now reports the partial induction of acquired genetic resistance to HIV infection after targeted gene disruption (i.e., the infusion of autologous CD4 T cells modified at CCR5 by a ZFN).

The ZFN in this case was given in association with an adenoviral vector, and cells were removed from the body prior to transfection. In the work of the inventors, overcoming these deficiencies with a functional concentration of the ZFN inside cells is feasible with a cholestosome formulation.

By way of specific example, ZFN constructs active against CCR5 in cholestosomes with mean diameter of 250-10,000 nm can be prepared in the manner of the present invention, as described in Example 1, with cholesteryl ester selection from the esters disclosed as preferred in Example 2. Cholestosomes containing ZFN are prepared using a novel blend of two cholesteryl esters selected to achieve a neutral or slightly negatively charged particle that will be taken up by enterocytes and deposited into chylomicrons.

This listing is provided by way of example of genetic material polynucleotides in cholestosome formulations across the range of molecule size in use for disease modification and treatment, and is in no way limiting on the application of cholestosomes for encapsulation of molecules of all sizes and when used for therapy of known or new diseases.

Example 9

Transmission Life Cycle of Hepatitis C Virus

Hepatitis C virus (HCV) interacts with apolipoproteins B (apoB) and E (apoE) to form infectious lipoviral particles. Response to peg-interferon is influenced by interferon-stimulated genes (ISGs) and IL28B genotype. LDL cholesterol (LDL-C) also predicts interferon response.

Hepatitis vaccines may be including adjuvants and miRNA or siRNA in the case of Hepatitis C, a virus that hides in Lipid particles. A suitable antisense therapy example from Example 8 is miR-122. It is notable that miR-122 does not elucidate a response from the immune system, and in fact it is notable that Hepatitis C does not elucidate a response from the immune system either. This is why it is so difficult to remove.

An Effective Hepatitis C Vaccine

An effective Hepatitis C vaccine will need to follow the virus thru the lipid pathway and create an immunological recognition of its presence in the cells and perhaps in the lipid particles themselves. Accordingly the use of an orally absorbed cholestosome formulation that places a vaccine construct into chylomicrons for delivery is a novel approach to vaccination.

There is no vaccine that follows the virus into all body cells, so the adaptation of the Hepatitis C viral construct into cholestosome-chylomicron delivery will be the first to use the lifecycle of a chronic infection virus against the organism directly. Use of a concomitant adjuvant will also be an optional but necessary component of the oral cholestosome Hepatitis C vaccine construct. This vaccine will be orally absorbed at the duodenum.

Oral Vaccines in Cholestosomes with or without Adjuvants

This same approach of an oral cholestosome encapsulated vaccine with adjuvant can be used for other chronic viral infections where the virus hides inside body cells, to include HIV which hides in T-lymphocytes, Herpes zoster which hides in neural tissue, and other flavivirus constructs with similar properties to hepatitis viruses.

It will also be a second preferred embodiment to deliver Hepatitis C vaccine with adjuvants orally to the Peyer's patches dendritic cells of the ileum, and for this our ileal vaccine releasing technology will be employed, as disclosed fully in PCT/US2013/031483, published as WO2013/148258 Mar. 10, 2013. Note that the disclosed vaccine there is not a cholestosome formulation, and in fact we are not anticipating that the Hepatitis C vaccine construct delivered to the ileum would be orally absorbed, nor is this perceived as a requirement for efficacy.

Thus there is potential for a novel combination product in this disclosed example, one vaccine component which is cholestosome based to penetrate into the lipid pathways of the body and which modifies the virus replication steps (and when combined with a drug, kills Hepatitis C virus directly), and a second ileal targeted therapeutic vaccine which triggers a response in dendritic T-lymphocytes in Peyer's patches where T lymphocytes are functioning as dendritic cells.

Use of these Hepatitis C vaccines in conjunction with Brake is optioned when the patient is in need of repair of fatty liver disease and early cirrhosis, which offers maximum benefit to the patient with Hepatitis C infection. Brake therapy has been disclosed in Example 7 and is incorporated herein in combination with Hepatitis C vaccines delivered by cholestosomes and delivered to the ileum for action on dendritic cells. These products may also be used in conjunction with anti-viral compounds such as sofosbuvir to reduce viral load

Example 10

In the present invention, molecules used by IV injection for the treatment of infectious diseases would be generally suitable for encapsulation into cholestosomes and used topically as an ointment or cream.

Most antibiotics disclosed in example 3 need to be injected intravenously (IV), as the molecules are typically hydrophilic and not otherwise orally absorbed. Thus use in cholestosomes would enable their absorption into outer epidermidis. Numerous other small and larger molecules may be used in cholestosomes and administered topically according to the present invention including anti-fungals, anti-virals, anti-cancer and protein and peptide molecules used as growth factors.

There are many topical uses for treatments of disease that are enabled by cholestosome encapsulation of molecules. Some non-limiting examples include wound healing with topical platelet derived growth factors to include combination with other growth factors known to be beneficial to wound healing in the art.

An additional example would be the topical use of anti-TNF antibodies such as adalimumab (Humira) or Infliximab (Remicade) or many other similar molecules used topically for psoriasis and other dermal inflammatory diseases where these products are given currently by subcutaneous injection. Nearly 4.1 million people were diagnosed with some form of moderate-to-severe psoriasis in 2013. This number is expected to climb slightly to 4.4 million by 2020, with 1.5 million of the population being treated with systemic agents. A rise in the global prevalence of psoriasis, as well as an increase in the diagnosis rate resulting from improved diagnostic methods, will increase the demand for injectable monoclonal antibodies but also justify more of these products in topical cholestosome applications. As psoriasis is increasingly being recognized as a serious systemic disease with associated quality of life impairment and disability, rather than as a simply cutaneous disease, healthcare professionals will consider cholestosome encapsulated proteins and peptides as preferred over the older sub-optimal treatments. Topical administration of currently injected vaccines would also be facilitated by cholestosome formulations and the examples provided in Example 9 and previous prior art of the inventors are included here as non-limiting examples

None of these molecules are orally absorbed in the native state, and in each case oral absorption would constitute a major advantage over the current need to inject them parenterally. They could also be used in the treatment of localized areas of disease thereby avoiding completely the side effects of drugs given systemically by injection.

Tobramycin for Treatment of Dermal Infections

A preferred embodiment illustrative of the molecules disclosed herein is tobramycin, selected from this list for preparation and testing of cholestosome encapsulated tobramycin according to the principles enumerated in Example 1. The particular preparation was designed for oral use, and for increasing the overall action of the antibiotic tobramycin against target gram negative bacteria such as Pseudomonas aeruginosa. A preparation of topical tobramycin might effectively control the Pseudomonas diseases malignant otitis externa or be inhaled to effectively control Pseudomonas in patients with cystic fibrosis.

By way of specific example, tobramycin cholestosomes with mean diameter of 250-1,000 nm were prepared in the manner of the present invention, as described in Example 1, with cholesteryl ester selection from the esters disclosed as preferred in Example 2. Cholestosomes containing tobramycin were prepared using a novel blend of two cholesteryl esters, cholesterol myristate and cholesteryl laurate.

Cholesteryl Esters Facilitate Skin Delivery

The ability of cholestosome encapsulated molecules to function in cosmetic applications is an expected discovery within the art.

Major lipids are ceramides, cholesterol and free fatty acids. These components of the stratum corneum lipid matrix play a key role in mammalian skin barrier function.

The effect of the cholesterol esters on the penetration of the stratum corneum in vivo and in vitro were studied in by Kravchenko and colleagues in rats and mice, and the effect of cholesterol esters on the fluidity of the liposome's lecithin were studied by the fluorometric method.

This study shows that inclusion of cholesterol esters to this transdermal delivery system (TDS) increased the permeability of the stratum corneum for phenazepam. They observed the maximal fluidization of the lipid environment in the presence of cholesteryl laurate, cholesteryl pelargonate, cholesteryl undecylate and cholesteryl capronate. Thus, cholesterol esters were found to be effective enhancers for transdermal delivery, and lead to the current uses as disclosed herein.

Topical Use of Curcumin for Melanoma

The cholestosome formulation of curcumin difluoride (CDF) as disclosed in example 5 may also be useful topically for treatment of dermal cancers.

Previous work with liposomes and curcumin by Chen 2012 investigated the in vitro skin permeation and in vivo antineoplastic effect of curcumin by using liposomes as the transdermal drug-delivery system. Soybean phospholipids (SPC), egg yolk phospholipids (EPC), and hydrogenated soybean phospholipids (HSPC) were selected for the preparation of different kinds of phospholipids composed of curcumin-loaded liposomes: C-SPC-L (curcumin-loaded SPC liposomes), C-EPC-L (curcumin-loaded EPC liposomes), and C-HSPC-L (curcumin-loaded HSPC liposomes). The physical properties of different liposomes were investigated as follows: photon correlation spectroscopy revealed that the average particle sizes of the three types of curcumin-loaded liposomes were 82.37±2.19 nm (C-SPC-L), 83.13±4.89 nm (C-EPC-L), and 92.42±4.56 nm (C-HSPC-L), respectively. The encapsulation efficiency values were found to be 82.32±3.91%, 81.59±2.38%, and 80.77±4.12%, respectively. An in vitro skin penetration study indicated that C-SPC-L most significantly promoted drug permeation and deposition followed by C-EPC-L, C-HSPC-L, and curcumin solution. Moreover. C-SPC-L displayed the greatest ability of all loaded liposomes to inhibit the growth of B16BL6 melanoma cells. Therefore, the C-SPC-L were chosen for further pharmacodynamic evaluation. A significant effect on anti-melanoma activity was observed with C-SPC-L, as compared to treatment with curcumin solution in vivo. These results suggest that C-SPC-L would be a promising transdermal carrier for curcumin in cancer treatment.

This example of topical treatment of cancer using a cholestosome preparation of Curcumin difluoride CDF should not be considered limiting, and any of the anti-cancer compounds disclosed in example 5 should be suitably enabled for topical use by encapsulation into cholestosomes.

Example 11

In the present invention, molecules used by IV injection for the treatment of infectious diseases would be generally suitable for encapsulation into cholestosomes and used for inhalation, where the delivery by cholestosomes would be expected to enhance penetration of the encapsulated compound into the cells lining the alveoli and bronchi. This is novel over prior art use of liposomes, which would not penetrate cells, rather serving only to hold the compound in liposomes at the site for a longer period of time without enhancing cellular penetration.

Thus this pathway of delivery by aerosolization of cholestosome encapsulated nanoparticles is rational and may greatly enhance efficacy in the treatment of pulmonary diseases such as asthma, COPD, lung carcinoma, cystic fibrosis, and even rare conditions such as Alpha-one Anti-trypsin deficiency

Most antibiotics disclosed in example 3 need to be injected intravenously (IV), as the molecules are typically hydrophilic and not otherwise orally absorbed. Thus use in cholestosomes by inhalation would enable their absorption into lung directly via their enhanced cellular penetration mechanisms disclosed herein. Numerous other small and larger molecules may be used in cholestosomes and administered by inhalation according to the present invention including anti-fungals, anti-virals, anti-cancer and protein and peptide molecules used as growth factors.

There are many Pulmonary disease applications to disease treatment enabled by cholestosome encapsulation of molecules. Some non-limiting examples include repair of viral or chemical burn damage to lung alveoli with platelet derived growth factors to include combination with other growth factors known to be beneficial to wound healing in the art.

It is noted that very small nanoparticles will be needed for inclusion of cholestosome encapsulated molecules in inhalers, probably smaller than 100 nm for this application. Some non-limiting examples of compounds used in liposomes are offered as a proof of concept and a roadmap for improved intracellular delivery in the lung via cholestosome encapsulation.

Patent 2023

Example 2

In this example, a molecule comprising a binding site with specificity for CD33 (to bind to CD33-positive leukemic cells), a binding site with specificity for CD16 (for recruitment of immune cells as effector cells), and a binding site with specificity for the checkpoint molecule CD47 (for inhibition of antiphagocytic checkpoint signaling) and several related constructs were generated and tested. Since these molecules included antibody-derived binding domains, they are referred to as a “local inhibitory checkpoint antibody derivatives” (liCADs).

Design, Expression and Purification of liCADs

To target CD47, the extracellular N-terminal Ig variable domain of SIRPα (herein called SIRP-Ig or SirpIg) was used, which has been shown to be sufficient for CD47 binding (Barclay et al., 2009). In order to modulate binding affinities, molecules carrying two copies of SIRP-Ig were designed. Apart from the varying N-terminal module 1 all constructs had a central anti-CD16 scFv (derived from murine hybridoma 3G8) (Fleit et al., 1982), recruiting immune effector cells (module 2). CD16, also known as Fc gamma receptor IIIa (FcγRIIIa) is expressed on NK cells, dendritic cells (DCs) and macrophages and mediates antibody dependent cellular cytotoxicity (ADCC) or antibody dependent phagocytosis (ADCP), respectively (Guilliams et al., 2014). Using a scFv specific for CD16 allows to exclude side effects generated by the Fc part of a conventional mAb that would activate far more Fc receptor expressing immune cells, thus leading to fatal side effects like the cytokine release syndrome (Brennan et al., 2010). On the C-terminus of the molecule an anti-CD33 scFv (derived from gemtuzumab ozogamicin) is expressed (module 3). CD33 is a tumor specific marker that is highly overexpressed in acute myeloid leukemia (AML) and has successfully been used as tumor target before (Larson et al., 2005; Krupka et al., 2014). As control molecules, an anti-CD47 scFv (triplebody control) was included, as well as a high affinity version of SIRP-Ig (SirpIg_CV1) that had been published before (FIG. 4 A). SirpIg_CV1 binds to CD47 with much higher affinity (1 μM) compared to SIRP-Ig (1 μM) (Weiskopf et al., 2013).

The protein domains used had the following sequences:

Amino Acid Sequence of Sirp-Ig (SEQ ID NO: 1):

EEELQVIQPDKSVLVAAGETATLRCTATSLIPVGPIQWFRGAGPGRELIY
NQKEGHFPRVTTVSDLTKRNNMDFSIRIGNITPADAGTYYCVKFRKGSPD
DVEFKSGAGTELSVRAKPS

Amino Acid Sequence of Vh CD16scFv (3G8 Clone) (SEQ ID NO: 2):

QVTLKESGPGILQPSQTLSLTCSFSGFSLRTSGMGVGWIRQPSGKGLEWL
AHIWWDDDKRYNPALKSRLTISKDTSSNQVFLKIASVDTADTATYYCAQI
NPAWFAYWGQGTLVTVSA

Amino Acid Sequence of Vl CD16scFv (3G8 Clone) (SEQ ID NO: 3):

DTVLTQSPASLAVSLGQRATISCKASQSVDFDGDSFMNWYQQKPGQPPKL
LIYTTSNLESGIPARFSASGSGTDFTLNIHPVEEEDTATYYCQQSNEDPY
TFGGGTKLEIK

Amino Acid Sequence of Vl CD33scFv (SEQ ID NO: 4):

DIQLTQSPSTLSASVGDRVTITCRASESLDNYGIRFLTWFQQKPGKAPKL
LMYAASNQGSGVPSRFSGSGSGTEFTLTISSLQPDDFATYYCQQTKEVPW
SFGQGTKVEVK

Extracted CDRS for light chain are:

CDRL1: RASESLDNYGIRFLT (SEQ ID NO: 29)

CDRL2: AASNQGS (SEQ ID NO: 30)

CDRL3: QQTKEVPWS (SEQ ID NO: 31)

Amino Acid Sequence of Vh CD33scFv (SEQ ID NO: 5):

EVQLVQSGAEVKKPGSSVKVSCKASGYTITDSNIHWVRQAPGQSLEWIGY
IYPYNGGTDYNQKFKNRATLTVDNPTNTAYMELSSLRSEDTAFYYCVNGN
PWLAYWGQGTLVTVSS

Extracted CDRS for heavy chain are:

CDRH1: DSNIH (SEQ ID NO: 32)

CDRH2: YIYPYNGGTDYNQKFKN (SEQ ID NO: 33)

CDRH3: GNPWLAY (SEQ ID NO: 34)

Between the checkpoint binding module (third binding site, e.g. Sirp-Ig, PD1ex, CTLA4ex, αPDL1), Vh und VI domains and between the scFvs, GGGS-based linkers were included.

Linker Sequences:

(SEQ ID NO: 6)
Gly Gly Gly Ser

and tandem-repeats thereof, n=2-8, (SEQ ID NO: 7-13)

(SEQ ID NO: 14)
Gly Gly Gly Gly Ser

and tandem-repeats thereof, n=2-8, (SEQ ID NO: 15-21)

Sequence Constant Region IgG1 Format (CH1, Hinge, CH2, CH3): (SEQ ID NO: 22)

ASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGV
HTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEP
KSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVS
HEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGK
EYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTC
LVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRW
QQGNVFSCSVMHEALHNHYTQKSLSLSPGK

Sequence Constant Region of the Light Chain (CL): (SEQ ID NO: 23)

VAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNS
QESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSF
NRGEC

Sequence Constant Region IgG1 Format; Fc-Engineered (SEQ ID NO: 24)

Examplarily used mutations: S239D and 1332E (shown below in bold) EU numbering according to Kabat, E. A., Wu, T. T., Perry, H. M., Gottesman, K. S. & Foeller, C. (1991) Sequences of Proteins of Immunological Interest (U.S.Dept.ofHealthandHum. Serv., Bethesda)

The used mutations in this example were S239D and I332E, but others may also be used.

ASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGV
HTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEP
KSCDKTHTCPPCPAPELLGGPDVFLFPPKPKDTLMISRTPEVTCVVVDVS
HEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGK
EYKCKVSNKALPAPEEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTC
LVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRW
QQGNVFSCSVMHEALHNHYTQKSLSLSPGK

Fc-engineered mutations may be produced and used for example in accordance with: Engineered antibody Fc variants with enhanced effector function Greg A. Lazar, Wei Dang, Sher Karki, Omid Vafa, Judy S. Peng, Linus Hyun, Cheryl Chan, Helen S. Chung, Araz Eivazi, Sean C. Yoder, Jost Vielmetter, David F. Carmichael, Robert J. Hayes, and Bassil I. Dahiyat

Sequence Used for PD1ex (Extracellular Domain of PD1) (SEQ ID NO: 25)

NPPTFSPALLVVTEGDNATFTCSFSNTSESFVLNWYRMSPSNQTDKLAAF
PEDRSQPGQDCRFRVTQLPNGRDFHMSVVRARRNDSGTYLCGAISLAPKA
QIKESLRAELRVTERRA

Sequence Used for αPDL1 (Anti-PDL1; SEQ ID NO: 26 & 27)

V1 PDL1 scFv
(SEQ ID NO: 26)
DIQMTQSPSSLSASVGDRVTITCRASQDVSTAVAWYQQKPGKAPKLLIYS
ASFLYSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQYLYHPATFGQ
GTKVEIKR
Vh PDL1 scFv
(SEQ ID NO: 27)
EVQLVESGGGLVQPGGSLRLSCAASGFTFSDSWIHWVRQAPGKGLEWVAW
ISPYGGSTYYADSVKGRFTISADTSKNTAYLQMNSLRAEDTAVYYCARRH
WPGGFDYWGQGTLVTVSA

SEQ ID NO: 28 is the combination of SEQ ID NO: 26 and 27 with a (GGGGS)4-linker in between.

SEQ ID NO: 22 is the sequence for the constant regions of the IgG1 format and includes the domains CH1, hinge, CH2 and CH3; this is the wildtype sequence. In contrast thereto, SEQ ID NO: 24 shows the same sequence for the constant regions of the IgG1 format but with mutations S239D and 1332E; this is the mutated sequence for producing an Fc-engineered fragment. This is also the sequence which was used in embodiments of the present disclosure; the mutations are located in the CH2 domain. The Fc-fragment and the Fc-engineered fragment consist of domains CH2 and CH3 only. In all of these constant regions of the IgG1 format, the numbering according to Kabat is used. In SEQ ID NO: 24 the entire constant region including domains CH1, hinge, CH2 and CH3 is shown; however, it is clear to a person skilled in the art that the corresponding Fc-engineered fragment only contains the respective CH2 and CH3 domains.

For the various molecules according to the present invention a number of linkers were used, shown herein as SEQ ID NO: 6-SEQ ID NO: 21. SEQ ID NO: 6 is a GGGS-linker and SEQ ID NO: 7-13 are tandem repeats thereof, wherein the linker occurs 2-8 times, SEQ ID NO: 14 is a GGGGS-linker and SEQ ID NO: 15-21, again, are tandem repeats thereof, wherein the linker occurs 2-8 times. These linkers allow for an occurrence of respective domains/binding sites (first binding site, second binding site and third binding site) within molecules (liCADs and licMABs) of the present invention.

PDL1 as used herein refers to the programmed death-ligand 1 which binds to its corresponding receptor PD1. “PD1ex” is the extracellular domain of PD1.

The liCADs were expressed in Drosophila melanogaster Schneider 2 (S2) cells and purified from the insect cell medium after secretion. The purification strategy included a capture step (Ni-NTA affinity chromatography) via the N-terminal hexa-histidine (6×HIS) tag, followed by anion exchange (IEC) and size exclusion chromatography (SEC), resulting in monomeric soluble protein (FIG. 4B).

For binding tests using flow cytometry, cells expressing CD47, CD33 or CD16, respectively, were incubated with the purified liCADs for 30 minutes on ice. Unbound protein was washed away and bound protein was detected using an Alexa488-conjugated antibody specific for the 6×HIS tag. Cells were again incubated for 30 minutes on ice, washed twice and subsequently analysed in a Guava easyCyte 6HT (Merck Millipore).

These experiments confirmed binding of SirpIg, anti-CD16 scFv and anti-CD33 scFv to their respective binding partners/antigens (i.e. binding of Sirp-Ig to CD47, binding of anti-CD16 scFv to CD16 and binding of anti-CD33 scFv to CD33) (see FIGS. 5 and 6).

liCAD-Induced Redirected Lysis of Tumor Cells

In this experiment, it was tested whether the prepared liCAD molecules would indeed induce tumor cell killing by the recruitment of NK cells in vitro. To this end, a redirected lysis (RDL) assay was carried out with the MOLM 13 cell line, which expresses CD33 and CD47 at high level. The RDL assay functions analogous to an antibody dependent cellular cytotoxicity (ADCC) assay, but recruitment and activation of NK cells is not mediated by the Fc domain of an antibody, but by the scFv against CD16. As effector cells, isolated peripheral blood mononuclear cells (PBMCs) that had been expanded as described previously (Alici et al., 2008) were used. Effector cells and calcein labeled target cells were mixed in a ratio of 2:1 and incubated with increasing protein concentrations for 4 hours at 37° C./5% CO2. Afterwards fluorescence intensity of calcein was measured from the cell supernatant using the Infinite M1000 PRO (Tecan) plate reader.

The results are shown in FIG. 7. As expected, molecules targeting CD47 and CD33 simultaneously show improved cell lysis (FIG. 7A) compared to monospecific molecules only targeting CD33. Further, we determined the EC50 values (concentrations of half maximum lysis) by dose response curves. EC50 values achieved for the liCADs were 1.5 μM and 22 μM for the double SIRP-Ig and single SIRP-Ig, respectively. Thus, it is possible to regulate the degree of checkpoint inhibition. This is advantageous for systemic administration in vivo. In comparison to the control molecules (triplebody) the liCADs achieved a similar range of specific lysis.

As CD47 is a marker of self and thus expressed on every cell, it is necessary to avoid killing all CD47 positive cells. To this end, a preferential RDL assays was carried out to show that liCADs preferentially eliminate CD47/CD33 double positive cells over CD47 single positive cells (FIGS. 7B and 7C).

The preferential lysis assay was carried out using CD47+ single positive HEK cells mixed with CD47+, CD33+ double positive HEK cells. Effector cells and calcein stained target cells (one reaction with single positive stained and one reaction with double positive stained) were mixed in a 2:1 ratio again and incubated with the maximal used protein concentration in the redirected lysis assay or with the evaluated EC50 value for 4 hours at 37° C./5% CO2. Afterwards fluorescence intensity of calcein was measured from the cell supernatant using the Infinite M1000 PRO (Tecan) plate reader.

As shown in FIGS. 7B and 7C, CD47+CD33+ HEK cells are preferentially killed in case of the Sirp-Ig-CD16-CD33 and Sirp-Ig-Sirp-Ig-CD16-CD33 liCAD, but not in case of a control triplebody that targets CD47 with high affinity. Moreover, our low affinity molecules are comparable to a bispecific control that does not target CD47 and at the EC50 value these molecules do not redirect killing of CD47+ cells at all in contrast to the triplebody control.

Phagocytosis Assay

Besides expression on NK cells, CD16 is also expressed on macrophages. Therefore, it was investigated if the liCADs can recruit macrophages as effector cells. To support the results seen in the RDL assays, it was analyzed if the prepared liCADs affect phagocytosis.

Regarding the tri-specific molecules (SIRP-Ig-αCD16-αCD33 and SIRP-Ig-SIRP-Ig-αCD16-αCD33) it was hypothesized that macrophages may be activated through CD16 signaling. Hence, an increase in phagocytosis should mainly be dependent on the SIRPα-CD47 interaction. Consequently, the liCADs combine tumor cell targeting via CD33 together with a local immune checkpoint inhibition through their low binding affinity for CD47.

A phagocytosis assay was performed generating M2 macrophages for 5 days in culture and incubation of macrophages with MOLM13 target cells in a 1:2 ratio. Cells were mixed and incubated with increasing amount of LiCAD concentration in serum free conditions for 2 hours at 37° C./5% CO2. Afterwards cells were collected and FACS analyzed for macrophages that had taken up target cells.

As shown in FIG. 8 the Sirp-Ig-Sirp-Ig-CD16-CD33 liCAD is better in mediating phagocytosis compared to the Sirp-Ig-CD16-CD33 molecule, which suggests indeed an additive effect of the blocking by Sirp-Ig. Overall both liCAD molecules perform considerably better than a conventional used mAB against CD47. As a control, Sirp-Ig only was used to test if blocking of the immune checkpoint alone is enough to induce phagocytosis, which is not the case.

Tables

TABLE 1
Exemplary antibody formats used in clinical therapy or studies, respectively
EffectorTumorCheckpoint
FormatfunctionspecificinhibitionExample
IgG++Herceptin (α-Her2)
targetingRituximab (α-CD20)
tumor
antigen
IgG++Ipilimumab, Tremelimumab
targeting(α-CTLA4)
immuneCT-011 (α-PD1)
checkpointBMS-936558, MPDL3280A
(α-PDL1)
IgG+++Ipilimumab + Bevaeizumab
(α-CTLA4 + α-VEGF)
Galiximab + Rituximab
(α-PDL1 + α-CD20)
CT-011 + Rituximab
(α-PD1 + α-CD20)
bisepcific++Catumaxotnab
IgG(α-CD3 × α-EpCAM)
Ertumaxumab
(α-CD3 × α-Her2)
F(ab′)2+MDX-2120, MDX-H210
(α-CD64 × α-HER2)
MDX-447
(α-CD64 × α-EGFR)
Minibody++Sirpα - Fc fusions
BiTE+++Blinaturnomab
α-CD3 × α-CD19
AMG330
α-CD3 × α-CD33
Triplebody++++SPM-2
(α-CD123 × α-CD16
α-CD33)

In FIGS. 25-27, antibody constant domains are shown as white rectangles. Variable heavy and light chains are shown in white (tumor antigen specific), dotted (effector cell specific) and dashed line rounded rectangles (immune checkpoint specific). White spikes represent endogenous extracellular domains of immune checkpoint receptors. BiTE, bispecific T cell engager; F(ab′)2, Fragment antigen binding; IgG, immunoglobulin G. Single chain fragment variables (scFv) are depicted as two rounded rectangles with a diagonal black line across (e.g. the triplebody at the bottom of the table includes three scFv).

TABLE 2
Examples of tumor specific makers, related
disease and available immunotherapy format
AntigenDisease
CD19NHL, B-ALL
CD20B cell lymphoma
Her2/neuBreast cancer
CD123AML
CEAGastrointestinal cancer, lung cancer
EPCAMOvarian cancer, colorectal cancer

TABLE 3
Cell surface molecules on different immune effector cells
Immune cellsSurface receptors
T cellsCD3, TCRαβ,
Nk cellsCD16, NKG2D, NKp30, NKp40, LFA1
MacrophagesCD89, CD64, CD32a, CD15a, CD16
MonocytesCD89, CD64, CD32a, CD15a, CD16
Neutrophilic GranulocytesCD89, CD64, CD32a, CD16

TABLE 4
Examples for molecules according to the invention
EffectorTumorCheckpointEffector
Formatfunctionspecificityfunctionrecruitment
liCAD++++++
liCAD+++++++
licMAB++++++
licMAB[Figure (not displayed)] +++++
Fc
engineered
licMAB+++++++

In FIGS. 28-29, variable heavy and light chains are shown in white (tumor antigen specific) and black (effector cell specific). White spikes represent endogenous extracellular domains of immune checkpoint receptors (FIGS. 28A-28B and 29A-29C).

The first molecule comprises a SIRPα-Ig linked to a tumor cell-specific and an immune cell-specific scFv. The second molecule comprises two SIRPα-Igs linked to a tumor cell-specific and an immune cell-specific scFv. The third molecule consists of an IgG antibody with variable domains having binding specificity for the tumor cell and further linked to two SIRPα-Igs.

Patent 2022
Not available on PMC !

Example 7

To generate a non-thrombogenic, iPSC derived platelet-like chassis, genes encoding key components of the endogenous thrombotic process must be deleted. In this instance, the genes targeted were Cox1, GPVI, HPS1, ITGA2B, P2Y12, Par1 and Par4. CRISPR/Cas9 mediated IN/DEL generation was chosen as the method for gene knock-out (KO). First, guides were designed to target Cas9 nuclease to the above mentioned targets (FIG. 1A). Four guides were designed per target, and nucleofected as complex with the Cas9 protein into iPSCs, and their gene editing efficiency within the pool measured by Sanger sequencing and TIDE or the Synthego ICE algorithm. High efficiency guides resulting in >80% KO of each target were identified in the guide screen (FIG. 1B). These guides generated reproducibly high editing efficiency (FIG. 1C).
To generate the non-thrombogenic chassis producing iPSC line, these KOs must all be introduced into the same cell. To achieve this, a sequential editing protocol was designed (FIG. 2A). In brief, Cas9 RNP complexes featuring the high efficiency guides identified previously were nucleofected into the same population of iPSCs sequentially, with 3-4 days rest between each nucleofection. This protocol did not produce an adverse effect on cell viability or growth throughout the ˜3.5 week process (FIG. 2B). Gene KO was quantified for each target hit previously throughout the sequential nucleofection protocol. No gene KO dilution was observed (as might occur if the KO itself was detrimental), and surprisingly high gene editing efficiencies were observed for all targets (>94% for all targets except COX1) (FIG. 2C). Following the sequential KO protocol, single cells were sorted into a 96 well plate and allowed to grow up forming clonal colonies. These colonies were subsequently isolated and sequenced. Three 7×KO clones were identified (FIG. 3).
Given the number of megakaryocyte (MK) specific genes KO'd within these iPSCs, it remained unclear as to whether these iPSCs would still be able to differentiate into MK like cells. To understand this, iPSCs were forward programmed into MKs by doxycycline mediated induction of MK specific transcription factors GATA1, TAL1 and FLI1. Cell surface expression of known, well defined MK markers and viability was assayed during the forward programming process (FIGS. 4A and B). This study was performed in the pool of 7×KO MKs, but given the exceedingly high editing efficiencies within the pool it is likely >90% of cells feature at least 6 KOs. We observed no effect on forward programming efficiency or MK viability during the forward programming process. CD41 is ITGA2B, one of our target genes. Thus the lack of CD41 expression within the 7×KO population validated the protein level KO of this gene as predicted by our sequencing based approach.
To validate the non-thrombogenicity of our 7×KO MKs, and also their retained function, we studied their degranulation response to known platelet agonists. MKs contain the same core signal transduction machinery, plasma membranes and components as platelets (given platelets are fragments of MKs), and thus MKs were used here as a surrogate for actual platelets. It is expected that the results seen in MKs would translate directly to platelets. To assay for degranulation, cell surface P-Selectin exposure was used as a marker. P-Selectin is an alpha-granule membrane protein, and is not usually present on the platelet surface. Upon platelet activation, alpha-granules fuse with the plasma membrane and exocytose their contents (degranulation), and their membrane components mix with the plasma membrane. P-Selectin thus becomes exposed and detectable by fluorescent antibody mediated staining. Resting 7×KO MKs feature lower basal levels of P-Selectin exposure than unedited wildtype MKs (FIG. 5A). Upon stimulation with two classical platelet agonists, CRP and TRAP6 (which signal through GPVI and PAR1 respectively—both KO'd in the 7×KO pool), no increase in P-Selectin staining was observed in the 7×KO MK pool. This is in contrast to the unedited MKs, which increased their P-Selectin and also appeared began to form small aggregates of cells (FIG. 5B). Importantly, upon stimulation of the 7×KO MKs with PMA, an agonist that bypasses the signaling pathways removed within the 7×KO line, 7×KO MKs exposed P-Selectin as well if not better than unedited MKs (FIG. 5C). Taken together, these activation experiments and the cell surface marker experiments discussed previously demonstrate that deletion of our candidate non-thrombogenic genes in iPSCs does not perturb their ability to differentiate into MK like cells, and does not disrupt the ability of MKs to degranulate in response to non-deleted signal transduction mechanisms.
Platelets contain ITAM domain containing receptors—specifically CLEC2, FCERG and FCGR2A. CLEC2 is a type-II membrane protein, whilst FCERG and FCGR2A are type-I membrane proteins. Type-I membrane proteins are amenable to fusion with scFV antibody domains (and other N-terminal targeting mechanisms). Chimeric platelet receptors (CPRs) were thus designed as fusions between an scFV targeting the B cell antigen CD19 derived from the FMC63 antibody, a hinge domain, and the transmembrane and cytoplasmic domains of FCERG and FCGR2A. This yielded four potential receptor designs (FIG. 6A). These designs were inserted into lentiviral expression vectors as a multicistronic construct, with an mCherry fluorescent protein linked by a T2A peptide splitting sequence (FIG. 6B). Viral particles were transduced onto iPSCs, and transduction efficiency examined by mCherry expression. Notable mCherry expression was detected across all four lentiviral expression vectors, and was not present in the untransduced control (FIG. 6C).
To validate that the receptor itself was expressed and cell surface localised, virally transduced iPSCs were stained with recombinant CD19 fluorescently labelled with FITC. CD19-FITC should only label iPSCs if they express the anti-CD19 scFV on their cell surface, in the correct orientation. Notably, colonies positive for transduction (i.e. mCherry positive) were also positive for CD19-FITC, indicating that the designed CPRs fold and correctly localise to the plasma membrane of the cells expressing them (FIG. 7).
A clonal high CPR3 expressing iPSC line was forward programmed into MKs. Expression of the CPR3 construct did not impact the ability for iPSCs to forward program, as all classical MK specific markers were expressed within these cells. MK viability was not impacted by CPR3 expression either (FIG. 8A). Note that CD41 is clonally KO'd within these cells, and thus the lack of its expression is expected. To validate that CPR3 was expressed and that this expression was maintained on the MK cell surface, CD19-FITC staining was conducted (FIG. 8B). CPR surface expression was observed, indicating MK differentiation did not silence the lentiviral expression construct, or somehow alter receptor localisation.
To study the functionality of the CPR, CPR3 expressing MKs and control untransduced MKs were mixed with a CD19 expressing B cell leukaemia line (BJABs) or CD19 negative T cell leukaemia line (Jurkats) and P-Selectin exposure was measured as before. Microscopy imaging of mixed cell populations demonstrated increased P-Selectin exposure specifically within CPR3 expressing MKs when mixed with the CD19+ve BJABs (FIG. 9A). This was result was confirmed quantitatively by FACS based measurement of P-Selectin exposure (FIGS. 9B and C). BJAB cells do not activate untransduced MKs, and CD19 negative Jurkats do not activate CPR3 expressing MKs. These results demonstrate that the CPR3 construct specifically stimulates MK degranulation in response to triggering by CD19 positive BJAB cells. Given that platelets are cytoplasmic fragments of MKs and the core signalling machinery is shared between them (given the shared cytoplasm), it is expected that these results should translate into platelets when produced from CPR3 expressing MKs. Additionally, given our observation that 7×KO MKs retain the ability to activate and degranulate in response to agonists that have not had their cognate receptors deleted, it is expected that CPR3 expression within a 7×KO line should trigger its degranulation upon mixing with CD19 positive cells. Given the swappable nature of the external CPR targeting domain, target specificity could be altered by swapping the anti-CD19 scFV for alternative targeting mechanisms, while retaining the same internal signalling domain that has been shown here to trigger MK degranulation on target engagement.
Example Embodiments

1. A chimeric platelet receptor (CPR) comprising:

(a) a first region encoded by a nucleic acid sequence selected from the group consisting of SEQ ID NO: 1-19, 24-47, and 52-55; and

(b) a second region selected from the group consisting of: (i) a linker or targeting domain encoded by a nucleic acid sequence selected from the group consisting of SEQ ID NO: 48-51; (ii) at least a portion of a protein selected from the group consisting of: myelin oligodendrocyte glycoprotein (MOG), glutamic acid decarboxylase 2 (GAD65), myelin associated glycoprotein (MAG), peripheral myelin protein 22 (PMP22), thyroid peroxidase (TPO), voltage-gated potassium channel (VGKC), proteolipid protein (PLP), acetylcholine receptor (AChR), tribbles pseudokinase 2 (TRIB2), N-methyl-D-aspartate (NMDA)-type glutamate receptor (GluR), glutamate decarboxylase 2 (GAD2), Armadillo repeat containing 9 (ARMC9), Cytochrome P450 Family 21 Subfamily A Member 2 (CYP21A2), calcium sensing receptor (CASR), nuclear autoantigenic sperm protein (NASP), insulin, thyroid stimulating hormone receptor (TSHR), thyroperoxidase, asioglycoprotein receptor, Cytochrome P450 Family 2 Subfamily D Member 6 (CYP2D6), lactoferrin (LF), tissue trans-glutaminase (TTG), H/K ATP-ase, Factor XIII (F8), beta2-glycoprotein I (Beta2-GPI), erythrocyte I/I, B2 integrin (ITGB2), granulocyte-colony stimulating factor (G-CSF), glycoprotein (GP) IIb/IIa, collagen II (COLII), fibrinogen (FBG) βα, myeloperoxidase (MPO), cardiac myosin (CYO), proteinase 3 (PRTN3), trichohyalin (TCHH), bullous pemphigoid associated (BP), glycoprotein 1 (GPI), laminin-332 (LM332), transglutaminase (TGM), type VII collagen (COLVII), P80 Coilin (COIL), Desmoglein I (DSG1), Desmoglein III (DSG3), SRY-Box 10 (SOX10), small nuclear ribonucleoprotein U1 subunit (70SNRNP70), S-antigen (SAG), and Collagen alpha-3(IV) chain (α3(IV)NC1 collagen); (iii) at least a portion of an antibody selected from the group consisting of; 3F8, 8H9, Abagovomab, Abciximab, Abituzumab, Abrezekimab, Abrilumab, Actoxumab, Adalimumab, Adecatumumab, Atidortoxumab, Aducanumab, Afasevikumab, Afelimomab, Alacizumab pego, Alemtuzumab, Alirocumab, Altumomab pentetate, Amatuximab, Anatumomab mafenatox, Andecaliximab, Anetumab ravtansine, Anifrolumab, Anrukinzumab, Apolizumab, Aprutumab ixadotin, Arcitumomab, Ascrinvacumab, Aselizumab, Atezolizumab, Atinumab, Atorolimumab, Avelumab, Azintuxizumab vedotin, Bapineuzumab, Basiliximab, Bavituximab, BCD-100, Bectumomab, Begelomab, Belantamab mafodotin, Belimumab, Bemarituzumab, Benralizumab, Berlimatoxumab, Bermekimab, Bersanlimab, Bertilimumab, Besilesomab, Bevacizumab, Bezlotoxumab, Biciromab, Bimagrumab, Bimekizumab, Birtamimab, Bivatuzumab mertansine, Bleselumab, Blinatumomab, Blontuvetmab, Blosozumab, Bococizumab, Brazikumab, Brentuximab vedotin, Briakinumab, Brodalumab, Brolucizumab, Brontictuzumab, Burosumab, Cabiralizumab, Camidanlumab tesirine, Camrelizumab, Canakinumab, Cantuzumab mertansine, Cantuzumab ravtansine, Caplacizumab, Capromab pendetide, Carlumab, Carotuximab, Catumaxomab, cBR96-doxorubicin immunoconjugate, Cedelizumab, Cemiplimab, Cergutuzumab amunaleukin, Certolizumab pegol, Cetrelimab, Cetuximab, Cibisatamab, Cirmtuzumab, Citatuzumab bogatox, Cixutumumab, Clazakizumab, Clenoliximab, Clivatuzumab tetraxetan, Codrituzumab, Cofetuzumab pelidotin, Coltuximab ravtansine, Conatumumab, Concizumab, Cosfroviximab, Crenezumab, Crizanlizumab, Crotedumab, CR6261, Cusatuzumab, Dacetuzumab, Daclizumab, Dalotuzumab, Dapirolizumab pegol, Daratumumab, Dectrekumab, Demcizumab, Denintuzumab mafodotin, Denosumab, Depatuxizumab mafodotin, Derlotuximab biotin, Detumomab, Dezamizumab, Dinutuximab, Diridavumab, Domagrozumab, Dorlimomab aritox, Dostarlimab, Drozitumab, DS-8201, Duligotuzumab, Dupilumab, Durvalumab, Dusigitumab, Duvortuxizumab, Ecromeximab, Eculizumab, Edobacomab, Edrecolomab, Efalizumab, Efungumab, Eldelumab, Elezanumab, Elgemtumab, Elotuzumab, Elsilimomab, Emactuzumab, Emapalumab, Emibetuzumab, Emicizumab, Enapotamab vedotin, Enavatuzumab, Enfortumab vedotin, Enlimomab pegol, Enoblituzumab, Enokizumab, Enoticumab, Ensituximab, Epitumomab cituxetan, Epratuzumab, Eptinezumab, Erenumab, Erlizumab, Ertumaxomab, Etaracizumab, Etigilimab, Etrolizumab, Evinacumab, Evolocumab, Exbivirumab, Fanolesomab, Faralimomab, Faricimab, Farletuzumab, Fasinumab, FBTA05, Felvizumab, Fezakinumab, Fibatuzumab, Ficlatuzumab, Figitumumab, Firivumab, Flanvotumab, Fletikumab, Flotetuzumab, Fontolizumab, Foralumab, Foravirumab, Fremanezumab, Fresolimumab, Frovocimab, Frunevetmab, Fulranumab, Futuximab, Galcanezumab, Galiximab, Gancotamab, Ganitumab, Gantenerumab, Gatipotuzumab, Gavilimomab, Gedivumab, Gemtuzumab ozogamicin, Gevokizumab, Gilvetmab, Gimsilumab, Girentuximab, Glembatumumab vedotin, Golimumab, Gomiliximab, Gosuranemab, Guselkumab, Ianalumab, Ibalizumab, IBI308, Ibritumomab tiuxetan, Icrucumab, Idarucizumab, Ifabotuzumab, Igovomab, Iladatuzumab vedotin, IMAB362, Imalumab, Imaprelimab, Imciromab, Imgatuzumab, Inclacumab, Indatuximab ravtansine, Indusatumab vedotin, Inebilizumab, Infliximab, Intetumumab, Inolimomab, Inotuzumab ozogamicin, Ipilimumab, Iomab-B, Iratumumab, Isatuximab, Iscalimab, Istiratumab, Itolizumab, Ixekizumab, Keliximab, Labetuzumab, Lacnotuzumab, Ladiratuzumab vedotin, Lampalizumab, Lanadelumab, Landogrozumab, Laprituximab emtansine, Larcaviximab, Lebrikizumab, Lemalesomab, Lendalizumab, Lenvervimab, Lenzilumab, Lerdelimumab, Leronlimab, Lesofavumab, Letolizumab, Lexatumumab, Libivirumab, Lifastuzumab vedotin, Ligelizumab, Loncastuximab tesirine, Losatuxizumab vedotin, Lilotomab satetraxetan, Lintuzumab, Lirilumab, Lodelcizumab, Lokivetmab, Lorvotuzumab mertansine, Lucatumumab, Lulizumab pegol, Lumiliximab, Lumretuzumab, Lupartumab amadotin, Lutikizumab, Mapatumumab, Margetuximab, Marstacimab, Maslimomab, Mavrilimumab, Matuzumab, Mepolizumab, Metelimumab, Milatuzumab, Minretumomab, Mirikizumab, Mirvetuximab soravtansine, Mitumomab, Modotuximab, Mogamulizumab, Monalizumab, Morolimumab, Mosunetuzumab, Motavizumab, Moxetumomab pasudotox, Muromonab-CD3, Nacolomab tafenatox, Namilumab, Naptumomab estafenatox, Naratuximab emtansine, Narnatumab, Natalizumab, Navicixizumab, Navivumab, Naxitamab, Nebacumab, Necitumumab, Nemolizumab, NEOD001, Nerelimomab, Nesvacumab, Netakimab, Nimotuzumab, Nirsevimab, Nivolumab, Nofetumomab merpentan, Obiltoxaximab, Obinutuzumab, Ocaratuzumab, Ocrelizumab, Odulimomab, Ofatumumab, Olaratumab, Oleclumab, Olendalizumab, Olokizumab, Omalizumab, Omburtamab, OMS721, Onartuzumab, Ontuxizumab, Onvatilimab, Opicinumab, Oportuzumab monatox, Oregovomab, Orticumab, Otelixizumab, Otilimab, Otlertuzumab, Oxelumab, Ozanezumab, Ozoralizumab, Pagibaximab, Palivizumab, Pamrevlumab, Panitumumab, Pankomab, Panobacumab, Parsatuzumab, Pascolizumab, Pasotuxizumab, Pateclizumab, Patritumab, PDR001, Pembrolizumab, Pemtumomab, Perakizumab, Pertuzumab, Pexelizumab, Pidilizumab, Pinatuzumab vedotin, Pintumomab, Placulumab, Plozalizumab, Pogalizumab, Polatuzumab vedotin, Ponezumab, Porgaviximab, Prasinezumab, Prezalizumab, Priliximab, Pritoxaximab, Pritumumab, PRO 140, Quilizumab, Racotumomab, Radretumab, Rafivirumab, Ralpancizumab, Ramucirumab, Ranevetmab, Ranibizumab, Raxibacumab, Ravagalimab, Ravulizumab, Refanezumab, Regavirumab, Relatlimab, Remtolumab, Reslizumab, Rilotumumab, Rinucumab, Risankizumab, Rituximab, Rivabazumab pegol, Robatumumab, Rmab, Roledumab, Romilkimab, Romosozumab, Rontalizumab, Rosmantuzumab, Rovalpituzumab tesirine, Rovelizumab, Rozanolixizumab, Ruplizumab, SA237, Sacituzumab govitecan, Samalizumab, Samrotamab vedotin, Sarilumab, Satralizumab, Satumomab pendetide, Secukinumab, Selicrelumab, Seribantumab, Setoxaximab, Setrusumab, Sevirumab, Sibrotuzumab, SGN-CD19A, SHP647, Sifalimumab, Siltuximab, Simtuzumab, Siplizumab, Sirtratumab vedotin, Sirukumab, Sofituzumab vedotin, Solanezumab, Solitomab, Sonepcizumab, Sontuzumab, Spartalizumab, Stamulumab, Sulesomab, Suptavumab, Sutimlimab, Suvizumab, Suvratoxumab, Tabalumab, Tacatuzumab tetraxetan, Tadocizumab, Talacotuzumab, Talizumab, Tamtuvetmab, Tanezumab, Taplitumomab paptox, Tarextumab, Tavolimab, Tefibazumab, Telimomab aritox, Telisotuzumab vedotin, Tenatumomab, Teneliximab, Teplizumab, Tepoditamab, Teprotumumab, Tesidolumab, Tetulomab, Tezepelumab, TGN1412, Tibulizumab, Tildrakizumab, Tigatuzumab, Timigutuzumab, Timolumab, Tiragotumab, Tislelizumab, Tisotumab vedotin, TNX-650, Tocilizumab, Tomuzotuximab, Toralizumab, Tosatoxumab, Tositumomab, Tovetumab, Tralokinumab, Trastuzumab, Trastuzumab emtansine, TRBS07, Tregalizumab, Tremelimumab, Trevogrumab, Tucotuzumab celmoleukin, Tuvirumab, Ublituximab, Ulocuplumab, Urelumab, Urtoxazumab, Ustekinumab, Utomilumab, Vadastuximab talirine, Vanalimab, Vandortuzumab vedotin, Vantictumab, Vanucizumab, Vapaliximab, Varisacumab, Varlilumab, Vatelizumab, Vedolizumab, Veltuzumab, Vepalimomab, Vesencumab, Visilizumab, Vobarilizumab, Volociximab, Vonlerolizumab, Vopratelimab, Vorsetuzumab mafodotin, Votumumab, Vunakizumab, Xentuzumab, XMAB-5574, Zalutumumab, Zanolimumab, Zatuximab, Zenocutuzumab, Ziralimumab, Zolbetuximab, Zolimomab aritox; and (iv) a major histocompatibility complex (MHC) class 1 receptor or a major histocompatibility complex (MHC) class 2 receptor, wherein the MHC class 1 receptor is bound to a peptide derived from a tumor antigen, a neoantigen, or an autoantigen or the MHC class 2 receptor is bound to a peptide derived from a tumor antigen, a neoantigen, or an autoantigen.

2. The chimeric platelet receptor of embodiment 1, wherein the chimeric platelet receptor binds at least one antigen.

3. The chimeric platelet receptor of any one of embodiments 1 and 2, wherein the chimeric platelet receptor binds a tissue in the body of a subject.

4. The chimeric platelet receptor of any one of embodiments 1-3, wherein the chimeric platelet receptor is an ITIM-containing receptor.

5. The chimeric platelet receptor of any one of embodiments 1-4, wherein the chimeric platelet receptor is an ITAM-containing receptor.

6. A therapeutic delivery system comprising:

(a) an engineered platelet presenting the chimeric platelet receptor of any of embodiments 1-5; and

(b) at least one therapeutic agent selected from the group consisting of; a toxin, a protein, a small molecule drug, and a nucleic acid packaged within a vesicle inside the platelet.

7. The therapeutic delivery system of embodiment 6, wherein the engineered platelet is produced from an iPSC progenitor.

8. The therapeutic delivery system of any one of embodiments 6 and 7, wherein the nucleic acid is a mRNA, a miRNA, shRNA, and a clustered regularly interspaced short palindromic repeats (CRISPR) sequence.

9. The therapeutic delivery system of any one of embodiments 6-8, wherein the protein is selected from the group consisting of an antibody, an enzyme, a cytokine, and a CRISPR associated protein 9 (Cas9).

10. The therapeutic delivery system of embodiment 9, wherein the enzyme is a nuclease.

11. The therapeutic delivery system of embodiment 10, wherein the nuclease is a transcription activator-like effector nuclease (TALEN).

12. The therapeutic delivery system of embodiment 9, wherein the antibody binds a tumor antigen or a neoantigen.

13. The therapeutic delivery system of any one of embodiments 6-12, wherein the therapeutic agent is release from the platelet following activation of the platelet by an antigen recognized by the chimeric platelet receptor.

14. A method of treating a disease, disorder, or condition in a subject, the method comprising: administering to the subject the therapeutic delivery system of any of embodiments 6-13, wherein the chimeric receptor is specific to an antigen associated with the disease, disorder, or condition.

15. The method of embodiment 14, wherein the disease, disorder, or condition is selected from the group consisting of; a cancer, an autoimmunity, and an infection.

16. The method of any of embodiments 14 and 15, wherein the cancer is selected from the group consisting of: Acute granulocytic leukemia, Acute lymphocytic leukemia, Acute myelogenous leukemia, Adenocarcinoma, Adenosarcoma, Adrenal cancer, Adrenocortical carcinoma, Anal cancer, Anaplastic astrocytoma, Angiosarcoma, Appendix cancer, Astrocytoma, Basal cell carcinoma, B-Cell lymphoma), Bile duct cancer, Bladder cancer, Bone cancer, Bowel cancer, Brain cancer, Brain stem glioma, Brain tumor, Breast cancer, Carcinoid tumors, Cervical cancer, Cholangiocarcinoma, Chondrosarcoma, Chronic lymphocytic leukemia, Chronic myelogenous leukemia, Colon cancer, Colorectal cancer, Craniopharyngioma, Cutaneous lymphoma, Cutaneous melanoma, Diffuse astrocytoma, Ductal carcinoma in situ, Endometrial cancer, Ependymoma, Epithelioid sarcoma, Esophageal cancer, Ewing sarcoma, Extrahepatic bile duct cancer, Eye cancer, Fallopian tube cancer, Fibrosarcoma, Gallbladder cancer, Gastric cancer, Gastrointestinal cancer, Gastrointestinal carcinoid cancer, Gastrointestinal stromal tumors, General, Germ cell tumor, Glioblastoma multiforme, Glioma, Hairy cell leukemia, Head and neck cancer, Hemangioendothelioma, Hodgkin lymphoma, Hodgkin's disease, Hodgkin's lymphoma, Hypopharyngeal cancer, Infiltrating ductal carcinoma, Infiltrating lobular carcinoma, Inflammatory breast cancer, Intestinal Cancer, Intrahepatic bile duct cancer, Invasive/infiltrating breast cancer, Islet cell cancer, Jaw cancer, Kaposi sarcoma, Kidney cancer, Laryngeal cancer, Leiomyosarcoma, Leptomeningeal metastases, Leukemia, Lip cancer, Liposarcoma, Liver cancer, Lobular carcinoma in situ, Low-grade astrocytoma, Lung cancer, Lymph node cancer, Lymphoma, Male breast cancer, Medullary carcinoma, Medulloblastoma, Melanoma, Meningioma, Merkel cell carcinoma, Mesenchymal chondrosarcoma, Mesenchymous, Mesothelioma, Metastatic breast cancer, Metastatic melanoma, Metastatic squamous neck cancer, Mixed gliomas, Mouth cancer, Mucinous carcinoma, Mucosal melanoma, Multiple myeloma, Nasal cavity cancer, Nasopharyngeal cancer, Neck cancer, Neuroblastoma, Neuroendocrine tumors, Non-Hodgkin lymphoma, Non-Hodgkin's lymphoma, Non-small cell lung cancer, Oat cell cancer, Ocular cancer, Ocular melanoma, Oligodendroglioma, Oral cancer, Oral cavity cancer, Oropharyngeal cancer, Osteogenic sarcoma, Osteosarcoma, Ovarian cancer, Ovarian epithelial cancer, Ovarian germ cell tumor, Ovarian primary peritoneal carcinoma, Ovarian sex cord stromal tumor, Paget's disease, Pancreatic cancer, Papillary carcinoma, Paranasal sinus cancer, Parathyroid cancer, Pelvic cancer, Penile cancer, Peripheral nerve cancer, Peritoneal cancer, Pharyngeal cancer, Pheochromocytoma, Pilocytic astrocytoma, Pineal region tumor, Pineoblastoma, Pituitary gland cancer, Primary central nervous system lymphoma, Prostate cancer, Rectal cancer, Renal cell cancer, Renal pelvis cancer, Rhabdomyosarcoma, Salivary gland cancer, Sarcoma, Sarcoma, bone, Sarcoma, soft tissue, Sarcoma, uterine, Sinus cancer, Skin cancer, Small cell lung cancer, Small intestine cancer, Soft tissue sarcoma, Spinal cancer, Spinal column cancer, Spinal cord cancer, Spinal tumor, Squamous cell carcinoma, Stomach cancer, Synovial sarcoma, T-cell lymphoma), Testicular cancer, Throat cancer, Thymoma/thymic carcinoma, Thyroid cancer, Tongue cancer, Tonsil cancer, Transitional cell cancer, Transitional cell cancer, Transitional cell cancer, Triple-negative breast cancer, Tubal cancer, Tubular carcinoma, Ureteral cancer, Ureteral cancer, Urethral cancer, Uterine adenocarcinoma, Uterine cancer, Uterine sarcoma, Vaginal cancer, and Vulvar cancer.

17. The method of any of embodiments 14-16, further comprising incubating the engineered platelet with the at least one therapeutic agent selected from the group consisting of: a toxin, a protein, and a small molecule drug to produce the therapeutic delivery system.

18. The method of embodiment 17, wherein the nucleic acid is selected from the group consisting of: a mRNA, a miRNA, shRNA, and a clustered regularly interspaced short palindromic repeats (CRISPR) sequence.

19. The method of any one of embodiments 14-18, wherein the protein is selected from the group consisting of an antibody, an enzyme, and a CRISPR associated protein 9 (Cas9).

20. The method of embodiment 19, wherein the enzyme is a nuclease.

21. The method of embodiment 20, wherein the nuclease is a transcription activator-like effector nuclease (TALEN).

22. The method of any of embodiments 17-21, wherein incubating occurs prior to administering.

23. The method of any one of embodiments 14, 15, and 17-22, wherein the disease, disorder, or condition is an autoimmunity selected from the group consisting of: Autoimmune disseminated encephalomyelitis, Autoimmune inner ear disease, Batten disease/Neuronal Ceroid Lipofuscinoses, Chronic inflammatory demyelinating polyneuropathy, Encephalitis lethargica, Anti-basal ganglia, Guillain-Barré syndrome, Hashimoto's Encephalopathy, Anti-TPO, Isaac's syndrome/acquired neuromyotonia, Miller Fisher syndrome Morvan's syndrome, Multiple sclerosis, Myasthenia gravis, Narcolepsy PANDAS, Rasmussen's encephalitis, Stiff-person syndrome, Vogt-Koyanagi-Harada syndrome, Addison's disease, Autoimmune hypoparathyroidism, Autoimmune hypophysitis, Autoimmune oophoritis, Autoimmune orchitis, Autoimmune polyglandular syndrome I (APECED), Autoimmune polyglandular syndrome II, Autoimmune polyglandular syndrome III, Diabetes mellitus, type 1, Graves' disease, Hashimoto's autoimmune thyroiditis, Immunodysregulation, polyendocrinopathy, enteropathy, X-linked, Autoimmune hepatitis type 1, Autoimmune hepatitis type 2, Autoimmune pancreatitis, Coeliac disease, Crohn's disease, Pernicious anemia/atrophic gastritis, Primary biliary cirrhosis, Primary sclerosing cholangitis, Ulcerative colitis, Acquired hemophilia A, Antiphospholipid syndrome, Autoimmune hemolytic anemia, Autoimmune lymphoproliferative syndrome, Autoimmune neutropenia, Evans syndrome, Felty's syndrome, Immune thrombocytopenic purpura, Polymyositis/dermatomyositis, Relapsing polychondritis, Rheumatoid arthritis, Still's disease, Alopecia areata, Bullous pemphigoid, Cicatricial pemphigoid, Dermatitis herpetiformis, Discoid lupus erythematosus, Epidermolysis bullosa acquisita, Linear morphea, Pemphigus foliaceus, Pemphigus vulgaris, Vitiligo, Behçet disease, Churg-Strauss syndrome, Cogan's syndrome, CREST syndrome, Anti-fibrillarin, Essential mixed cryoglobulinemia, Mixed connective tissue disease, POEMS syndrome, Scleroderma, Sjögren's syndrome, Systemic lupus erythematosus, Erythema elevatum diutinum, Kawasaki disease, Microscopic polyangiitis, Polyarteritis nodosa, Rheumatic fever, Takayasu arteritis Temporal arteritis, Wegener's granulomatosis, HLA-B27-associated acute anterior uveitis, Sympathetic ophthalmia, and Goodpasture's disease.

24. An engineered platelet produced from a megakaryocyte comprising a mutation in the nucleic acid sequence resulting in disruption of a vesicle biogenesis pathway or a vesicle release pathway in the platelet, expression of a toxin, or deletion of a platelet receptor, mediator, or signal transduction protein compared to a platelet produced from a megakaryocyte without the mutation.

25. The engineered platelet of embodiment 24, wherein the megakaryocyte is differentiated from an iPSC progenitor or the megakaryocyte is immortalized.

26. The engineered platelet of any one of embodiments 24 and 25, wherein the mutation occurs in a gene encoding a component of the vesicle biogenesis pathway or a vesicle release pathway of the engineered platelet selected from the group consisting of: α-granules, dense granules, and large dense-core vesicle.

27. The engineered platelet of any one of embodiments 24-26, wherein the deletion is of at least one gene selected from the group consisting of; Rab27a (RAS oncogene), HPS (haptoglobin) genes, integrin AIIbB3, GPIb-IX-V (Glycoprotein Ib complexed with glycoprotein IX), Par1 (protease activated receptor 1), Par4 (protease activated receptor 4), P2Y 1 (purinergic receptor P2Y1), P2Y12 (purinergic receptor P2Y12), IP (PGI2R or prostaglandin 12 receptor), TP (TxA2R or Thromboxane A2 Receptor), TLR (toll-like receptor), GPVI, a2B1 (type 1 collagen receptor), GPIIbIIIA (Glycoprotein 11b Platelet Subunit Alpha), CLEC-2 (C-type lectinlike receptor 2), MyD88 (Myeloid Differentiation Primary Response 88), Galphaq (G-protein alpha pathway q), LIMK1 (LIM Domain Kinase 1), vWF (von Willebrand), Fibrinogen, PDGF (platelet derived growth factor), VEGF (vascular endothelial growth factor), Factor V, Factor VIII, Factor XI, Factor XIII, PF4 (platelet factor 4), NAP2 (Nucleosome Assembly Protein 2), Prothrombin, High Molecular Weight Kininogens, Plasminogen activator inhibitor 1, a2-antiplasmin, plasminogen, P-Selectin, CXCL4 (C-X-C motif chemokine ligand 4), CXCL7 (C-X-C motif chemokine ligand 7), FGF (fibroblast growth factor), EGF (elongation growth factor), HGF (hepatocyte growth factor), IGF (insulin-like growth factor), Angipoetin, Thromboxane synthase, PAF (platelet activating factor), cPLA2a, Thromospondin, CD40L, SgIII (Secretogranin III), Endostatin, TGF-β (transforming growth factor beta), Talin1, Kindlins, and ANO6 (Anoctamin 6).

28. The engineered platelet of any one of embodiments 24-27, wherein the deletion is a knock-out of a gene encoding a pro-thrombotic factor.

29. The engineered platelet of embodiment 24, wherein the gene is a β2 microglobulin gene, wherein the deletion results in endogenous MHC class 1 disruption and the generation of a non-immunogenic platelet.

30. The engineered platelet of any one of embodiments 24-29, wherein the mutation reduces the thrombogenic potential of the engineered platelet compared to a platelet produced from a megakaryocyte without the mutation.

31. A method of reducing activity in the immune system of a subject, the method comprising:

(a) administering to the subject an engineered platelet presenting at least one receptor expressing a major histocompatibility complex (MHC) molecule bound to a peptide derived from a tumor antigen, a neoantigen, or an autoantigen; and at least a portion of a domain from an ITAM receptor.

32. The method of embodiment 31, wherein the receptor expresses an MHC class I molecule.

33. The method of embodiment 31, wherein the receptor expresses an MHC class II molecule.

34. The method of any one of embodiments 31-33, wherein the MHC molecule stimulates an immune response to an antigen.

35. The method of embodiment 34, wherein the antigen is associated with at least one disease, disorder, or condition selected from the group consisting of: a cancer, an autoimmunity, and an infection.

36. A method of in vitro production of platelets, the method comprising:

a) transfecting a plurality of induced pluripotent stem cell (iPSC) progenitors with an expression system, wherein the expression system is induced by an agent not found in an iPSC;

b) establishing a megakaryocyte progenitor cell line by contacting the expression system with the agent to expand megakaryocytes;

c) engineering the megakaryocyte to have at least one mutation selected from the group consisting of: insertion of a nucleic sequence encoding a chimeric platelet receptor of any one of embodiments 1-5, insertion of a nucleic acid sequence encoding a toxin, and deletion of a nucleic acid sequence encoding a platelet receptor; and

d) removing the agent from the expression system to induce differentiation of the megakaryocytes into platelets.

37. The method of platelet production of embodiment 36, wherein the mutation results in platelets with less immunogenicity compared to platelets from human donors.

38. The method of platelet production of embodiment 37, wherein the platelet does not function analogously to platelets derived from a human donor.

39. The method of platelet production of any one of embodiments 36-38, wherein the deletion prevents release of cargo in the vesicles of the engineered platelets in response to endogenous platelet activation signals.

40. The method of platelet production of any of embodiments 36-39, wherein the toxin is attached to an α-granule localization signal.

41. The method of platelet production of embodiment 40, wherein the α-granule localization signal directs the toxin to uptake into α-granule vesicles of the engineered platelet.

42. The method of platelet production of any one of embodiments 36-38, further comprising contacting the platelets with at least one selected from the group consisting of: a toxin, and a small molecule drug under conditions to facilitate absorption by the platelet.

43. The method of platelet production of any one of embodiments 36-42, wherein the expression system further comprises a platelet-specific promotors.

44. A method of in vivo gene editing or gene therapy in a subject, the method comprising:

(a) administering to the subject an engineered platelet comprising a chimeric platelet receptor of any one of embodiments 1-5 specific to a tissue to be edited, wherein the engineered platelet is cloaking an adenovirus loaded with genome engineering machinery; and

(b) releasing the genome engineering machinery at the tissue.

45. The method of embodiment 44, wherein the genome engineering machinery is a CRISPR/Cas gene editing system.

46. A use of the therapeutic delivery system of any of embodiments 6-13, wherein the chimeric receptor is specific to an antigen associated with the disease, disorder, or condition in treating a disease, disorder, or condition in a subject.

47. The use of embodiment 46, wherein the disease, disorder, or condition is selected from the group consisting of: a cancer, an autoimmunity, and an infection.

48. The use of embodiment 47, wherein the cancer is selected from the group consisting of: Acute granulocytic leukemia, Acute lymphocytic leukemia, Acute myelogenous leukemia, Adenocarcinoma, Adenosarcoma, Adrenal cancer, Adrenocortical carcinoma, Anal cancer, Anaplastic astrocytoma, Angiosarcoma, Appendix cancer, Astrocytoma, Basal cell carcinoma, B-Cell lymphoma), Bile duct cancer, Bladder cancer, Bone cancer, Bowel cancer, Brain cancer, Brain stem glioma, Brain tumor, Breast cancer, Carcinoid tumors, Cervical cancer, Cholangiocarcinoma, Chondrosarcoma, Chronic lymphocytic leukemia, Chronic myelogenous leukemia, Colon cancer, Colorectal cancer, Craniopharyngioma, Cutaneous lymphoma, Cutaneous melanoma, Diffuse astrocytoma, Ductal carcinoma in situ, Endometrial cancer, Ependymoma, Epithelioid sarcoma, Esophageal cancer, Ewing sarcoma, Extrahepatic bile duct cancer, Eye cancer, Fallopian tube cancer, Fibrosarcoma, Gallbladder cancer, Gastric cancer, Gastrointestinal cancer, Gastrointestinal carcinoid cancer, Gastrointestinal stromal tumors, General, Germ cell tumor, Glioblastoma multiforme, Glioma, Hairy cell leukemia, Head and neck cancer, Hemangioendothelioma, Hodgkin lymphoma, Hodgkin's disease, Hodgkin's lymphoma, Hypopharyngeal cancer, Infiltrating ductal carcinoma, Infiltrating lobular carcinoma, Inflammatory breast cancer, Intestinal Cancer, Intrahepatic bile duct cancer, Invasive/infiltrating breast cancer, Islet cell cancer, Jaw cancer, Kaposi sarcoma, Kidney cancer, Laryngeal cancer, Leiomyosarcoma, Leptomeningeal metastases, Leukemia, Lip cancer, Liposarcoma, Liver cancer, Lobular carcinoma in situ, Low-grade astrocytoma, Lung cancer, Lymph node cancer, Lymphoma, Male breast cancer, Medullary carcinoma, Medulloblastoma, Melanoma, Meningioma, Merkel cell carcinoma, Mesenchymal chondrosarcoma, Mesenchymous, Mesothelioma, Metastatic breast cancer, Metastatic melanoma, Metastatic squamous neck cancer, Mixed gliomas, Mouth cancer, Mucinous carcinoma, Mucosal melanoma, Multiple myeloma, Nasal cavity cancer, Nasopharyngeal cancer, Neck cancer, Neuroblastoma, Neuroendocrine tumors, Non-Hodgkin lymphoma, Non-Hodgkin's lymphoma, Non-small cell lung cancer, Oat cell cancer, Ocular cancer, Ocular melanoma, Oligodendroglioma, Oral cancer, Oral cavity cancer, Oropharyngeal cancer, Osteogenic sarcoma, Osteosarcoma, Ovarian cancer, Ovarian epithelial cancer, Ovarian germ cell tumor, Ovarian primary peritoneal carcinoma, Ovarian sex cord stromal tumor, Paget's disease, Pancreatic cancer, Papillary carcinoma, Paranasal sinus cancer, Parathyroid cancer, Pelvic cancer, Penile cancer, Peripheral nerve cancer, Peritoneal cancer, Pharyngeal cancer, Pheochromocytoma, Pilocytic astrocytoma, Pineal region tumor, Pineoblastoma, Pituitary gland cancer, Primary central nervous system lymphoma, Prostate cancer, Rectal cancer, Renal cell cancer, Renal pelvis cancer, Rhabdomyosarcoma, Salivary gland cancer, Sarcoma, Sarcoma, bone, Sarcoma, soft tissue, Sarcoma, uterine, Sinus cancer, Skin cancer, Small cell lung cancer, Small intestine cancer, Soft tissue sarcoma, Spinal cancer, Spinal column cancer, Spinal cord cancer, Spinal tumor, Squamous cell carcinoma, Stomach cancer, Synovial sarcoma, T-cell lymphoma), Testicular cancer, Throat cancer, Thymoma/thymic carcinoma, Thyroid cancer, Tongue cancer, Tonsil cancer, Transitional cell cancer, Transitional cell cancer, Transitional cell cancer, Triple-negative breast cancer, Tubal cancer, Tubular carcinoma, Ureteral cancer, Ureteral cancer, Urethral cancer, Uterine adenocarcinoma, Uterine cancer, Uterine sarcoma, Vaginal cancer, and Vulvar cancer.

49. The use of any one of embodiments 47 and 48, wherein the disease, disorder, or condition is an autoimmunity selected from the group consisting of: Autoimmune disseminated encephalomyelitis, Autoimmune inner ear disease, Batten disease/Neuronal Ceroid Lipofuscinoses, Chronic inflammatory demyelinating polyneuropathy, Encephalitis lethargica, Anti-basal ganglia, Guillain-Barré syndrome, Hashimoto's Encephalopathy, Anti-TPO, Isaac's syndrome/acquired neuromyotonia, Miller Fisher syndrome Morvan's syndrome, Multiple sclerosis, Myasthenia gravis, Narcolepsy PANDAS, Rasmussen's encephalitis, Stiff-person syndrome, Vogt-Koyanagi-Harada syndrome, Addison's disease, Autoimmune hypoparathyroidism, Autoimmune hypophysitis, Autoimmune oophoritis, Autoimmune orchitis, Autoimmune polyglandular syndrome I (APECED), Autoimmune polyglandular syndrome II, Autoimmune polyglandular syndrome III, Diabetes mellitus, type 1, Graves' disease, Hashimoto's autoimmune thyroiditis, Immunodysregulation, polyendocrinopathy, enteropathy, X-linked, Autoimmune hepatitis type 1, Autoimmune hepatitis type 2, Autoimmune pancreatitis, Coeliac disease, Crohn's disease, Pernicious anemia/atrophic gastritis, Primary biliary cirrhosis, Primary sclerosing cholangitis, Ulcerative colitis, Acquired hemophilia A, Antiphospholipid syndrome, Autoimmune hemolytic anemia, Autoimmune lymphoproliferative syndrome, Autoimmune neutropenia, Evans syndrome, Felty's syndrome, Immune thrombocytopenic purpura, Polymyositis/dermatomyositis, Relapsing polychondritis, Rheumatoid arthritis, Still's disease, Alopecia areata, Bullous pemphigoid, Cicatricial pemphigoid, Dermatitis herpetiformis, Discoid lupus erythematosus, Epidermolysis bullosa acquisita, Linear morphea, Pemphigus foliaceus, Pemphigus vulgaris, Vitiligo, Behçet disease, Churg-Strauss syndrome, Cogan's syndrome, CREST syndrome, Anti-fibrillarin, Essential mixed cryoglobulinemia, Mixed connective tissue disease, POEMS syndrome, Scleroderma, Sjögren's syndrome, Systemic lupus erythematosus, Erythema elevatum diutinum, Kawasaki disease, Microscopic polyangiitis, Polyarteritis nodosa, Rheumatic fever, Takayasu arteritis Temporal arteritis, Wegener's granulomatosis, HLA-B27-associated acute anterior uveitis, Sympathetic ophthalmia, and Goodpasture's disease.

50. A chimeric platelet receptor comprising:

(a) a first region comprising at least a portion of a domain of an ITAM receptor; and

b) a second region comprising region selected from the group consisting of: (i) a linker or targeting domain encoded by a nucleic acid sequence selected from the group consisting of SEQ ID NO: 48-51; (ii) at least a portion of a protein selected from the group consisting of: myelin oligodendrocyte glycoprotein (MOG), glutamic acid decarboxylase 2 (GAD65), myelin associated glycoprotein (MAG), peripheral myelin protein 22 (PMP22), thyroid peroxidase (TPO), voltage-gated potassium channel (VGKC), proteolipid protein (PLP), acetylcholine receptor (AChR), tribbles pseudokinase 2 (TRIB2), N-methyl-D-aspartate (NMDA)-type glutamate receptor (GluR), glutamate decarboxylase 2 (GAD2), Armadillo repeat containing 9 (ARMC9), Cytochrome P450 Family 21 Subfamily A Member 2 (CYP21 A2), calcium sensing receptor (CASR), nuclear autoantigenic sperm protein (NASP), insulin, thyroid stimulating hormone receptor (TSHR), thyroperoxidase, asioglycoprotein receptor, Cytochrome P450 Family 2 Subfamily D Member 6 (CYP2D6), lactoferrin (LF), tissue trans-glutaminase (TTG), H/K ATP-ase, Factor XIII (F8), beta2-glycoprotein I (Beta2-GPI), erythrocyte I/I, B2 integrin (ITGB2), granulocyte-colony stimulating factor (G-CSF), glycoprotein (GP) IIb/IIa, collagen II (COLII), fibrinogen (FBG) pia, myeloperoxidase (MPO), cardiac myosin (CYO), proteinase 3 (PRTN3), trichohyalin (TCHH), bullous pemphigoid associated (BP), glycoprotein 1 (GPI), laminin-332 (LM332), transglutaminase (TGM), type VII collagen (COLVII), P80 Coilin (COIL), Desmoglein I (DSG1), Desmoglein III (DSG3), SRY-Box 10 (SOX10), small nuclear ribonucleoprotein U1 subunit (70SNRNP70), S-antigen (SAG), and Collagen alpha-3(IV) chain (α3(IV)NC1 collagen); (iii) at least a portion of an antibody selected from the group consisting of; 3F8, 8H9, Abagovomab, Abciximab, Abituzumab, Abrezekimab, Abrilumab, Actoxumab, Adalimumab, Adecatumumab, Atidortoxumab, Aducanumab, Afasevikumab, Afelimomab, Alacizumab pego, Alemtuzumab, Alirocumab, Altumomab pentetate, Amatuximab, Anatumomab mafenatox, Andecaliximab, Anetumab ravtansine, Anifrolumab, Anrukinzumab, Apolizumab, Aprutumab ixadotin, Arcitumomab, Ascrinvacumab, Aselizumab, Atezolizumab, Atinumab, Atorolimumab, Avelumab, Azintuxizumab vedotin, Bapineuzumab, Basiliximab, Bavituximab, BCD-100, Bectumomab, Begelomab, Belantamab mafodotin, Belimumab, Bemarituzumab, Benralizumab, Berlimatoxumab, Bermekimab, Bersanlimab, Bertilimumab, Besilesomab, Bevacizumab, Bezlotoxumab, Biciromab, Bimagrumab, Bimekizumab, Birtamimab, Bivatuzumab mertansine, Bleselumab, Blinatumomab, Blontuvetmab, Blosozumab, Bococizumab, Brazikumab, Brentuximab vedotin, Briakinumab, Brodalumab, Brolucizumab, Brontictuzumab, Burosumab, Cabiralizumab, Camidanlumab tesirine, Camrelizumab, Canakinumab, Cantuzumab mertansine, Cantuzumab ravtansine, Caplacizumab, Capromab pendetide, Carlumab, Carotuximab, Catumaxomab, cBR96-doxorubicin immunoconjugate, Cedelizumab, Cemiplimab, Cergutuzumab amunaleukin, Certolizumab pegol, Cetrelimab, Cetuximab, Cibisatamab, Cirmtuzumab, Citatuzumab bogatox, Cixutumumab, Clazakizumab, Clenoliximab, Clivatuzumab tetraxetan, Codrituzumab, Cofetuzumab pelidotin, Coltuximab ravtansine, Conatumumab, Concizumab, Cosfroviximab, Crenezumab, Crizanlizumab, Crotedumab, CR6261, Cusatuzumab, Dacetuzumab, Daclizumab, Dalotuzumab, Dapirolizumab pegol, Daratumumab, Dectrekumab, Demcizumab, Denintuzumab mafodotin, Denosumab, Depatuxizumab mafodotin, Derlotuximab biotin, Detumomab, Dezamizumab, Dinutuximab, Diridavumab, Domagrozumab, Dorlimomab aritox, Dostarlimab, Drozitumab, DS-8201, Duligotuzumab, Dupilumab, Durvalumab, Dusigitumab, Duvortuxizumab, Ecromeximab, Eculizumab, Edobacomab, Edrecolomab, Efalizumab, Efungumab, Eldelumab, Elezanumab, Elgemtumab, Elotuzumab, Elsilimomab, Emactuzumab, Emapalumab, Emibetuzumab, Emicizumab, Enapotamab vedotin, Enavatuzumab, Enfortumab vedotin, Enlimomab pegol, Enoblituzumab, Enokizumab, Enoticumab, Ensituximab, Epitumomab cituxetan, Epratuzumab, Eptinezumab, Erenumab, Erlizumab, Ertumaxomab, Etaracizumab, Etigilimab, Etrolizumab, Evinacumab, Evolocumab, Exbivirumab, Fanolesomab, Faralimomab, Faricimab, Farletuzumab, Fasinumab, FBTA05, Felvizumab, Fezakinumab, Fibatuzumab, Ficlatuzumab, Figitumumab, Firivumab, Flanvotumab, Fletikumab, Flotetuzumab, Fontolizumab, Foralumab, Foravirumab, Fremanezumab, Fresolimumab, Frovocimab, Frunevetmab, Fulranumab, Futuximab, Galcanezumab, Galiximab, Gancotamab, Ganitumab, Gantenerumab, Gatipotuzumab, Gavilimomab, Gedivumab, Gemtuzumab ozogamicin, Gevokizumab, Gilvetmab, Gimsilumab, Girentuximab, Glembatumumab vedotin, Golimumab, Gomiliximab, Gosuranemab, Guselkumab, Ianalumab, Ibalizumab, IBI308, Ibritumomab tiuxetan, Icrucumab, Idarucizumab, Ifabotuzumab, Igovomab, Iladatuzumab vedotin, IMAB362, Imalumab, Imaprelimab, Imciromab, Imgatuzumab, Inclacumab, Indatuximab ravtansine, Indusatumab vedotin, Inebilizumab, Infliximab, Intetumumab, Inolimomab, Inotuzumab ozogamicin, Ipilimumab, Iomab-B, Iratumumab, Isatuximab, Iscalimab, Istiratumab, Itolizumab, Ixekizumab, Keliximab, Labetuzumab, Lacnotuzumab, Ladiratuzumab vedotin, Lampalizumab, Lanadelumab, Landogrozumab, Laprituximab emtansine, Larcaviximab, Lebrikizumab, Lemalesomab, Lendalizumab, Lenvervimab, Lenzilumab, Lerdelimumab, Leronlimab, Lesofavumab, Letolizumab, Lexatumumab, Libivirumab, Lifastuzumab vedotin, Ligelizumab, Loncastuximab tesirine, Losatuxizumab vedotin, Lilotomab satetraxetan, Lintuzumab, Lirilumab, Lodelcizumab, Lokivetmab, Lorvotuzumab mertansine, Lucatumumab, Lulizumab pegol, Lumiliximab, Lumretuzumab, Lupartumab amadotin, Lutikizumab, Mapatumumab, Margetuximab, Marstacimab, Maslimomab, Mavrilimumab, Matuzumab, Mepolizumab, Metelimumab, Milatuzumab, Minretumomab, Mirikizumab, Mirvetuximab soravtansine, Mitumomab, Modotuximab, Mogamulizumab, Monalizumab, Morolimumab, Mosunetuzumab, Motavizumab, Moxetumomab pasudotox, Muromonab-CD3, Nacolomab tafenatox, Namilumab, Naptumomab estafenatox, Naratuximab emtansine, Narnatumab, Natalizumab, Navicixizumab, Navivumab, Naxitamab, Nebacumab, Necitumumab, Nemolizumab, NEOD001, Nerelimomab, Nesvacumab, Netakimab, Nimotuzumab, Nirsevimab, Nivolumab, Nofetumomab merpentan, Obiltoxaximab, Obinutuzumab, Ocaratuzumab, Ocrelizumab, Odulimomab, Ofatumumab, Olaratumab, Oleclumab, Olendalizumab, Olokizumab, Omalizumab, Omburtamab, OMS721, Onartuzumab, Ontuxizumab, Onvatilimab, Opicinumab, Oportuzumab monatox, Oregovomab, Orticumab, Otelixizumab, Otilimab, Otlertuzumab, Oxelumab, Ozanezumab, Ozoralizumab, Pagibaximab, Palivizumab, Pamrevlumab, Panitumumab, Pankomab, Panobacumab, Parsatuzumab, Pascolizumab, Pasotuxizumab, Pateclizumab, Patritumab, PDR001, Pembrolizumab, Pemtumomab, Perakizumab, Pertuzumab, Pexelizumab, Pidilizumab, Pinatuzumab vedotin, Pintumomab, Placulumab, Plozalizumab, Pogalizumab, Polatuzumab vedotin, Ponezumab, Porgaviximab, Prasinezumab, Prezalizumab, Priliximab, Pritoxaximab, Pritumumab, PRO 140, Quilizumab, Racotumomab, Radretumab, Rafivirumab, Ralpancizumab, Ramucirumab, Ranevetmab, Ranibizumab, Raxibacumab, Ravagalimab, Ravulizumab, Refanezumab, Regavirumab, Relatlimab, Remtolumab, Reslizumab, Rilotumumab, Rinucumab, Risankizumab, Rituximab, Rivabazumab pegol, Robatumumab, Rmab, Roledumab, Romilkimab, Romosozumab, Rontalizumab, Rosmantuzumab, Rovalpituzumab tesirine, Rovelizumab, Rozanolixizumab, Ruplizumab, SA237, Sacituzumab govitecan, Samalizumab, Samrotamab vedotin, Sarilumab, Satralizumab, Satumomab pendetide, Secukinumab, Selicrelumab, Seribantumab, Setoxaximab, Setrusumab, Sevirumab, Sibrotuzumab, SGN-CD19A, SHP647, Sifalimumab, Siltuximab, Simtuzumab, Siplizumab, Sirtratumab vedotin, Sirukumab, Sofituzumab vedotin, Solanezumab, Solitomab, Sonepcizumab, Sontuzumab, Spartalizumab, Stamulumab, Sulesomab, Suptavumab, Sutimlimab, Suvizumab, Suvratoxumab, Tabalumab, Tacatuzumab tetraxetan, Tadocizumab, Talacotuzumab, Talizumab, Tamtuvetmab, Tanezumab, Taplitumomab paptox, Tarextumab, Tavolimab, Tefibazumab, Telimomab aritox, Telisotuzumab vedotin, Tenatumomab, Teneliximab, Teplizumab, Tepoditamab, Teprotumumab, Tesidolumab, Tetulomab, Tezepelumab, TGN1412, Tibulizumab, Tildrakizumab, Tigatuzumab, Timigutuzumab, Timolumab, Tiragotumab, Tislelizumab, Tisotumab vedotin, TNX-650, Tocilizumab, Tomuzotuximab, Toralizumab, Tosatoxumab, Tositumomab, Tovetumab, Tralokinumab, Trastuzumab, Trastuzumab emtansine, TRBS07, Tregalizumab, Tremelimumab, Trevogrumab, Tucotuzumab celmoleukin, Tuvirumab, Ublituximab, Ulocuplumab, Urelumab, Urtoxazumab, Ustekinumab, Utomilumab, Vadastuximab talirine, Vanalimab, Vandortuzumab vedotin, Vantictumab, Vanucizumab, Vapaliximab, Varisacumab, Varlilumab, Vatelizumab, Vedolizumab, Veltuzumab, Vepalimomab, Vesencumab, Visilizumab, Vobarilizumab, Volociximab, Vonlerolizumab, Vopratelimab, Vorsetuzumab mafodotin, Votumumab, Vunakizumab, Xentuzumab, XMAB-5574, Zalutumumab, Zanolimumab, Zatuximab, Zenocutuzumab, Ziralimumab, Zolbetuximab, Zolimomab aritox; and (iv) a major histocompatibility complex (MHC) class 1 receptor or a major histocompatibility complex (MHC) class 2 receptor, wherein the MHC class 1 receptor is bound to a peptide derived from a tumor antigen, a neoantigen, or an autoantigen or the MHC class 2 receptor is bound to a peptide derived from a tumor antigen, a neoantigen, or an autoantigen.

51. A therapeutic delivery system comprising:

(a) an engineered platelet presenting the chimeric platelet receptor of any of embodiments 1-5 or 50, wherein the engineered platelet has been produced through genetic modification of a progenitor megakaryocyte to be non-thrombogenic and non-immunogenic; and

(b) at least one therapeutic agent selected from the group consisting of: a toxin, a protein, a small molecule drug, and a nucleic acid packaged within a vesicle inside the platelet.

i) wherein the therapeutic agent is the nucleic acid or the protein, loading occurs through expression in a progenitor megakaryocyte, or

ii) wherein the therapeutic agent is loaded by incubation of the engineered platelet with the therapeutic agent.

Patent 2022

Example 1

Cholestosomes Applied to an Oral Protein or Peptide

Steps in the preparation of an oral drug molecule, oral protein, oral peptide, oral gene or construct of genetic material (the term “molecule” used to define one or all of these hereinafter in this example) and testing of said molecule for absorption in Caco2 cells are as follows:

    • 1. Prepare cholesteryl esters and composition elements for encapsulation;
    • 2. Obtain molecule targeted for encapsulation and test for purity and stability at 37 C-45° C.;
    • 3. Optimize components of cholesteryl esters in the cholestosome mixture using a computer model of interactions between esters and molecule to achieve maximum cholestosome loading of said molecule;
    • 4. Prepare cholestosome encapsulated molecule and include Fluorescein Isothicyanate (FITC) label for purposes of conducting biological studies including microscopy, said FITC label not a component of product intended for human testing or therapeutic use;
    • 5. Test FITC labeled molecule in Caco2 cell monolayer and collect chylomicron encapsulated FITC-cholestosome-molecules, now defined as incorporated into cholestosome loaded chylomicrons;
    • 6. Expose test cells to chylomicrons containing FITC-cholestosome-molecules and determine uptake of FITC-molecule by these test cells. While MCF-7 cells are often chosen because of their ease of use and relevance to cancer, workers will realize that testing many different cell lines for uptake in the case where cellular targeting is a subject of scientific investigation, as intracellular uptake of many bioactive molecules is novel and unanticipated from prior art in the field of drug delivery;
    • 7. Define, using microscopy, whether intracellular FITC-molecule is contained in endosomes or it is free in cytoplasm; Typical time points for imaging of endosomes is approximately 24 hr after the initial exposure.
    • 8. Define, using Western Blot expression of GLUT-transporters, whether the intracellular action of molecule is expressed as cell surface mediated uptake of additional substances or molecules controlled by actions of intracellular molecule;
    • 9. Prepare enteric coated pH 5.5 release capsule with FITC-molecule-cholestosomes for administration to an animal or human (the preferred oral administration form for acid labile proteins, peptides, genes or live constructs such as vaccines or viruses);
    • 10. Administer oral dosage form of FITC-molecule-cholestosome to mouse or human;
    • 11. In the experiments of step 10, Administer same dose of FITC-molecule-cholestosome orally as FITC-molecule-cholestosomes in enteric coated capsule, IV; administer same dose of FITC-molecule-cholestosome IV;
    • 12. Compare effects on a biomarker of molecule effect after administration of FITC-molecule-cholestosome between the three modes:
      • a. oral as FITC molecule cholestosomes which result in lymphatic chylomicrons loaded with FITC molecule cholestosomes, vs.
      • b. Intravenously administered as FTC-molecule cholestosomes which would not form chylomicrons and which may or may not facilitate absorption of molecules into cells vs.
      • c. FITC-molecule intravenously and not in cholestosomes and therefore not in chylomicrons) at the same dose of molecule for each mode.
    • 13. Using fluorescence microscopy, examine biodistribution of FITC-molecule in tissues taken from mice given the 3 modes of administration (a vs. b vs. c) in step 12 above.

Tissues to be examined post mortem include liver, kidney, brain, pancreas, duodenum, ileum, colon, spleen, muscle, abdominal fat. It is anticipated that high intracellular concentrations of molecules can be achieved by this method, and that distribution in cells would be uniform instead of confined to endosomes or digestive vacuoles. Measurement of effect of molecule would be correlated with intracellular distribution profile and a measure of overall bioactivity vs. dose would be derived from the effect measurements.

FIG. 12. Structure of a Cholestosome with Encapsulated Protein

Shown in FIG. 12 is a loaded cholestosome structural model with encapsulated insulin as an example. It is assumed that these ideal lipid particles are aggregated into clumps of lipid, with raw production sizes of clumps of about 1000-5000 nm Extrusion of these large particles down to uniformly sized 250 nm particles is a preferred embodiment. This can be effected using a standard high pressure extrusion device, well known in the art.

Example 2

Preliminary Studies of Cholesteryl Esters Considered for Use in Manufacture of Cholestosomes.

Define the melting point of each ester. By way of example, myristate has a melt transition temperature of 65 degrees centigrade, above which temperature the solid component melts.

The formulation objective was to use cholesteryl esters at temperatures below the melt temperature. (Consistent with liposome preparations), and considering that proteins begin to denature at temperatures about 40 degrees centigrade.

Further temperature testing was carried out on the chosen esters myristate and laurate. After the organic solvent was completely removed from the lipids in the rotovap, a DSC was conducted, which showed two melting temperatures, one approximately 60 degrees centigrade and a second melt at a higher Temperature.

On the basis of these findings and considering the stability of the proteins and peptides being formulated, the operating temperature of encapsulation procedures was kept between 45 and 55 degrees centigrade.

Selection of Cholesteryl Esters and Compositions for Encapsulation of Molecules in Cholestosomes

Selection of specific cholesteryl esters for the proper formation of encapsulating vesicles involves a novel approach and a computerized molecular model. Properties of the cholesteryl esters and the interaction between the target molecule for encapsulation and the inner hollow core of vesicle formed from the esters around the molecule can be used to define favorable cholestosome-molecule properties such as loading, either on a volume to volume basis or a weight to weight basis.

Cholestosome Vesicles prepared without molecules loaded inside, have an average diameter of 250 nm after extrusion. The size can be modified as a function of size of cholesteyl esters, mole ratios in mixtures of different cholesteryl esters, filtration techniques, sonication times, and temperature.

    • a. Cholesteryl esters claimed that form cholestosomes include: Any cholesteryl ester produced from cholesterol and a fatty acid, where a fatty acid includes both saturated and unsaturated fatty acids including but not limited to the following compounds in Table 2 below:

TABLE 2
Listing of fatty acids used to form cholesteryl esters, characterized by
structure, ratio of Carbons to number of double bonds the ratio C:D and position
of the double bonds
Position
of
Commondouble
name-AcidChemical structureC:Dbond
MyristoleicCH3(CH2)3CH═CH(CH2)7COOH14:1n-5
PalmitoleicCH3(CH2)5CH═CH(CH2)7COOH16:1n-7
SapienicCH3(CH2)8CH═CH(CH2)4COOH16:1 n-10
OleicCH3(CH2)7CH═CH(CH2)7COOH18:1n-9
ElaidicCH3(CH2)7CH═CH(CH2)7COOH18:1n-9
VaccenicCH3(CH2)5CH═CH(CH2)9COOH18:1n-7
LinoleicCH3(CH2)4CH═CHCH2CH═CH(CH2)7COOH18:2n-6
LinoelaidicCH3(CH2)4CH═CHCH2CH═CH(CH2)7COOH18:2n-6
α-LinolenicCH3CH2CH═CHCH2CH═CHCH2CH═CH(CH2)7COOH18:3n-3
ArachidonicCH3(CH2)4CH═CHCH2CH═CHCH2CH═CHCH2CH═CH(CH2)3COOHNIST20:4n-6
EicosapentaenoicCH3CH2CH═CHCH2CH═CHCH2CH═CHCH2CH═CHCH2CH═CH(CH2)3COOH20:5n-3
ErucicCH3(CH2)7CH═CH(CH2)11COOH22:1n-9
DocosahexaenoicCH3CH2CH═CHCH2CH═CHCH2CH═CHCH2CH═CHCH2CH═CHCH2CH═CH(CH2)2COOH22:6n-3
CaprylicCH3(CH2)6COOH 8:0
CapricCH3(CH2)8COOH10:0
LauricCH3(CH2)10COOH12:0
MyristicCH3(CH2)12COOH14:0
PalmiticCH3(CH2)14COOH16:0
StearicCH3(CH2)16COOH18:0
ArachidicCH3(CH2)18COOH20:0
BehenicCH3(CH2)20COOH22:0
LignocericCH3(CH2)22COOH24:0
CeroticCH3(CH2)24COOH26:0

In the above table, C is the number of carbons and D is the number of double bonds in the alkyl chain of the fatty acid molecule, C:D ratio of the molecule as displayed. The position of the double bond is expressed as the number of carbon after the carbonyl, which is position 1 in the chain. In this manner, n−5 for myristoleic acid means that the double bond is found at position 14-5=position 9

The term “cholesterol” is used in the present invention to describe any cholesterol compound which may be used in the preparation of the cholesteryl esters which may be used to form cholestosomes pursuant to the present invention. The term “cholesterol” and includes the molecule identified as cholesterol itself, and any related cholesterol molecule with additional oxygenation sites (“an oxygenated analog of cholesterol”) as in for example (but not limited to), 7-ketocholesterol, 25-hydroxy cholesterol, 7-beta-hydroxycholesterol, cholesterol, 5-alpha, 6-alpha epoxide, 4-beta hydroxycholesterol, 24-hydroxycholesterol, 27-hydroxycholesterol, 24,25-epoxycholesterol. Oxysterols can vary in the type (hydroperoxy, hydroxy, keto, epoxy), number and position of the oxygenated functions introduced and in the nature of their stereochemistry. These various cholesterols may be used to provide cholesterol esters which vary in solubility characteristics so as to provide some flexibility in providing a cholestosome with a neutral surface and groups which can instill hydrophilicity in the cholesterol ester molecules. The cholesterol type molecule could also include any sterol structurally based compound containing the OH necessary for ester formation such as Vitamin D.

Molar ratios claimed in beneficial formation of cholestosomes range from 0.05 to 0.95 of any pair of esters (when a pair of esters is used) listed in table 2 above. Product ratios of composition between pairs of approximately equal alkyl chain length cholesteryl esters and active molecules range from about 2:2:96 to 48:48:4, often 45:45:10 to about 2:2:96, about 40:40:20 to about 5:5:90, about 40:40:20 to about 25:25:50. It is noted that in many cholestosome formulations when two (or more) cholesteryl esters are used, the ratio may vary above or below a 1:1 ratio for the cholesteryl esters used.

Filtration techniques claimed include vacuum filtration for initial size selection and then extrusion of preparations for finer size selection.

Sonication times range from 30 min to 120 minutes. This time is presented as a range, in that centrifuge time is a variable. Optimal sonication time depends on the ability to find the optimal sonication spot in the sonicator, and at optimal timing, the solution forms a cloudy appearance and the amount of solid material should be minimal as determined at this point by visual inspection.

Temperature range during production of cholestosome vesicles is 35° C. to 45° C. when working with most of the cholesteryl esters in Table 2. Temperature is held constant (+/−5 C) throughout the preparation of the vesicles. Temperature is kept below the melt temperature of any of the individual esters. By way of example, for the preparation of cholestosomes using myristate/laurate, temperature is held at 40° C.+/−5 C. Addition of small amounts of between to the mixture prior to sonication increase overall yield of cholestosomes and facilitate the production of more uniform particles.

By means of example, the following principles define the basis for choice of a component ester in a cholestosome, a means of choosing an ester or ester pair for encapsulation purposes, and rely on the disclosed physiochemical properties of the listed cholesteryl esters in Table 2:

    • 1) The esters chosen for combination should be able to arrange themselves to optimize the ester link interactions between ester pairs. This electrostatic interaction is important for orientation purposes, with the necessary hydrophobic exterior and hydrophilic center of the vesicle.
    • 2) The alkyl interactions should be able to optimize van der Waals forces.
    • 3) The stun of electrostatic interactions and the alkyl interaction van der Waals forces are fundamental properties that hold the vesicle shape and thereby retain the molecule inside. A key additional factor for stability of cholestosome vesicles includes the degree of repulsion between the dual hydrophobic ends of the esters and the aqueous component containing the molecule(s) to be encapsulated.
    • 4) The overall size of the vesicle becomes a function of the length of the alkyl chain. The increased length of the esters chosen will increase the overall hydrophobic character of the entire vesicle.
    • 5) Using smaller chain length esters will actually increase the overall hydrophilic character of the vesicle (in terms of the overall structure of each ester).
    • 6) Molecules that require more hydrophobic areas to assist in encapsulation within the vesicle could benefit from esters having longer alkyl chains.
    • 7) Molecules that are smaller and require more hydrophilic components to assist in encapsulation would benefit from ester pairs that are shorter in length.
    • 8) An additional choice is the use of unsaturated alkyl chains such as those listed in Table 2, where these fatty acids are used to prepare ester side chains for use in forming cholesteryl esters.
    • 9) The use of an unsaturated fatty acid offers an additional structural modification in the vesicle structure which incorporates additional electrostatic interactions between the aqueous and the double bond character.
    • 10) In the process of selection of esters for vesicle formation, selection of CH2 chain lengths ranging for example from 2 CH2 units but less than 27 CH2 in length result in a structure that may not be as tight, as a result of the challenges in adapting the alkyl chains to maximize their interactions in a vesicle. The cholesterol component of the vesicle wall does not change. The van der Waals interactions within CH2 units governs the flexibility of the alkyl interactions. However, for beneficial hydrophilic vesicle center, the optimal configuration in this vesicle is longer alkyl chains, meaning that larger ester molecules have greater utility for stabilizing more hydrophilic vesicle centers of the vesicle exposed to the aqueous environment in formulation stability.

FIGS. 6-7 illustrate molecular modeling diagrams by means of an example of Cholestosome vesicle matrix formation from two different pairs of cholesteryl esters selected from Table 2. In FIGS. 8-10 of the myristate-laurate matrix example chosen here, the inventors used molecular modeling to illustrate the impact on a small water soluble molecule Ceftaroline. The cholestosomes formed for Ceftaroline have composition ratios of 5:5:90 with the chosen pair of cholesteryl esters. In FIGS. 11-13, the representative peptide molecule was Insulin, a peptide of 6 kd size that is generally water soluble. In FIGS. 14-15, the cholestosome vesicle structure was applied to encapsulate bevacizumab, a representative monoclonal antibody of size approximately 150 kd. In FIG. 16 all 3 representative molecules are shown in relation to the cholestosome vesicle formed from cholesteryl esters myristate and laurate.

For ester pairs that are greater than 6 CH2 units different in length (which is defined as intermediate) it is possible to maintain ester interactions and turn the molecules in opposite directions to still have alkyl chains packed into a vesicle. This arrangement would be useful for packing in molecules that have alternating structural regions of hydrophobic/hydrophilic character, and which when incorporated into said vesicle, could be relied upon to segregate different molecule types.

The choice of ester pairs is a function of the structure of the molecule needed to be encapsulated and its ability to interact with the vesicle.

In FIGS. 8-10, an outline structure of the entire cholestosome is shown, with inserted molecule ceftaroline. Insulin is shown in FIGS. 11-13, and in FIGS. 14-15 the molecule shown is bevacizumab. In FIG. 16, the matrix is shown around Ceftaroline, insulin and bevacizumab illustrated next to each other, which nicely illustrates the relative sizes of these molecules in relationship to the size of the cholestosome matrix. All three of these molecules can be effectively encapsulated by this methodology and used in humans after oral administration. In each case there is no known effective means of oral absorption, other than as disclosed in the present invention.

Example 3

In the present invention, molecules used for the treatment of infectious diseases would be generally suitable for encapsulation into cholestosomes and used orally. Most antibiotics need to be injected intravenously (IV), as the molecules are typically hydrophilic and not otherwise orally absorbed. Thus use in cholestosomes would make enable their oral absorption. Numerous antibiotics may be used in cholestosomes according to the present invention including Antibiotics for use in the present invention include Aminoglycosides, including Gentamicin, Kanamycin, Neomycin, Netilmicin, Tobramycin, Paromomycin, Spectinomycin; Ansamycins, including Geldanamycin, Herbimycin Rifaximin and Streptomycin; Carbapenems, including Ertapenem Doripenem Imipenem/Cilastatin and Meropenem; Cephalosporins, including Cefadroxil, Cefazolin, Cephalothin, Cephalexin, Cefaclor, Cefamandole, Cefoxitin, Cefprozil, Cefuroxime, Cefixime, Cefdinir, Cefditoren, Cefoperazone Cefotaxime Cefpodoxime, Ceftazadime, Ceftibuten, Ceftizoxime Ceftriaxone, Cefepime, Ceflaroline fosamil and Ceftobiprole; Glycopeptides, including Teicoplanin, Vancomycin and Telavancin; Lipopeptipdes, including Daptomycin, Oritavancin, WAP-8294A; Macrolides, including Azithromycin, Clarithromycin, Dirithromycin, Erythromycin, Roxithromycin, Telithromycin and Spiramycin; Lincosamides, including Clindamycin and Lincomycin; Monobactams, including Aztreonam; Nitrofurans, including Furazolidone and Nitrofurantoin; Oxazolidonones, including Linezolid, Posizolid, Radezolid and Torezolid; Penicillins, including Amoxicillin, Ampicillin, Azlocillin, Carbenicillin, Cloxacillin Dicloxacillin, Flucloxacillin, Mezlocillin, Methicillin, Nafcillin, Oxacillin, Penicillin G, Penicillin V, Piperacillin, Temocillin and Ticarcillin; Penicillin combinations including Amoxicillin/clavulanate, Ampicillin/sulbactam, Piperacillin/tazobactam and Ticarcillin/clavulanate; Polypeptides, including Bacitracin, Colistin and Polymyxin B; Quinolones/fluoroquinolines, including Ciprofloxacin, Enoxacin, Gatifloxacin, Gemifloxacin, Levofloxacin, Lomefloxacin, Moxifloxacin, Nalidixic acid, Norfloxacin, Ofloxacin, Trovafloxacin, Grepafloxacin, and Sparfloxacin; Sulfonamides, including Mafenide, Sulfacetamide, Sulfadiazine, Sulfadimethoxine, Sulfamethizole, Sulfamethoxazole, Sulfasalazine, Sulfisoxazole, Trimethoprim-Sulfamethoxazole and Sulfonamidochrysoidine; Tetracyclines, including Demeclocycline, Doxycycline, Vibramycin Minocycline, Tigecycline, Oxytetracycline and Tetracycline; Anti-mycobacterial agents, including Clofazimine, Capreomycin, Cycloserine, Ethambutol, Rifampicin, Rifabutin, Rifapentine, Arsphenamine, Unclassified including Chloramphenicol, Fosfomycin, Fusidic acid, Metronidazole, Mupirocin, Platensimycin, Quinupristin/Dalfopristin, Thiamphenicol, Tigecycline, Tinidazole and Trimethoprim.

None of these molecules are orally absorbed in the native state, and in each case oral absorption would constitute a major advantage over the current need to inject them parenterally in treatment of infectious diseases.

Examples of anti-fungal compounds for use in the practice of the art as applied to cholestosome encapsulation include but are not limited to the following miconazole, terconazole, econazole, isoconazole, tioconazole, bifonazole, clotrimazole, ketoconazole, butaconazole, itraconazole, oxiconazole, fenticonazole, nystain, naftifine, amphotericin B, zinoconazole and ciclopiroxolamine, micafungin, caspofungin, and/or anidulafungin.

Examples of anti-viral compounds for use in the practice of the art as applied to cholestosome encapsulation include but are not limited to the following Ribavirin, telaprevir, daclatasvir, asunaprevir, boceprevir, sofosbuvir, BI201335, BI1335; ACH-2928, ACH1625; ALS-2158; ALS2200; BIT-225; BL-8020; Alisporivir; IDX19368; IDX184; IDX719; Simeprevir; BMS-790052; BMS-032; BMS-791325; ABT072; ABT333; TMC435; Danoprevir; VX222; mericitabine; MK-8742, GS-5885 or a mixture thereof, interferon, Pegylated Interferon, Pegylated interferon lambda or any other suitable formulation of said interferon.

Representative examples of anti-infective preparations in cholestosomes are disclosed herein, so as to illustrate the properties of anti-infective substances in cholestosomes.

Tobramycin

A preferred embodiment illustrative of the molecules disclosed herein is tobramycin, selected from this list for preparation and testing of cholestosome encapsulated tobramycin according to the principles enumerated in Example 1. The particular preparation was designed for oral use, and for increasing the overall action of the antibiotic tobramycin against target gram negative bacteria such as Pseudomonas aeruginosa.

By way of specific example, tobramycin cholestosomes with mean diameter of 250-1,000 nm were prepared in the manner of the present invention, as described in Example 1, with cholesteryl ester selection from the esters disclosed as preferred in Example 2. Cholestosomes containing tobramycin were prepared using a novel blend of two cholesteryl esters, cholesteryl myristate and cholesteryl laurate.

Tobramycin Formulation Properties

Batch Properties

DLLS particle size: 2700 nm

Zeta Potential: −21.7

Concentration of Lipids: 1.9 mg/ml. Concentration of Tobramycin: 2.0 mg/ml

Cell exposures: MCF-7 cells (See FIG. 23)

Cholestosomes alone; No effect on growth or viability over 24 hr

FITC alone; No effect on growth or viability over 24 hr

Tobramycin Alone: 10 mcg/ml to 0.01 mcg/l No effect on growth or viability over 24 hr

FITC Tobramycin alone; 10 mcg/ml No effect on growth or viability over 24 h

FITC Tobramycin cholestosomes: 3.0 mcg/ml 24 hr killing, repeated, same result. Postulated 100× inside vs outside, with intracellular killing threshold similar to renal tubular lining cells.

Conclusions: Cholestosomes alone, FITC cholestosomes alone, Tobramycin alone do not kill MCF-7 cells. FITC-tobramycin on MCF-7 cells also does not harm them. However, FITC-tobramycin-cholestosomes kills at 24 hr.

No chylomicron studies conducted with FITC tobramycin cholestosomes

FIG. 23 FITC Tobramycin Cholestosomes

Comparing MCF-7 cells by bright field vs FITC fluorescence imaging shows 1) an overall successful loading of MCF-7 cells after 24 hr exposure to FITC-cholestosomes, which has been shown repeatedly in our work with cholestosomes.

In 2), this response of approximately 100 fold greater concentration of tobramycin inside MCF-7 cells is unexpected, particularly when the loading of cells by cholestosomes is compared with the general lack of intracellular loading of MCF-7 cells when exposed to FITC-tobramycin alone. Low loading is the expected result, as it is well known that tobramycin does not enter most body cells, and any cell that takes up tobramycin actively is subject to the intracellular killing from tobramycin by virtue of its effect on mitochondria and cell energy supply via ATP production. This is the basis for tobramycin's well known nephro and oto toxicity.

In 3) and of great interest, when MCF-7 cells were exposed to FITC-Tobramycin-cholestosomes for 24 hr, these MCF-7 cells all died, as can be seen in the last frame at both top and bottom. The purpose here is to show how tobramycin, when it enters cells, is a general toxin to the mitochondria and when tobramycin enters even cells otherwise resistant to its intracellular effects, there is potential for intracellular uptake and harm.

Ceftaroline

By way of a specific example concerning a cephalosporin antibiotic that is not absorbed orally and is therefore currently given by IV administration only, we chose the anti-MRSA cephalosporin antibiotic Ceftaroline fosamil.

Commercially available Ceftaroline was purchased from the hospital pharmacy, and Ceftaroline cholestosomes were prepared in the manner of the present invention, as described in Example 1, with cholesteryl ester selection from the esters disclosed as preferred in Example 2. We were unable to FITC label Ceftaroline, so the batches were tested for their antimicrobial properties as the primary means of defining the efficacy of the formulation.

Test batches of cholestosomes containing Ceftaroline were prepared using a novel blend of two cholesteryl esters, cholesteryl myristate and cholesteryl laurate. The choice of cholesteryl esters for composition is made from the disclosed compounds of Example 2, although this is not meant to be limiting and if there are other suitable cholesteryl esters for formulation with ceftaroline or similar molecules, they may be permitted in this formulation.

In the specific preparation of an optimal cholestosome formulation containing Ceftaroline, any cholesterol ester may be chosen as a component of the cholestosome and be within the spirit of the invention so long as the final Zeta Potential of the cholestosome product remains neutral charged.

Ceftaroline formulation Properties

Batch:

FITC label fraction: not done

DLLS particle size not done and not extruded

Preparation dialyzed to remove free Ceftaroline: yes, but free Ceftaroline remains in the preparation

Percent yield 13% of starting amount of lipid

Zeta Potential: Not done

Bacterial testing with the dialyzed Ceftaroline; Retains anti-MRSA action, with MIC values at least 10× lower than parent Ceftaroline. Indicates active uptake by MRSA from cholestosome preparation.

Cells: MCF-7; 400,000 cells at 24 hr in a confluent prep. MCF-7 cell Size is 2000 nm

Cholestosomes alone; No effect on MCF-7 cell growth or viability over 24 hr

FITC alone: No effect on MCF-7 cell growth or viability over 24 hr

Ceftaroline Alone: No effect on MCF-7 cell growth or viability over 24 hr

FITC ceftaroline alone; Not prepared so not done

FITC ceftaroline cholestosomes: No effect on MCF-7 cell growth or viability over 24 hr

Postulate 100× inside vs outside.

Chylomicron forming Cells: Ceftaroline was/was not tested in Caco-2 cells

Vancomycin

By way of a specific example concerning a glycopeptide antibiotic that is not absorbed orally and is therefore currently given by IV administration only, we chose the anti-MRSA glycopeptides antibiotic vancomycin.

Commercially available Vancomycin was purchased from Sigma chemical, and FITC vancomycin cholestosomes were prepared in the manner of the present invention, as described in Example 1, with cholesteryl ester selection from the esters disclosed as preferred in Example 2. The batches were fully tested against MCF-7 cells, Caco-2 cells and also tested for their antimicrobial properties against MRSA as the second primary means of defining the efficacy of the formulation.

Test batches of cholestosomes containing FITC-vancomycin were prepared using a novel blend of two cholesteryl esters, cholesteryl myristate and cholesteryl laurate. The choice of cholesteryl esters for composition is made from the disclosed compounds of Example 2, although this is not meant to be limiting and if there are other suitable cholesteryl esters for formulation with vancomycin or similar glycopeptides antibiotic molecules, they may be permitted in this formulation.

In the specific preparation of an optimal cholestosome formulation containing vancomycin, any cholesterol ester may be chosen as a component of the cholestosome and be within the spirit of the invention so long as the final Zeta Potential of the cholestosome product remains neutral charged.

Vancomycin Formulation Properties

Batch: 756, made Oct. 23, 2013

DLLS particle size 1016 nm not extruded

DLLS particle size: 800 nm extruded

Preparation dialyzed to remove free vancomycin

Percent yield <1.0% of starting amount of lipid

Zeta Potential: −13

Volume to Volume calculation:

Concentration of Lipids: 1.0 mg in 10 ml. Concentration of Vancomycin: 5000 mcg/ml

Weight to Weight calculation:

Concentration of Lipids: <1.0 mg/ml. There is free vanco in this preparation

Bacterial testing with the dialyzed version of this, which killed MRSA very well, vancomycin was approximately 10 times more active in cholestosomes than used alone.

Cells: MCF-7; 400,000 cells at 24 hr in a confluent preparation. MCF-7 cell Size is 2000 nm.

Cholestosomes alone; No effect for 24 hr

FITC alone: No effect for 24 hr

Vancomycin Alone: no effect; up to 666 mcg/ml, highest tested

FITC vanco alone; 666 mcg/ml to 41 mcg/ml: No effect for 24 hr

FITC vanco cholestosomes: No effect at 24 hr. At a vancomycin concentration of 0.83 mcg/ml from cholestosomes, FITC label study shows a very high internal vancomycin concentration in MCF-7 cells, equal to the image labeling of 666 mcg/ml, see FIG. 24.

From these data it is possible to observe FITC-vancomycin concentrations 1000× inside vs outside as the effect of cholestosome loading.

Microbiological Activity against 4 different MRSA Strains: MIC values of cholestosome vancomycin were equal to vancomycin or in some cases up to 10× lower than vancomycin alone

FIG. 24. FITC Vancomycin Cholestosomes.

As shown in FIG. 24, vancomycin has some effective properties inside cells. This figure shows vancomycin entry into MCF-7 cells at 24 hr. In this series of experiments, the original starting concentrations of vancomycin were between 41 and 666 mcg/ml. In each column, the top image is the fluorescence, the bottom is the darkfield. Displayed out of this FITC-vancomycin series in column B is FITC vancomycin at 83 mcg/ml. In column A, FITC-vancomycin-cholestosomes at 0.83 mcg/ml produced greater uptake at a value 100 fold lower than the vancomycin concentration in FITC-vancomycin column B. The fluorescence image in column A shows more loading than the image in column B, indicating that the MCF-7 cellular loading ratio is more than 100× greater with FITC-vancomycin-cholestosomes. When the extracellular concentration of FITC-vancomycin was increased to 666 mcg/ml in column C, these cells are still not loading as high as those in column A. The fluorescence data on loading of FITC vancomycin is therefore approaching 1000× greater when cholestosomes are used. It should be noted that there was no effect of high amounts of FITC vancomycin cholestosomes on these MCF-7 cells. The images in the three panels confirm our observed penetration of FITC vancomycin cholestosomes inside cells. Not only are the cell membranes dramatically more concentrating FITC vancomycin in this image, but the cytoplasm of these cells is loaded with FITC vancomycin as well. This is after only 24 hr exposure, confirming that cholestosomes load massively more vancomycin in the cells.

Chylomicron forming Cells: Vancomycin was not tested in Caco-2 cells

Conclusion: Vancomycin alone, FITC vancomycin, FITC-vancomycin cholestosomes, all at high concentrations, do not harm MCF-7 cells. Vancomycin retains its antimicrobial action on MRSA organisms when encapsulated into cholestosomes.

Example 4

Specific Steps in Preparation of Insulin in Cholestosomes.

By way of specific example, Regular Insulin (Humulin, Lilly) cholestosomes were prepared in the manner of the present invention, as described in Example 1, with cholesteryl ester selection from the esters disclosed as preferred in Example 2. Test batches of cholestosomes containing insulin were prepared using a novel blend of two cholesteryl esters, cholesteryl myristate and cholesteryl laurate. The choice of cholesteryl esters for composition is made from the disclosed compounds of Example 2, although this is not meant to be limiting and if there are other suitable cholesteryl esters for formulation with insulin or similar molecules, they may be permitted in this formulation.

In the specific preparation of an optimal cholestosome formulation containing insulin, any cholesterol ester may be chosen as a component of the cholestosome and be within the spirit of the invention so long as the final Zeta Potential of the cholestosome product remains neutral charged. The two esters chosen for insulin using the principles disclosed in Example 2 were myristate and laurate, which differ in ester chain length by only two CH2 units, and when combined as disclosed provide a large internal hydrophilic center to the cholestosome vesicle prepared in this manner.

Optimizing the amounts of specific cholesteryl esters is finally within the scope of the present invention for purposes of producing an optimal loading and release profile of the insulin containing cholestosome for in vivo use.

Initial starting conditions are based on a 1:1 molar ratio of laurate/myristate, while the final ratio in the formulation of the various insulin molecules is not limited to that. Each insulin molecule will need to be examined in terms of its own structure and the molecular interactions with the putative cholesteryl esters as a means of final selection of cholesteryl esters for optimal loading. In the event the optimal final formulation requires a more hydrophobic area, then a longer chain fatty acid ester is used, as the entire proportion of hydrophobic space will change based on the length of the alkyl chain. If we need more centralized hydrophilic structures for certain insulin molecules, the intention is to use one of the oxysterols such as 7-keto cholesterol made into an ester with fatty acids.

The encapsulation molecule is insulin, to include but not limited to regular insulin, NPN insulin, insulin glargine, insulin degludec or any formulation of insulin prepared and shown to be bioactive in testing for insulin effects. Steps in preparation of the cholestosome formulation included the following:

Prepare a water bath to appropriate temperature (35-45) C; Place aqueous insulin prep (1 mg/ml) in PBS into water bath to equilibrate temperature; Weigh out equimolar amounts of cholesteryl laurate and cholesteryl myristate (75 mg each) and place in round bottom flask; Add organic solvent (diethyl-ether) to dissolve esters; swirl by hand to dissolve; Place round bottom flask on rotovap and spin for five minutes; Place flask attached to rotovap in water bath; turn on vacuum and spin for 10 minutes; Turn off rotovap and vacuum and add aqueous to round bottom flask; Add Tween; Spin on rotovap (no vacuum) for twenty minutes in water bath; Sonicate for 10 to 30-minutes until cloudy prep is formed and minimum solid is found in flask; Remove from sonication and filter using vacuum filtration; Save the cloudy filtrate; Extrude filtrate; Store preparation in refrigerator until use.

FIG. 17 Caco-2 Studies in Transwell; Formation of Chylomicrons

Employ Corning Transwell Permeable Supports in a 12 well format with a pore size of 0.4 um. Begin each Transwell experiment after Caco2 cells are 80-90% confluent in a 75 cm2 flask. The cells are trypsinized as usual and counted using a hemocytometer. The cell concentration is adjusted to 2×105 cells/mL with culture media. The wells of the Transwell plate are seeded with 0.5 mL of the cell dilution. Media in a volume of 1.5 ml is added to the basolateral side. The cells are incubated as above and the media is changed every other day for 19-20 days. At this time the caco2 cells are differentiated and ready for treatment. All media from the upper and lower chambers of the Transwell plate is removed and both chambers are washed 3 times with PBS containing 1 mg/mL glucose (PBSG). PBSG is added to the upper and lower chamber of the plate and incubated for 1 hr. All PBSG is removed from both chambers and 1.5 mL of phosphate buffered saline with added glucose (PBSG) is added to the lower chamber.

The upper chamber receives 0.5 mL of the appropriate treatment (PBSG alone, FITC cholestosomes in PBSG or FITC-insulin cholestosomes in PBSG). All wells have a final concentration of 1.0 mg/mL glucose. The plate is then incubated for 2 hours. All solution is removed and viewed on the Zeiss confocal LSM 510 microscope.

FIG. 18 is an image of the apical side of the Transwell plate at 1 hr after exposure to FITC labeled insulin (i.e. not in a cholestosome)

In FIG. 19, the basolateral fluid is imaged on the confocal microscope. In this case the apical side had only PBS buffer and media (no FITC, no insulin, no cholestosomes) There is no visible fluorescence and this image represents image background for the basolateral images to follow.

In FIG. 20, the image is following FITC cholestosomes applied to the apical side for 2 hr, which shows small chylomicrons containing FITC in the basolateral fluid. It is important to note that this fluid was imaged after collection of the basolateral fluid and does not reflect microscopy across the entire preparation. Hence, these chylomicrons were clearly formed by the Caco2 cells.

In FIG. 21, the image is following FITC insulin cholestosomes applied to the apical side for 2 hr, which shows overall larger chylomicrons containing FITC-insulin in the basolateral fluid. It is important to note that this fluid was imaged after collection of the basolateral fluid and does not reflect microscopy across the entire preparation. Hence, these FITC insulin containing chylomicrons were clearly formed by the Caco2 cells.

Summary of Cholestosome Insulin Formulation Properties

Batch: 733 and pooled batch

DLLS particle size 1700 nm not extruded

DLLS particle size: 149-274 nm after extrusion

Percent yield 13.0% of starting amount of lipid

Zeta Potential: −24.7

Loading ratio: Loading weight to weight for regular insulin was 13% insulin to 87% sum of cholesteryl myristate plus cholesteryl laurate.

Cells: MCF-7; n=400,000 cells at 24 hr in a confluent preparation; Size is 2000 nm

Cholestosomes alone; No effect on growth or viability over 24 hr

FITC alone: No effect on growth or viability over 24 hr

Insulin Alone: 3 mcg/ml of 1.5 ml volume; (4.5 mcg) No effect for 24 hr

FITC Insulin alone; 466 mcg/ml No effect on growth or viability over 24 hr (see FIG. 22)

FITC Insulin cholestosomes: 0.46 mcg/ml; No effect on growth or viability over 24 hr

Insulin uptake starting by 2 hrs. (see FIG. 22)

FITC Insulin cholestosome chylomicrons: Massive uptake with all cell membranes engaged at 2 hr, free insulin in cytoplasm. Concentration inside MCF-7 cells at least 1000× over concentration outside cells.

Cells: Caco-2

Concentration apical side: Pre: 350 ul of 0.46 mcg/ml cholestosome solution on apical

FITC Cholestosomes alone; No effect on Caco-2 cells over 24 hr; chylomicrons formed as in

FIG. 20

FITC insulin alone; No effect on Caco-2 cells over 241 hr; no chylomicrons formed on basolateral side as in FIG. 18

FITC alone: No effect on Caco-2 cells for 24 hr; no Chylomicrons on Basolateral side (FIG. 19)

Insulin Cholestosomes: 0.46 mcg/ml with free insulin—transferred all cholestosomes to basal side as chylomicrons. (FIG. 21)

Chylomicrons formed with FITC Insulin cholestosomes: Insulin concentration 0.46 mcg/ml or lower. (FIG. 22)

FIG. 22: FITC Insulin Cholestosome Chylomicrons

FIG. 22. The original starting concentration for FITC-insulin exposure in MCF-7 cells was 466 mcg/ml, which did not result in measurable amounts of FITC insulin inside the MCF-7 cells in row A. For the two lower figures (rows B and C), the concentration of FITC insulin cholestosome was 0.46 mcg/ml, which is the same for the experiments summarized in the last 2 figures. The 0.46 mcg/ml from FITC insulin cholestosomes (row B) produced about the same intracellular fluorescence as 466 mcg/ml of FITC insulin without cholestosomes (row A). Compared to 466 mcg/ml of FITC insulin without cholestosomes (row A), the further processing of FITC insulin cholestosomes by Caco-2 cells into chylomicrons, produced a robust improvement in the amount of insulin inside cells from FITC insulin cholestosome-chylomicrons (row C), much greater than 1000 fold over the amount of FITC-insulin alone, and much greater than the effect of the 0.46 mcg/ml of insulin when not processed by Caco-2 cells. Assuming the amount passing Caco2 cells was all of the insulin administered to the apical side, the concentration of insulin in the FITC insulin cholestosome chylomicron row C was the same as the insulin concentration in the middle row Row B. This particular preparation had free insulin remaining, and if transfer across Caco-2 cells was less than 100%, then these intracellular loading ratios are even greater. Clearly, FITC insulin cholestosome-chylomicrons achieves greater loading inside the cells, once again demonstrating that cholestosomes alone do allow peptides to enter cells across the cell membrane, as was earlier shown with FITC cholestosomes alone. The image in the bottom row C reflects the observed penetration of FITC insulin cholestosome chylomicrons inside cells. Not only are the cell membranes dramatically more concentrating FITC insulin in this image, but the cytoplasm of these cells is loaded with FITC insulin as well. This is after only 2 hr exposure, confirming that chylomicrons not only load massively more, they load more quickly than cholestosomes on their own.

FIG. 25 FITC Insulin Cholestosome Chylomicrons Loading MCF-7 Cells

Cholestosomes containing encapsulated FITC-insulin were prepared as disclosed herein, using FITC labeled regular insulin purchased commercially. Caco-2 cells were used to ensure that Cholestosomes transfer intact insulin (i.e. insulin remains within the Cholestosome) across the enterocytes and enters chylomicrons, following which chylomicrons were detected on the basolateral side of the Caco-2 membrane. ELISA was used to demonstrate that acid protected insulin does not pass the apical Caco-2 barrier (<5%), and that all of the insulin on the basolateral side is within chylomicrons. FITC-insulin was used on the apical side to verify that insulin alone does not pass the enterocyte barrier but that FITC insulin in cholestosomes passes the Caco2 enterocyte barrier. From these experiments, absorption efficiency was determined as the difference between basolateral side and apical side content of insulin. Further experiments compared the effect of altered pH and bile salts on the cholestosome encapsulated insulin. In addition, chylomicron stability when containing insulin loaded into cholestosomes was quantified and the conditions necessary for release of insulin from the loaded cholestosomes in vivo were studied.

In FIG. 25, the chylomicrons loaded with FITC insulin cholestosomes were placed adjacent to MCF-7 cells in order to demonstrate uptake into cells. These cells readily incorporate cholestosomes, and it appeared that distribution was uniform within the cell.

In this experiment FITC insulin cholestosome chylomicron loading of MCF-7 cells was improved over some of our previous experiments with FITC insulin cholestosomes, and here the loading was 1000× greater from FITC insulin cholestosome chylomicrons. In all cases, processing of FITC insulin cholestosomes by Caco-2 cells into chylomicrons, produces a robust improvement in the amount of insulin inside cells from FITC insulin cholestosome-chylomicrons (row B), Not only are the cell membranes dramatically more concentrating FITC insulin in this image, but the cytoplasm of these cells is loaded with FITC insulin as well. This is after only 2 hr exposure, confirming that chylomicrons not only load massively more, they load more quickly than cholestosomes on their own.

This particular formulation was administered to 4 mice.

FIG. 26. FITC Insulin Cholestosomes Given to 4 Mice.

Following completion of the in vitro studies in Caco-2 cells and MCF-7 cells, the cholestosome insulin formulations could be administered to mice; ELISA is used to define insulin absorption and release from chylomicrons and as a means of defining the biological residence of insulin circulating in cholestosomes in vivo.

Blood glucose is measured in the mice to define the effect of insulin in the mouse model after administration of the formulations.

FIG. 26 shows the blood glucose values of four mice, each given FITC-insulin-cholestosomes orally, with subsequent 30 minute glucose measurements using a glucometer. All mice tolerated the procedures well. In 3 of the 4 animals, the drop in blood glucose followed oral administration by 30-45 minutes. In the fourth animal, the drop in blood glucose began after 2 hrs, but had a similar decline and recovery time. In all cases, the glucose returned to baseline rapidly.

Overall, these data show oral insulin absorption and systemic effects on blood glucose, a demonstration of proof of concept for the cholestosome formulations in a murine model.

Example 5

The use of small and large molecules in the treatment of cancer is often limited by barriers that need to be crossed in order to reach target sites inside the cell. Inventors and specialists have long sought a means of delivering small and large molecules across the cell membrane barrier, as a means of treating cancers of all types.

Thus the use of cholestosomes to promote oral absorption of anti-cancer agents and enable distribution to intracellular pathways of molecular interaction with cellular processes is of great interest, as most of the molecules to be listed below have intracellular delivery problems, oral absorption problems, or both.

Described herein is a preferred embodiment of oral delivery and intracellular loading of anti-cancer molecules using endogenously formed chylomicrons. For the most part, the listed anti-cancer agents disclosed in this example are not proteins, genetic material or the like. These are considered small molecules, and the choice of a group of small molecules active against cancer should not be considered limiting, as small molecules in general will follow the principles of encapsulation and oral absorption and intracellular uptake described herein. In all cases, one skilled in the art that pertains to the present invention will understand that there are equivalent alternative embodiments, the important feature of the present invention being reliable oral absorption and intracellular delivery of the molecule in an intact form. In each of these representative cases, the molecule will be encapsulated using the methods disclosed in example 1 and example 2, developed and tested using similar models and processes defined for antibiotics in Example 3. These methods are not limiting and physical properties of some of the representative molecules given in this example may define a pathway outside the boundaries of the Examples heretofore. As such, these will remain in the spirit of the invention.

Preferred Anti-Cancer Agents for Cholestosome Encapsulation

Representative anti-cancer molecules might include 5-Azacytidine; Alitretinoin; Altretamine; Azathioprine; Amifostine; Amsacrine; Anagrelide; Asparaginase; N-(phosphonyl) L-aspartic acid; Bexarotene (Targretin); Bleomycin; Bryostatin; Busulfan; Capecitabine; Camptothecin; Carboplatin; Carmustine; Carboprost (Carboprost Tromethamine); Carglumic Acid; Carnofiir; Chlorambucil; Cladribine; Clofarabine; Clofazimine; Colchicine; Curcunin; Difluorinated Curcumin (CDF); Cyclophosphamide; Cytarabine; Cytosine arabinoside; D-Aminolevulinic Acid; Dacarbazine; Daunorubicin/Daunomycin; Deferasirox; Denileukin diffitox (Ontak); Docetaxel/Taxotere; Doxifluridine; Doxorubicin/Adriamycin; Eflomithine; Epirubicin; Elephantopin; Estramustine; Etoposide Phosphate; Fludarabine; Fluorouracil; fluoroorotic acid; Fotemustine; Gemcitabine; Gusperimus; Hydroxycarbamide; Hydroxyurea; Idarubicin/4-Demethoxy Daunorubicin; Ifosfamide; Incadronate; Irinotecan; Peg-Irinotecan; Lapatinib/Lapatinib Ditosylate; Lomustine; Masoprocol; Melphalan Hcl; Mercaptopurine; Methotrexate (Amethopterin); Methyl Aminolevulinate; Mitomycin; Mitotane; Mitoxantrone; Nimustine Hydrochloride; Octadecylphosphocholine; Ormaplatin; Oxaliplatin; Paclitaxel; Peg-asparaginase; Pemetrexed; Pentostatin/Deoxycoformycin; Porfimer Sodium; Procarbazine; Protein Kinase C inhibitors; Raltitrexed; Phenylbutyrate Sodium; Staurosporine; Streptozocin; Tafluposide; Temozolomide; Teniposide; Thioguanine; Thiotepa; Thymopoietin; Tioguanine; Tomudex; Topotecan; Tretinoin; Tropisetron hydrochloride; Uramustine (Uracil Mustard); Valrubicin; Verteporfin; Vinblastine; Vincristine; Vindesine; Vinorelbine; and/or Vorinostat.

Curcumin Di-Fluoride (CDF) Example

The preferred embodiment illustrative of the molecules disclosed herein is a derivative of curcumin, curcumin di-fluoride which is also called CDF. Beneficial anti-cancer properties of CDF are well described in the art (16, 85-92). One of the actions of CDF is upon the histone methyltransferase EZH2, which is a central epigenetic regulator of cell survival, proliferation, and cancer stem cell (CSC) function. EZH2 expression is increased in various human cancers, including highly aggressive pancreatic cancers, but the mechanisms underlying for its biologic effects are not yet well understood. The authors probed EZH2 function in pancreatic cancer using diflourinated-curcumin (CDF), a novel analogue of the turmeric spice component curcumin that has antioxidant properties. CDF decreased pancreatic cancer cell survival, elonogenicity, formation of pancreatospheres, invasive cell migration, and CSC function in human pancreatic cancer cells. These effects were associated with decreased expression of EZH2 and increased expression of a panel of tumor-suppressive microRNAs (miRNA), including let-7a, b, c, d, miR-26a, miR-101, miR-146a, and miR-200b, c that are typically lost in pancreatic cancer. Mechanistic investigations revealed that re-expression of miR-101 was sufficient to limit the expression of EZH2 and the proinvasive cell surface adhesion molecule EpCAM. In an orthotopic xenograft model of human pancreatic cancer, administration of CDF inhibited tumor growth in a manner associated with reduced expression of EZH2, Notch-1, CD44, EpCAM, and Nanog and increased expression of let-7, miR-26a, and miR-101. Taken together, the results indicated that CDF inhibited pancreatic cancer tumor growth and aggressiveness by targeting an EZH2-miRNA regulatory circuit for epigenetically controlled gene expression. (89)

Cholestosome encapsulated CDF can be prepared for testing according to example 1 procedures. FITC labeled CDF was used to assess biodistribution, and the aforementioned epigenetic pathways were studied when exposed to CDF cholestosomes before passage thru caco2 cells and then after, when collected chylomicrons were used in the cellular signaling pathway experiments.

Following the conclusion of the in vitro and cellular distribution experiments, the CDF cholestosomes can be applied to a mouse model for assessment of intracellular exposure and action, in order to define concentrations and dosage vs bioactivity, with un-encapsulated CDF used as a control. Both oral and IV administration were performed to define bioavailability as well as cellular uptake and localization. A second preferred embodiment is doxorubicin, itself a molecule often incorporated into liposomal drug delivery systems and widely used in the treatment of cancer

Example 6

Described herein is a preferred embodiment of oral delivery of macromolecules to include peptides, proteins including monoclonal antibodies, genetic material or the like. These are considered large biological molecules with molecular weight in excess of 6 kd and most frequently in excess of 100 kd, and the choice of a group of large biomolecules active against diseases should not be considered limiting use of the invention to a particular disease or treatment, as biomolecules in general will follow the principles of encapsulation and oral absorption and intracellular uptake described herein. In all cases, one skilled in the art that pertains to the present invention will understand that there are equivalent alternative embodiments, the important feature of the present invention being reliable oral absorption and intracellular delivery of the biomolecule in an intact form for the treatment of disease in human patients in the field of protein therapeutics. The monoclonal antibodies bevacizumab and trastuzumab have been the principle subjects of encapsulation, but these should not be considered limiting and in fact most monoclonal antibodies, being of similar length, charge and molecular weight, will behave similarly with respect to cholestosome encapsulation as described herein.

Bevacizumab in Cholestosomes

A preferred embodiment illustrative of the molecules disclosed herein is bevacizumab, selected from this list for preparation and testing of cholestosome encapsulated bevacizumab according to the principles enumerated in Example 1. The particular preparation was designed for oral use and intracellular delivery, and corresponding IV use for targeting of cell surface receptor target sites.

By way of specific example, bevaciztumab cholestosomes with mean diameter of 250-10,000 nm can be prepared in the manner of the present invention, as described in Example 1, with cholesteryl ester selection from the esters disclosed as preferred in Example 2. Cholestosomes containing bevacizumab were prepared using a novel blend of two cholesteryl esters.

Alternative formulations of bevacizumab, as nanoparticles can be prepared as disclosed by Woitiski (6). These nanoparticles will be albumin coated for Caco-2 experiments, to enable what is anticipated to be maximal absorption capability, since coating improved the absorption of insulin in this particular nanoparticle formulation.

Loading and Cellular Uptake with Bevacizumab Cholestosomes.

The formulation protein bevacizumab was labeled with FITC prior to incorporation into cholestosomes in a manner described in example 1.

Cholestosome loading with Bevacizlunab on a weight to weight basis was approximately 20% in particles ranging in size from 250-10,000 nm.

All formulations will be examined using confocal microscopy, scanning electron microscopy (SEM) and transwell experiments as disclosed by the inventors for insulin.

Caco-2 Cells for Testing Bevacizumab Cholestosomes

The Caco-2 cells used for the transwell experiments are cultured at 37° C. in an atmosphere of 5% CO2/95% O2 and 90% relative humidity in Dulbecco's Modified Eagle Medium (DMEM) supplemented with 100 IU/mL penicillin and 100 mcg/mL streptomycin, 2 mM 1-glutamine, 1% non-essential amino acids, and 10% heat inactivated fetal bovine serum. Caco-2 cells form an absorptive polarized monolayer, and develop an apical brush border and secrete enzymes after culture for 21 days.

In addition to inspection by microscopy, trans-epithelial electrical resistance is measured across cells growing on 1 cm2 polycarbonate filters of trans-well diffusion cells using an epithelial volt ohmmeter to evaluate tight junctions.

Cholestosomes containing encapsulated FITC-bevacizumab were prepared as disclosed herein, using FITC labeled bevacizumab purchased commercially. Caco-2 cells were used to ensure that Cholestosomes transfer intact bevacizumab (i.e. bevacizumab remains within the Cholestosome) across the enterocytes and enters chylomicrons, following which chylomicrons were detected on the basolateral side of the Caco2 membrane. Fluorescent readings of the FITC-bevacizumab preparation were used to demonstrate that free bevacizumab does not pass the apical Caco-2 barrier (<5%), and that much of the FITC-bevacizumab placed on the apical side encapsulated in cholestosomes was actually transferred to the basal side as chylomicrons containing the FITC-bevacizumab-cholestosomes.

Based on fluorescent readings, 75% of the FITC-bevacizumab-cholestosomes added to the apical side of the Caco-2 enterocyte barrier passes the Caco2 enterocyte barrier. From these experiments, absorption efficiency was determined as the difference between basolateral side and apical side content of FITC-bevacizumab-cholestosomes. At the end of the experiment at 24 hrs, all of the fluorescence readings added up to the starting amount of fluorescence of the FITC-bevacizumab-cholestosomes, thereby achieving mass balance in the experiment itself.

MCF-7 Cell Experiments for Bevacizumab Cholestosomes and Bevacizumab Cholestosome Chylomicrons

MCF-7 cells readily take up cholestosomes as shown in FIGS. 5, 22 and 23 all control experiments for the respective constructs. Others are not shown herein. Because this is a fluorescent image, the only content of the cholestosomes in this image was from FITC encapsulated in the cholestosomes. Note the outline of the cell membrane which is loaded by cholestosomes, and in later images the uniform distribution of FITC label throughout the cell and even to include its nucleus.

MCF-7 cells are relatively resistant to bevacizumab when subjected to in-vitro testing, having an IC50 value approximately 1.0 mcg/ml. Indeed the drug functions indirectly as a cytostatic agent, which is the net effect of blocking VEGF and decreasing the supply of blood vessels to growing tumors.

Entirely expected based on the aforementioned in-vitro resistance, MCF-7 cells show no uptake of FITC-bevacizumab at external concentrations of 173 mcg/ml, a concentration approximately 10 fold higher than the typical peak when a dose of 100 mg is given to a human under treatment for carcinoma. These data are part of FIG. 27.

These same MCF-7 cells were then exposed to FITC-bevacizumab cholestosomes, prepared according to the methods in Example 1, using myristate and laurate cholesteryl esters. These cholestosomes were approximately 5000-10,000 nm in size, while an MCF-7 cell is approximately 15,000 nm in size. Both darkfield and fluorescent images of these MCF-7 cells were taken for 24 hr, and displayed in FIG. 28. These cells do not measurably take up bevacizumab cholestosomes, and it appeared that FITC-bevacizumab distribution was uniform within the cell. The MCF-7 cells remained viable for 24 hrs in this experiment, indicating that FITC bevacizumab-cholestosomes did not increase the action of bevacizumab on these cells.

The same preparation of bevaciztunab-FITC-cholestosomes was then exposed to Caco-2 cells, and the resulting chylomicrons containing FITC-bevacizumab-cholestosomes were collected from the transwell basolateral side after 24 hr exposure. In this experiment, 75% of the Bevacizumab-FITC-cholestosomes passed the Caco-2 barrier and were incorporated into the resulting chylomicrons.

Because 75% of the cholestosomes were inside the chylomicrons, the MCF-7 cells were exposed to a bevaciztumab concentration similar to the concentration of bevacizumab in the cholestosome preparation shown earlier. Of interest, the uptake into the MCF-7 cells was dramatically greater when chylomicrons were used for intracellular delivery of FITC-bevacizumab-cholestosomes than when delivery was from cholestosomes alone or indeed from just exposing MCF-7 cells to free bevacizumab.

Furthermore, the MCF-7 cells exposed to chylomicron delivered FITC bevacizumab were non-viable in as little time as 4 hr after exposure. This is very remarkable because there is no known cytotoxic component to the mechanism of action of bevacizumab. Heretofore, this Monoclonal antibody has a cytostatic mechanism the functions indirectly of VEGF and blood vessel growth. Furthermore, as bevacizumab is unable to enter cells, the unexpected discovery of a rapid cytotoxic pathway from intracellular delivery creates a new product and a new pathway for this old protein.

Bevacizumab Formulation Properties

    • Date of manufacture: Aug. 3, 2013
    • DLLS particle size 10,510 nm; not extruded
    • Percent yield 20% of starting amount of lipid
    • Zeta Potential: Not done for bevacizumab. Trastuzumab: 6.4
    • Cells: MCF-7; 400,000 cells at 24 hr in a confluent prep. MCF-7 cell. Size is 2000 nm
    • MCF-7 cells with Cholestosomes alone; No effect on growth over 24 hr
    • FITC alone: No effect on growth 24 hr
    • Bevacizumab Alone: not tested
    • FITC bevacizumab alone; up to 173 mcg/ml: no effect on growth over 24 hr (FIG. 27)
    • FITC bevacizumab cholestosomes: 20 mcg/ml; Well tolerated by cells; visible intracellular uptake starting by 2 hrs.
    • FITC bevacizumab cholestosome chylomicrons from Caco-2 cells: 15 mcg/ml on MCF-7 cells for 4 hr with complete killing of all cells in field. (FIG. 28)
      FIG. 27. FITC Bevacizumab on MCF-7 Cells

FIG. 27 shows the dark field (top row) and fluorescent images at 2 hr, 4 hr and 24 hr from the application of a target concentration of 173 mcg/ml of FITC Bevacizumab to MCF-7 cells. These concentrations are 5-10 fold greater than typically observed in Bevacizumab treated patients. There was no evidence that FITC bevacizumab integrated with the cell membranes of these MCF-7 cells. There was no evidence of any fluorescence uptake of FITC bevacizumab at any time point by MCF-7 cells, and there was no evidence of effect of FITC-bevacizumab on these MCF-7 cells.

FIG. 28 FITC Bevacizumab Cholestosome Chylomicrons Kills MCF-7 Cells

FIG. 28. In this experiment, FITC bevacizumab cholestosomes were prepared and tested against MCF-7 cells. There was no effect at 2 hr, and the cells showed no uptake of FITC bevacizumab cholestosomes. Then these same FITC bevacizumab cholestosomes were placed on the apical side of the Caco-2 cells and the resulting FITC bevacizumab cholestosome chylomicrons were tested on MCF-7 cells. The first frame of the bottom row shows massive uptake of FITC bevacizumab cholestosome chylomicrons, and the other intensely observed effect was rapid cellular killing of the MCF-7 cells, as they were all killed by 4 hrs into the experiment.

Representative Monoclonal Antibodies and Large Proteins

Representative macromolecules for conversion to oral use or for improved action inside cells by use of the present invention might include any one or combinations of those listed here, and include similar sized and charged molecules that are discovered after disclosure of the compounds listed herein: Adalimumab (Humira); Abciximab; Alemtuzumab; Bevacizumab, (Avastin); Bapineuzumab; Cetuximab; Etanercept, (Enbrel); Elotuzumab; Gemtuzumab; Inotuzumab; Kynamro™ mipomersen by Isis-Genzyme; MabThera/Rituxan; Natalizumab, Tysabri by Elan/Biogen; Necitumumab by Eli Lilly; Palivizumab (Synagis); Panitumunmab; RN316 (anti-PCSK9 by Pfizer) REGN727 (anti-PCSK9 by regeneron) for lowering LDL cholesterol; Solanezumab; Trastuzumab (Herceptin); Tositumomab; T-DM1, an antibody drug conjugate by Roche/Genentech, which consists of trastuzumab (Herceptin), DM1 (emtansine) and a linker that joins DM1 to trastuzumab; T-DM1 is designed to target and inhibit HER2 signaling and deliver DM1 directly inside HER2-positive cancer cells; Zelboraf® for BRAF V600 mutation-positive metastatic melanoma; Atorolimumab; Belimumab; Brodalumab; Carlumab; Dupilumab; Fresolimumab; Golimumab; Lerdelimumab; Lirilumab; vilimnumab; Metelimumab; Morolimxunab; Namilumab; Oxelumab; Placulumab; Sarilumab; Sifalimumab; Tabalumab; Ipilimumab; Tremelimumnab; Nivolumab; Urelumab; Bertilimumab; Zanolimumab; Afelimomab; Elsilimomab; Faralimomab; Gavilimomab; Inolimomab; Maslimomab; Nerelimomab; Odulimomab; Telimomab; Vepalimomab; Zolimomab aritox; Basiliximab; Clenoliximab; Galiximab; Gomiliximab; Infliximab (Remicade by Janssen); Keliximab; Lumiliximab; Priliximab; Teneliximab; Vapaliximab; Aselizumab; Apolizumab; Benralizumab; Cedelizumab; Certolizumab pegol; Daclizumab; Eculizumab; Efalizumnab; Epratuzumab; Erlizumab; Etrolizumab; Fontolizumab; Itolizumab; Lampalizumab; Ligelizmnab; Mepolizumab; Mogamulizumab; Natalizumab; Ocrelizumab; Ofatnmumab; Omalizumab; Ozoralizunab; Pascoliztunab; Patecliztunab; Pexelizunmab; Pidilizumab; Reslizumab; Rontalizumab; Rovelizumab; Ruplizulmab; Quilizumab; Samalizumab; Siplizumab; Talizumnab; Tepliztunab; Tocilizumab; Toralizumab; Tregalizumab; Vatelizumab; Vedolizumab; Visilizumab; Ibalizunab; Otelixizumab; Briakimunab; Canakimunab; Fezakinumab; Secukinumab; Sinukunmab; Tralokinumab; Ustekinumab; Anrukinzumab; Clazakizumab; Enokizumab; Gevokizumab; Ixekizumab; Lebrikizumab; Olokizumab; Perakizumab; Tildrakizumab; Besilesomab; Fanolesomab; Lemalesomab; and/or Sulesomab.

Example 7

A preferred embodiment illustrative of the molecules disclosed herein is Alirocumab, also known as REGN727, a monoclonal antibody against PCSK-9. Alternative monoclonal antibodies against PCSK-9 include or Evolocumab or Bococizumab by way of non-limiting example.

Alirocumab, selected from this list for preparation and testing of cholestosome encapsulated antibodies to PCSK-9 according to the principles enumerated in Example 1. The particular preparation was designed for oral use and intracellular delivery, upon knowledge and belief that PCSK-9 is an intracellular target for an antibody against this compound.

By way of specific example, Alirocumab cholestosomes with mean diameter of 250-10,000 nm can be prepared in the manner of the present invention, as described in Example 1, with cholesteryl ester selection from the esters disclosed as preferred in Example 2. Cholestosomes containing Alirocumab are prepared using a novel blend of two cholesteryl esters.

In the treatment of hyperlipidemia, it is necessary to control cholesterol, which is defined in clinical guidelines as raising HDL and lowering LDL, and in addition it is necessary to lower plasma triglycerides. The oral combination product disclosed in this example will be the only available means of complete control of all aspects of hyperlipidemia, and in addition it will remove the major disadvantage of all members of the PCSK-9 monoclonal antibody treatments, the need for bi-weekly subcutaneous injection. Oral administration of PCSK-9 monoclonal antibodies will significantly improve patient acceptance of these new therapeutic modalities.

PCSK-9 Monoclonal Antibody Component of Combination Product

Specific to the proteins of therapeutic benefit disclosed in example Oral formulation of a monoclonal antibody to PCSK9 will control elevated LDL in a potent manner, and the selected protein for oral cholestosome encapsulation.

A preferred embodiment illustrative of the molecules disclosed herein is REGN727, also known in the art as Alirocumab selected from this list for preparation and testing of cholestosome encapsulation according to the principles enumerated in Example 1. The particular preparation was designed for oral use with exposure approximately 100 mg per month of treatment.

By way of specific example, REGN727 loaded cholestosomes with mean diameter of 250-450 nm can be prepared in the manner of the present invention, as described in example 1. Cholestosomes containing REGN727 will be prepared using a novel blend of two cholesteryl esters. This construct will be used lower LDL cholesterol. The construct will be given in combination with statin drugs and optionally in combination with ileal brake hormone releasing substances.

Statin Component of Combination Product

In order to raise HDL cholesterol and lower total cholesterol, the oral REGN727 will be co-formulated with an immediate release statin drug. A listing of statins suitable for combination with oral PCSK-9 treatment includes the following: lovastatin, atorvastatin, rosuvastatin, simvastatin, fluvastatin, pitavastatin, pravastatin. By way of example a 10 mg dose of atorvastatin is preferred but the invention of the combination is not limited only to atorvastatin as most of the available statin molecules will be suitable, as all are immediate release requiring only film-coating.

Brake Component of PCSK-9 Combination Product

In order to lower triglycerides, the formulation of REGN727 and statin will optionally be combined with approximately 10 grams of an ileal brake hormone releasing substance as disclosed in US2011/0268795, the complete contents of and complete formulation of which are hereby incorporated by reference. This formulation releases the contents of the active ileal brake hormone releasing substance at the ileum of the subject, and completely controls elevated triglyceride concentrations. The results of studies performed by the inventors show that chronic daily stimulation of the ileal hormones with Aphoeline Brake™, delivered directly into the ileum, tends to stabilize and maintain the body homeostasis, as well as decrease in the fasting state the abnormal levels of insulin, glucose, triglycerides and all of the measured liver enzymes. Also the significant decrease in alpha-fetoprotein seems to indicate a decrease in inflammation of the liver. Combining the decrease in insulin resistance, triglyceride and liver inflammation with decrease in liver enzymes indicates a significant improvement in liver health and signals a role for these hormones to play in regeneration of hepatocytes and maintaining liver health. Combining these beneficial properties with a Statin and a PCSK9 monoclonal antibody offers patients a novel and comprehensive approach to control of metabolic syndrome, which is a primary underlying cause of hyperlipidemia and the resulting atherosclerotic vascular disease. The combination product resulting from these elements would be administered to patients with hyperlipidemia on a once daily basis, with the end result being a complete control of hyperlipidemia with minimal side effects.

Example 8

Genetic Material

In classical genetics, in a sexually reproducing organism (typically eukarya) the gamete has half the number of chromosomes of the somatic cell and the genome is a full set of chromosomes. The halving of the genetic material in gametes is accomplished by the segregation of homologous chromosomes during meiosis. Any material derived from either full or haploid chromosomes is genetic material.

The term genome can be applied specifically to mean what is stored on a complete set of nuclear DNA (i.e., the “nuclear genome”) but can also be applied to what is stored within organelles that contain their own DNA, as with the “mitochondrial genome” or the “chloroplastgenome”. Additionally, the genome can comprise non-chromosomal genetic elements such as viruses, plasmids, and transposable elements.

RNA and short chain RNA interference or insertions meant to alter functions of RNA are also considered genetic material for purposes of encapsulation into cholestosomes and for purposes of delivery of genetic materials to sites inside target cells.

By way of example we disclose a combination approach to the treatment of Hepatitis C, an RNA virus of genus Flaviviridae. Members of this genus have monopartite, linear, single-stranded RNA genomes of positive polarity, 9.6 to 12.3 kilobase in length. The 5′-termini of flaviviruses carry a methylated nucleotide cap, while other members of this family are uncapped and encode an internal ribosome entry site. Virus particles are enveloped and spherical, about 40-60 nm in diameter. Although over 60 viruses in this genus are known to cause disease, we wish to focus attention on Genus Hepacivirus (type species Hepatitis C virus)

Hepatitis C is a particularly interesting target for cholestosome therapy because this virus hides in the normally observed lipid particles and it appears necessary to follow the virus into these hiding sites if one wishes to interfere with its life cycle, invasiveness or passage between individuals.

These latter goals will lead to our preparation of specific constructs useful for the treatment of hepatitis C infections

A preferred embodiment illustrative of the molecules disclosed herein is miR-122, known in the art as Miravirsen. By way of non-limiting example, alternative genetic constructs against Hepatitis C and other viruses may be used as alternative treatments against the respective viruses, as long as there is a need for a novel means of gaining access to intracellular sites and additionally to other circulating lipid particles such as chylomicron remnants which are also known to shelter the Hepatitis C virus.

miR-122 was selected for preparation and testing of cholestosome encapsulated genetic materials targeting Hepatitis C, according to the principles enumerated in Example 1. The particular preparation was designed for oral use and intracellular delivery, upon knowledge and belief that Hepatitis C infected cells are a necessary intracellular target for a genetic modifying strategy against this virus. Even with less than optimal delivery, there is clinical evidence of effective response of Hepatitis C viral infections to treatment with miR-122 constructs given parenterally to patients. These results are presented below.

By way of specific example, miR-122 cholestosomes with mean diameter of 250-10,000 nm can be prepared in the manner of the present invention, as described in Example 1, with cholesteryl ester selection from the esters disclosed as preferred in Example 2. Cholestosomes containing miR-122 are prepared using a novel blend of two cholesteryl esters.

miR-122 for HepC in Cholestosomes

The stability and propagation of hepatitis C virus (HCV) is dependent on a functional interaction between the HCV genome and liver-expressed microRNA-122 (miR-122). MicroRNAs are small non-coding RNAs encoded by the human genome that transcriptionally and post-transcriptionally modify gene expression. The microRNA-122 (miR-122) forms the dominant microRNA in the liver and is exclusively expressed in hepatocytes. It has been implicated in multiple different processes, including lipid metabolism, cell differentiation, iron metabolism and hepatic circadian regulation. The 50 untranslated region (UTR) of HCV is highly conserved across genotypes and contains two miR-122 binding sites, disruption of which blocks HCV replication.

Miravirsen is a locked nucleic acid-modified DNA phosphorothioate anti-sense oligonucleotide that sequesters mature miR-122 in a highly stable heteroduplex, thereby inhibiting its function. As a 15 nucleotide long oligonucleotide complementary to miR-122, miravirsen can form stable heteroduplexes with miR-122. Whether miravirsen exerts its antiviral effects predominantly through sequestration of available miR-122, indirectly through disrupting lipid pathways essential to the viral lifecycle, or through other mechanisms remains under active investigation.

Its efficacy against chronic HCV infection was first shown in studies in chimpanzees, the only natural HCV animal model. Chimpanzees that received the highest, 5 mg/kg, dose through a weekly infusion had a marked decrease in plasma and liver HCV RNA, which led to clinical testing of miravirsen. Janssen and colleagues reported their findings from a phase 2a study in treatment naive non-cirrhotic patients chronically infected with HCV genotype 1. They enrolled 36 patients who were randomized to 5 weekly subcutaneous injections with three different doses of miravirsen (3, 5 or 7 mg/kg) or placebo. They found that HCV RNA showed a dose-dependent decline, with 1 (11%) patient in the 5 mg/kg and 4 (44%) patients in the 7 mg/kg groups reaching undetectable HCV RNA levels, all after the fifth dose of miravirsen. Notably, the individual response curves shown by the authors were quite variable, even with the highest dose. Three of the patients whose HCV RNA became undetectable relapsed 4-5 weeks later and one patient went on to be treated with PegIFN/RBV. The long term outcome in the remaining patient who achieved an undetectable HCV RNA at study week 14 and remained undetectable through week 18 was not reported. Adverse events were generally mild with only injection site reactions being likely related to miravirsen administration.

The most likely explanation for the rather weak and variable response of HCV patients to miravirsen is irregular cellular uptake of miravirsen. This is not surprising in that failure to reach the cellular target complicates most attempts to commercialize antisense therapy. Poor intracellular penetration is the likely reason why the dose of the miR-122 formulation was 7 mg/kg. Effective intracellular delivery of the construct using cholestosomes could lower the effective dose to values 10-100× lower. Additionally, there would be the advantage of oral use in a lower overall dosage than currently employed for use parenterally.

Cholestosome formulations will be made for the current miravirsen construct, and the likely result of successful formulation will be a dramatically improved action on HCV viral load because of effective intracellular delivery. In addition, the cholestosome formulation will be used orally, which is a great improvement over subcutaneous injection. The unique feature of oral uptake of cholestosome-miR-122 would be complemented by intracellular delivery of cholestosome-miR-122, which would make the product effective at a lower dose. These nanoparticles would enter cells via chylomicron loading, and once inside silence the Hepatitis C virus.

There is much development work to be accomplished to successfully commercialize miR-122 antisense technology. While the impact of oral therapy with cholestosome encapsulated miR-122 will produce a much improved version of this construct, it is likely that the oral formulation will be co-administered with anti-HCV drugs such as sofosbuvir (Sovaldi), and these combinations are claimed for use in treatment of HCV infections.

Furthermore, there is additional likelihood that anti-HCV drug therapy will be improved by concomitant use of Brake formulations to manage concomitant metabolic syndrome manifestations, and in principle to repair and regenerate the liver of these patients, as was further detailed in Example 7 with reference to hyperlipidemia.

With respect to the use of Brake in combination regimens for Hepatitis C, the details of these formulations and strategy are found in WO 2013/063527, published May 2, 2013, WO/2012-118712 A2, published Sep. 7, 2012 and US2012 026561, the contents of which are herein incorporated by reference.

Accordingly, the ideal combination disclosed for management of HCV in all types of patients would be oral cholestosome-miR-122 combined with oral sofosbuvir, combined with oral Brake.

An example of an oral vaccine for HCV is provided in Example 9, and this vaccine could be given to the same HCV patients as defined in the present example.

Gene Editing in the Treatment of HIV Viremia

The ability to make site-specific modifications to (or “edit”) the human genome has been an objective in medicine since the recognition of the gene as the basic unit of heredity. The challenge of genome editing is the ability to generate a single double-strand break at a specific point in the DNA molecule. Numerous agents, including meganucleases, oligonucleotides that form DNA triplexes, and peptide nucleic acids, have been tested and shown to be limited by inefficiency. Another class of reagents, the zinc-finger nucleases (ZFNs), have proved versatile for genome editing, and the use of ZFNs is now well established in a number of model organisms and in human cells.

ZFNs are well suited for genome engineering because they combine the DNA recognition specificity of zinc-finger proteins (ZFPs) with the robust but restrained enzymatic activity of the cleavage domain of the restriction enzyme FokI (a nuclease). ZFPs, which provide DNA-binding specificity, contain a tandem array of Cys2His2 zinc fingers, each recognizing approximately 3 base pairs of DNA. By comparison, the bacterial type IIS restriction endonuclease, FokI, has no sequence specificity and must dimerize to cut the DNA. After the ZFN-mediated double-strand cut, the DNA can be repaired by either homologous recombination or nonhomologous end joining. Homologous recombination repairs the break while preserving the original DNA sequence. However, these cells are susceptible to recutting by ZFNs. In contrast, nonhomologous end joining can result in random insertion or deletion of nucleotides at the break site, resulting in permanent disruption of the primary DNA sequence. Therefore, nonhomologous end joining can be exploited to mutate a specific gene, leading to its functional knockout.

The design of a ZFN pair consisting of two 4-finger proteins that bind to a target site within the human chemokine (C-C motif) receptor 5 gene (CCR5) was reported previously. In preclinical tests, CCR5-modified CD4 T cells expanded and functioned normally in response to mitogens, were protected from human immunodeficiency virus (HIV) infection, and reduced HIV RNA levels in a humanized mouse model (involving xenotransplantation) of HIV infection.

Tebas and colleagues selected CCR5, which encodes a coreceptor for HIV entry, for several reasons. First, its disruption seemed likely to increase the survival of CD4 T cells; persons homozygous for a 32-bp deletion (delta32/delta32) in CCR5 are resistant to HIV infection. In vitro, CD4 T cells from such persons are highly resistant to infection with CCR5-using strains of HIV, which are the dominant strains in vivo. Moreover, persons who are heterozygous for CCR5 delta32 and who have HIV infection have a slower progression to the acquired immunodeficiency syndrome. Furthermore, the effectiveness of blocking or inhibiting CCR5 with the use of small-molecule inhibitors has been shown in humans. Finally, one person who underwent allogeneic transplantation with progenitor cells homozygous for the CCR5-delta32 deletion has remained off antiviral therapy for more than 4 years, with undetectable HIV RNA and proviral DNA in the blood, bone marrow, and rectal mucosa. Although the mechanism responsible for the apparent cure associated with this procedure remains to be established, acquired CCR5 deficiency is one possibility. Tebas now reports the partial induction of acquired genetic resistance to HIV infection after targeted gene disruption (i.e., the infusion of autologous CD4 T cells modified at CCR5 by a ZFN).

The ZFN in this case was given in association with an adenoviral vector, and cells were removed from the body prior to transfection. In the work of the inventors, overcoming these deficiencies with a functional concentration of the ZFN inside cells is feasible with a cholestosome formulation.

By way of specific example, ZFN constructs active against CCR5 in cholestosomes with mean diameter of 250-10,000 nm can be prepared in the manner of the present invention, as described in Example 1, with cholesteryl ester selection from the esters disclosed as preferred in Example 2. Cholestosomes containing ZFN are prepared using a novel blend of two cholesteryl esters selected to achieve a neutral or slightly negatively charged particle that will be taken up by enterocytes and deposited into chylomicrons.

This listing is provided by way of example of genetic material polynucleotides in cholestosome formulations across the range of molecule size in use for disease modification and treatment, and is in no way limiting on the application of cholestosomes for encapsulation of molecules of all sizes and when used for therapy of known or new diseases.

Example 9

Transmission Life Cycle of Hepatitis C Virus

Hepatitis C virus (HCV) interacts with apolipoproteins B (apoB) and E (apoE) to form infectious lipoviral particles. Response to peg-interferon is influenced by interferon-stimulated genes (ISGs) and IL28B genotype. LDL cholesterol (LDL-C) also predicts interferon response.

Hepatitis vaccines may be including adjuvants and miRNA or siRNA in the case of Hepatitis C, a virus that hides in Lipid particles. A suitable antisense therapy example from Example 8 is miR-122. It is notable that miR-122 does not elucidate a response from the immune system, and in fact it is notable that Hepatitis C does not elucidate a response from the immune system either. This is why it is so difficult to remove.

An Effective Hepatitis C Vaccine

An effective Hepatitis C vaccine will need to follow the virus thru the lipid pathway and create an immunological recognition of its presence in the cells and perhaps in the lipid particles themselves. Accordingly the use of an orally absorbed cholestosome formulation that places a vaccine construct into chylomicrons for delivery is a novel approach to vaccination.

There is no vaccine that follows the virus into all body cells, so the adaptation of the Hepatitis C viral construct into cholestosome-chylomicron delivery will be the first to use the lifecycle of a chronic infection virus against the organism directly. Use of a concomitant adjuvant will also be an optional but necessary component of the oral cholestosome Hepatitis C vaccine construct. This vaccine will be orally absorbed at the duodenum.

Oral Vaccines in Cholestosomes with or without Adjuvants

This same approach of an oral cholestosome encapsulated vaccine with adjuvant can be used for other chronic viral infections where the virus hides inside body cells, to include HIV which hides in T-lymphocytes, Herpes zoster which hides in neural tissue, and other flavivirus constructs with similar properties to hepatitis viruses.

It will also be a second preferred embodiment to deliver Hepatitis C vaccine with adjuvants orally to the Peyer's patches dendritic cells of the ileum, and for this our ileal vaccine releasing technology will be employed, as disclosed fully in PCT/US2013/031483, published as WO2013/148258 Mar. 10, 2013. Note that the disclosed vaccine there is not a cholestosome formulation, and in fact we are not anticipating that the Hepatitis C vaccine construct delivered to the ileum would be orally absorbed, nor is this perceived as a requirement for efficacy.

Thus there is potential for a novel combination product in this disclosed example, one vaccine component which is cholestosome based to penetrate into the lipid pathways of the body and which modifies the virus replication steps (and when combined with a drug, kills Hepatitis C virus directly), and a second ileal targeted therapeutic vaccine which triggers a response in dendritic T-lymphocytes in Peyer's patches where T lymphocytes are functioning as dendritic cells.

Use of these Hepatitis C vaccines in conjunction with Brake is optioned when the patient is in need of repair of fatty liver disease and early cirrhosis, which offers maximum benefit to the patient with Hepatitis C infection. Brake therapy has been disclosed in Example 7 and is incorporated herein in combination with Hepatitis C vaccines delivered by cholestosomes and delivered to the ileum for action on dendritic cells. These products may also be used in conjunction with anti-viral compounds such as sofosbuvir to reduce viral load

Example 10

In the present invention, molecules used by IV injection for the treatment of infectious diseases would be generally suitable for encapsulation into cholestosomes and used topically as an ointment or cream.

Most antibiotics disclosed in example 3 need to be injected intravenously (IV), as the molecules are typically hydrophilic and not otherwise orally absorbed. Thus use in cholestosomes would enable their absorption into outer epidermidis. Numerous other small and larger molecules may be used in cholestosomes and administered topically according to the present invention including anti-fungals, anti-virals, anti-cancer and protein and peptide molecules used as growth factors.

There are many topical uses for treatments of disease that are enabled by cholestosome encapsulation of molecules. Some non-limiting examples include wound healing with topical platelet derived growth factors to include combination with other growth factors known to be beneficial to wound healing in the art.

An additional example would be the topical use of anti-TNF antibodies such as adalimumab (Humira) or Infliximab (Remicade) or many other similar molecules used topically for psoriasis and other dermal inflammatory diseases where these products are given currently by subcutaneous injection. Nearly 4.1 million people were diagnosed with some form of moderate-to-severe psoriasis in 2013. This number is expected to climb slightly to 4.4 million by 2020, with 1.5 million of the population being treated with systemic agents. A rise in the global prevalence of psoriasis, as well as an increase in the diagnosis rate resulting from improved diagnostic methods, will increase the demand for injectable monoclonal antibodies but also justify more of these products in topical cholestosome applications. As psoriasis is increasingly being recognized as a serious systemic disease with associated quality of life impairment and disability, rather than as a simply cutaneous disease, healthcare professionals will consider cholestosome encapsulated proteins and peptides as preferred over the older sub-optimal treatments. Topical administration of currently injected vaccines would also be facilitated by cholestosome formulations and the examples provided in Example 9 and previous prior art of the inventors are included here as non-limiting examples

None of these molecules are orally absorbed in the native state, and in each case oral absorption would constitute a major advantage over the current need to inject them parenterally. They could also be used in the treatment of localized areas of disease thereby avoiding completely the side effects of drugs given systemically by injection.

Tobramycin for Treatment of dermal infections

A preferred embodiment illustrative of the molecules disclosed herein is tobramycin, selected from this list for preparation and testing of cholestosome encapsulated tobramycin according to the principles enumerated in Example 1. The particular preparation was designed for oral use, and for increasing the overall action of the antibiotic tobramycin against target gram negative bacteria such as Pseudomonas aeruginosa. A preparation of topical tobramycin might effectively control the Pseudomonas diseases malignant otitis externa or be inhaled to effectively control Pseudomonas in patients with cystic fibrosis.

By way of specific example, tobramycin cholestosomes with mean diameter of 250-1,000 nm were prepared in the manner of the present invention, as described in Example 1, with cholesteryl ester selection from the esters disclosed as preferred in Example 2. Cholestosomes containing tobramycin were prepared using a novel blend of two cholesteryl esters, cholesteryl myristate and cholesteryl laurate.

Cholesteryl Esters Facilitate Skin Delivery

The ability of cholestosome encapsulated molecules to function in cosmetic applications is an expected discovery within the art.

Major lipids are ceramides, cholesterol and free fatty acids. These components of the stratum corneum lipid matrix play a key role in mammalian skin barrier function.

The effect of the cholesterol esters on the penetration of the stratum corneum in vivo and in vitro were studied in by Kravchenko and colleagues in rats and mice, and the effect of cholesterol esters on the fluidity of the liposome's lecithin were studied by the fluorometric method.

This study shows that inclusion of cholesterol esters to this transdermal delivery system (TDS) increased the permeability of the stratum corneum for phenazepam. They observed the maximal fluidization of the lipid environment in the presence of cholesteryl laurate, cholesteryl pelargonate, cholesteryl undecylate and cholesteryl capronate. Thus, cholesterol esters were found to be effective enhancers for transdermal delivery, and lead to the current uses as disclosed herein.

Topical Use of Curcumin for Melanoma

The cholestosome formulation of curcumin difluoride (CDF) as disclosed in example 5 may also be useful topically for treatment of dermal cancers.

Previous work with liposomes and curcumin by Chen 2012 investigated the in vitro skin permeation and in vivo antineoplastic effect of curcumin by using liposomes as the transdermal drug-delivery system. Soybean phospholipids (SPC), egg yolk phospholipids (EPC), and hydrogenated soybean phospholipids (HSPC) were selected for the preparation of different kinds of phospholipids composed of curcumin-loaded liposomes: C-SPC-L (curcumin-loaded SPC liposomes), C-EPC-L (curcumin-loaded EPC liposomes), and C-HSPC-L (curcumin-loaded HSPC liposomes). The physical properties of different liposomes were investigated as follows: photon correlation spectroscopy revealed that the average particle sizes of the three types of curcumin-loaded liposomes were 82.37±2.19 nm (C-SPC-L), 83.13±4.89 nm (C-EPC-L), and 92.42±4.56 nm (C-HSPC-L), respectively. The encapsulation efficiency values were found to be 82.32±3.91%, 81.59±2.38%, and 80.77±4.12%, respectively. An in vitro skin penetration study indicated that C-SPC-L most significantly promoted drug permeation and deposition followed by C-EPC-L, C-HSPC-L, and curcumin solution. Moreover, C-SPC-L displayed the greatest ability of all loaded liposomes to inhibit the growth of B16BL6 melanoma cells. Therefore, the C-SPC-L were chosen for further pharmacodynamic evaluation. A significant effect on anti-melanoma activity was observed with C-SPC-L, as compared to treatment with curcumin solution in vivo. These results suggest that C-SPC-L would be a promising transdermal carrier for curcumin in cancer treatment.

This example of topical treatment of cancer using a cholestosome preparation of Curcumin difluoride CDF should not be considered limiting, and any of the anti-cancer compounds disclosed in example 5 should be suitably enabled for topical use by encapsulation into cholestosomes.

Example 11

In the present invention, molecules used by IV injection for the treatment of infectious diseases would be generally suitable for encapsulation into cholestosomes and used for inhalation, where the delivery by cholestosomes would be expected to enhance penetration of the encapsulated compound into the cells lining the alveoli and bronchi. This is novel over prior art use of liposomes, which would not penetrate cells, rather serving only to hold the compound in liposomes at the site for a longer period of time without enhancing cellular penetration.

Thus this pathway of delivery by aerosolization of cholestosome encapsulated nanoparticles is rational and may greatly enhance efficacy in the treatment of pulmonary diseases such as asthma, COPD, lung carcinoma, cystic fibrosis, and even rare conditions such as Alpha-one Anti-trypsin deficiency

Most antibiotics disclosed in example 3 need to be injected intravenously (IV), as the molecules are typically hydrophilic and not otherwise orally absorbed. Thus use in cholestosomes by inhalation would enable their absorption into lung directly via their enhanced cellular penetration mechanisms disclosed herein. Numerous other small and larger molecules may be used in cholestosomes and administered by inhalation according to the present invention including anti-fungals, anti-virals, anti-cancer and protein and peptide molecules used as growth factors.

There are many Pulmonary disease applications to disease treatment enabled by cholestosome encapsulation of molecules. Some non-limiting examples include repair of viral or chemical burn damage to lung alveoli with platelet derived growth factors to include combination with other growth factors known to be beneficial to wound healing in the art.

It is noted that very small nanoparticles will be needed for inclusion of cholestosome encapsulated molecules in inhalers, probably smaller than 100 nm for this application. Some non-limiting examples of compounds used in liposomes are offered as a proof of concept and a roadmap for improved intracellular delivery in the lung via cholestosome encapsulation.

Iloprost Example:

Kleemann et al Pharm Res 2007: Pulmonary arterial hypertension (PAH) is a severe and progressive disease. The prostacyclin analogue iloprost is effective against PAH, but requires six to nine inhalations per day. The feasibility of liposomes to provide a sustained release formulation to reduce inhalation frequency was evaluated from a technological point of view.

Liposomal formulations consisting of di-palmitoyl-phosphatidyl-choline (DPPC), cholesterol (CH) and polyethyleneglycol-di-palmitoyl-phosphatidyl-ethanolamine (DPPE-PEG) were prepared. Their physico-chemical properties were investigated using dynamic light scattering, atomic force microscopy and differential scanning calorimetry. Stability of liposomes during aerosolization using three different nebulizers (air-jet, ultrasonic and vibrating mesh) was investigated with respect to drug loading and liposome size, pre- and post-nebulization.

The phospholipid composition affected the diameters of liposomes only slightly in the range of 200-400 nm. The highest iloprost loading (12 mcg/ml) and sufficient liposome stability (70% drug encapsulation post-nebulization) was observed for the DPPC/CH (70:30 molar ratio) liposomes. The formulation's stability was confirmed by the relatively high phase transition temperature (53 degrees C.) and unchanged particle sizes. The incorporation of DPPE-PEG in the liposomes (DPPC/CH/DPPE-PEG, 50:45:5 molar ratio) resulted in decreased stability (20-50% drug encapsulation post-nebulization) and a phase transition temperature of 35 degrees C. The vibrating mesh nebulizer offered a number of significant advantages over the other nebulizers, including the production of small aerosol droplets, high output, and the lowest deleterious physical influence upon all investigated liposomes.

Iloprost-loaded liposomes containing DPPC and CH components yield formulations which are well suited to aerosolization by the vibrating mesh nebulizer.

The use of 200-400 nm size liposomes is probably too large for successful commercial development

Salbutamol

Elhissi A M et al. J Pharm Pharmacol. 2006; 58:887-94. Multilamellar and oligolamellar liposomes were produced from ethanol-based soya phosphatidyl-choline proliposome formulations by addition of isotonic sodium chloride or sucrose solutions. The resultant liposomes entrapped up to 62% of available salbutamol sulfate compared with only 1.23% entrapped by conventionally prepared liposomes. Formulations were aerosolized using an air-jet nebulizer (Pari LC Plus) or a vibrating-mesh nebulizer (Aeroneb Pro small mesh, Aeroneb Pro large mesh, or Omron NE U22). All vibrating-mesh nebulizers produced aerosol droplets having larger volume median diameter (VMD) and narrower size distribution than the air-jet nebulizer. The choice of liposome dispersion medium had little effect on the performance of the Pari nebulizer. However, for the Aeroneb Pro small mesh and Omron NE U22, the use of sucrose solution tended to increase droplet VMD, and reduce aerosol mass and phospholipid outputs from the nebulizers. For the Aeroneb Pro large mesh, sucrose solution increased the VMD of nebulized droplets, increased phospholipid output and produced no effect on aerosol mass output. The Omron NE U22 nebulizer produced the highest mass output (approx. 100%) regardless of formulation, and the delivery rates were much higher for the NaCl-dispersed liposomes compared with sucrose-dispersed formulation. Nebulization produced considerable loss of entrapped drug from liposomes and this was accompanied by vesicle size reduction. Drug loss tended to be less for the vibrating-mesh nebulizers than the jet nebulizer. The large aperture size mesh (8 mum) Aeroneb Pro nebulizer increased the proportion of entrapped drug delivered to the lower stage of a twin impinger. This study has demonstrated that liposomes generated from proliposome formulations can be aerosolized in small droplets using air-jet or vibrating-mesh nebulizers. In contrast to the jet nebulizer, the performance of the vibrating-mesh nebulizers was greatly dependent on formulation. The high phospholipid output produced by the nebulizers employed suggests that both air-jet and vibrating-mesh nebulization may provide the potential of delivering liposome-entrapped or solubilized hydrophobic drugs to the airways.

Cholestosome Formulations for Inhalation

Target compounds for encapsulation in 100 nm or smaller cholestosomes and used by aerosol delivery include tobramycin for cystic fibrosis infections, curcumin difluoride for lung carcinoma, siRNA for lung carcinoma, vancomycin for pneumonia caused by MRSA, Ceftaroline for pneumonia caused by MRSA, fosfomycin for gram negative pneumonia.

Mepolizumab for Eosinophilic Asthma

A recently developed monoclonal antibody under clinical development is a further example of an inhaled cholestosome formulation of a monoclonal antibody. Mepolizumab, an investigational, fully humanized IgG1 IL-5-specific monoclonal antibody, met its primary endpoint in two Phase HI studies of patients with severe eosinophilic asthma who did not see a reduction in exacerbations with high-dose inhaled corticosteroids and an additional controller drug. In the double-blind, parallel-group, multicenter, placebo-controlled, randomized MEA115588 study, 576 patients ages 12 and older were given either 75 mg of intravenous mepolizumab or 100 mg of subcutaneous (SC) mepolizumab every four weeks over a total period of 32 weeks. Some 47 percent of patients in the 75-mg IV treatment arm, and 53 percent of patients in the 100-mg SC treatment arm met the study's primary endpoint of reductions in exacerbations. In the second double-blind, parallel-group, multicenter, placebo-controlled, randomized study, known as MEA1115575, 135 patients ages 12 and older were given 100 mg of SC mepolizumab every four weeks over a total period of 24 weeks. This study met its primary endpoint of reducing oral corticosteroid use while maintaining asthma control during weeks 20-24. The company plans to file for regulatory approval for mepolizumab, which would also continue the investigational development of mepolizumab in COPD and eosinophilic granulomatosis with polyangiitis.

Clearly, an inhaled cholestosome formulation of mepolizumab would be a viable alternative to subcutaneous injection with this product, and the intracellular penetration may allow the dosage requirements to be decreased by 10-100 fold over the current requirements of 100 mg once a month. Accordingly, it is one preferred embodiment to develop a cholestosome formulation of approximately 5 mg of this monoclonal antibody for inhalation use. In addition to lower dosage requirements, the topical use of this product by inhalation would produce an immediate response in patients in need thereof, and would thereafter beneficially lower systemic exposure to a potent suppressive agent against the eosinophilic immune response, protective against a host of parasitic invaders.

This listing is provided by way of example of inhaled cholestosome formulations of known molecules across the range of molecule size in common use for disease treatment, and is in no way limiting on the application of cholestosomes for encapsulation of molecules of all sizes and when used for inhalation therapy of pulmonary diseases.

Patent 2021

Top products related to «Galiximab»

More about "Galiximab"

Galiximab is a monoclonal antibody that targets the CD80 antigen, which is expressed on the surface of B cells and other antigen-presenting cells.
This therapeutic agent has been investigated for its potential applications in various diseases, including non-Hodgkin's lymphoma and autoimmune disorders.
Galiximab is believed to exert its effects by modulating the immune response and inhibiting the activation and proliferation of B cells.
Researchers are actively exploring the efficacy and safety of Galiximab, both as a standalone therapy and in combination with other treatments.
The PubCompare.ai platform can assist researchers in streamlining the process of identifying and comparing research protocols and product information related to Galiximab, drawing from published literature, preprints, and patent data.
This AI-driven research protocol comparison tool can help researchers make informed decisions and simplify their research process.
Reaserchers can discover the power of PubCompare.ai's intelligent tools, which allow them to explore Galiximab studies from a variety of sources, including literature, pre-prints, and patents.
By leveraging this platform, researchers can identify the optimal research protocols and products, ultimately enhancing their understanding of Galiximab's therapeutic potential.