Heat Shock Proteins
These molecular chaperones assist in the folding, assembly, and transport of other proteins, helping to maintain proper protein structure and function.
HSPs are upregulated in response to a variety of stressors, such as heat, oxidative stress, and inflammation.
Studying HSPs can provide valuable insights into cellular mechanisms and disease processes.
Leverage PubCompare.ai's AI-driven platform to optimize your HSP research protocols, identify the best experimental approaches, and enhance the reproducibility of your experiments.
Take your HSP research to the nex tlevel with PubCompare.ai.
Most cited protocols related to «Heat Shock Proteins»
The ribozyme sequences are positioned upstream of the Plasmodium berghei dihydrofolate reductase-thymidylate synthase 3′-transcription terminator sequence (PbDT-3′). The resulting plasmids pGFP_glmS and pGFP_M9 express GFP with a mitochondrial transit peptide from P. falciparum heat shock protein 60. This open reading frame is under the control of 5′ and 3′ flanking sequences of P. falciparum heat shock protein 86 (Pfhsp86 5′) and PbDT-3′, respectively. The P. falciparum dihydrofolate reductase-thymidylate synthase (PfDHFR-TS) gene was amplified by PCR from a previously described plasmid [24] (link) using oligonucleotide primers dhfr-F and dhfr-R and cloned into pGFP_glmS and pGFP_M9 via the unique BglII and KpnI sites. The resulting plasmids pDHFR-TS-GFP_glmS and pDHFR-TS-GFP_M9 for study of episomal reporter gene activity (
Most recents protocols related to «Heat Shock Proteins»
Example 5
Three tobacco lines, FC401 wild type (Wt); FC40-M207 mutant line fourth generation (M4) and FC401-M544 mutant line fourth generation (M4) were used for candidate gene screening. Low anatabine traits were confirmed for the two tobacco mutant lines (M207 and M544) in root and leaf before screening (see
RNA was extracted from root tissues of wild type (Wt) FC401, M207 and M544 with RNeasy Plus Mini kit from Quiagen Inc. following the manufacturer's protocol. cDNA libraries were prepared from the RNAs using In-Fusion® SMARTer® Directional cDNA Library Construction Kit from Clontech Inc. cDNA libraries were diluted to 100 ng/μl and used as the template for candidate gene PCR screening.
PCR amplifications were performed in 50 μl final volumes that contained 50-100 ng of template DNA (i.e., the cDNA library) and 0.2 μM of primers (Fisher Scientific) using the Platinum® Taq DNA Polymerase High Fidelity kit (Life Technology Inc.). Thermocycling conditions included a 5 min incubation at 94° C.; followed by 34 cycles of 30 seconds at 94° C., 30 seconds at 58° C., 1 min 30 seconds at 68° C.; with a final reaction step of 68° C. for 7 mins. The PCR products were evaluated by agarose gel electrophoresis, and desired bands were gel purified and sequenced using an ABI 3730 DNA Analyzer (ABI).
51 candidate genes (listed in Table 4) were cloned from F401, Wt, M207 and M544 lines, and sequenced for single nucleotide polymorphism (SNP) detection.
Example 12
The following prophetic example is meant to show how administration of DDFPe can downregulate expression of genes that are over expressed in hypoxic tumor tissue and upregulate expression of genes that are expressed in normoxic tissue (i.e. normalize gene expression). Fischer 344 rats (F344/Ncr; National Cancer Institute, Frederick, MD) were used to generate 9 L glioma tumor models. Pieces of 9 L glioma were tied into the epigastric artery/epigastric vein pair as previously described. The animals received daily IV injections of either 0.45 cc/kg DDFPe or saline until the tumors weighed approximately 1.5-g at which time the animals were euthanized, the tumors removed and flash frozen. Gene expression in the tumors was assayed similarly to that described above. Up-regulated genes seen in the control group included BCL2/adenovirus E1B 19 kDa-interacting protein 3, hemc oxygenase (decycling) 1, activating transcription factor 3, heat shock protein (HSP27), N-myc downstream regulated gene 1, carbonic anhydrase 9 and others. Genes that were downregulated in the control group included Ly6-C antigen, solute carrier family 44 (member2), sterile alpha motif domain containing 9-like, DEAD (Asp-Glu-Ala-Asp) box polypeptide 60 and CD3 molecule delta polypeptide and others. Comparison of gene expression from 9-L glioma tissues from the animals treated with DDFPe showed significant decrease in expression of the genes that were upregulated in the control animals and significant increase in the genes that were downregulated in the control animals; i.e. there was normalization of gene expression in the tumors from animals treated with DDFPe. See, Marotta, Diane, et al. “In vivo profiling of hypoxic gene expression in gliomas using the hypoxia marker EF5 and laser-capture microdissection.” Cancer research 71.3 (2011): 779-789.
The lysates of MODE-K cells were used to determine the expression of ER stress marker proteins, including PERK, p-PERK, eIF-2α, and p-eIF-2α, using western blotting. MODE-K cells were activated with Pam3CSK4 for a specified time, and NF-κB pathway signaling was analyzed. MODE-K cells were treated with 5 µM GSK 2606414 (Tocris), a PERK inhibitor, for 2 hr before Pam3CSK4 treatment.
Top products related to «Heat Shock Proteins»
More about "Heat Shock Proteins"
These specialized proteins assist in the folding, assembly, and transport of other proteins, helping to maintain proper protein structure and function.
HSPs are upregulated in response to a variety of stressors, such as heat, oxidative stress, and inflammation.
Studying HSPs can provide valuable insights into cellular mechanisms and disease processes.
Leverage AI-driven platforms like PubCompare.ai to optimize your HSP research protocols, identify the best experimental approaches, and enhance the reproducibility of your experiments.
Explore techniques like the Oxyblot Oxidized Protein Detection Kit to measure oxidative stress, and utilize software tools like Labwork to analyze your data.
Enrich your HSP research with complementary techniques such as TRIzol RNA extraction, Biomax L film for Western blotting, and the RT2 First Strand Kit for cDNA synthesis.
Employ the Proteome Profiler Human Cell Stress Array Kit and RT2 Profiler PCR Array to profile the expression of HSPs and other stress response genes.
Protect your proteins with a Protease inhibitor cocktail, and use the IScript cDNA synthesis kit to generate high-quality cDNA for downstream analyses.
By leveraging the latest tools and technologies, you can take your HSP research to the next level, unraveling the complex mechanisms of cellular stress response and unlocking new insights into disease processes.
Explore the power of PubCompare.ai and other AI-driven platforms to optimze your experimental protocols and enhance the reproducibility of your findings.