Horseradish Peroxidase
Derived from the horseradish plant, this versatile enzyme finds applications in immunoassays, histochemistry, and as a reporter molecule.
Researchers can optimize their horseradish peroxidase experiments using PubCompare.ai, an AI-powered platform that helps locate and compare protocols from literature, preprints, and patents, ensuring reproducibility and accuracy.
This intelligent tool enhances research by providing a centralized resource for horseradish peroxidase protocols and methods.
Most cited protocols related to «Horseradish Peroxidase»
Free intracellular radicals were detected with dihydrorhodamine 123, dichlorodihydrofluorescein diacetate (dichlorofluorescin diacetate), or dihydroethidium (hydroethidine;
Free spin trap reagents N-tert-butyl-α−phenylnitrone (PBN;
To determine frequencies of morphological phenotypes (TUNEL, Annexin V, DAPI, dihydrorhodamine 123), at least 300 cells of three independent experiments were evaluated.
[22 (link)]. The H2O2 concentration in the assays was far below 1 μM, which leads to a linear concentration/activity response of horseradish peroxidase, which has a KM for H2O2 of 1.55 μM. The high final activity of horseradish peroxidase (7.14 U mL-1) assures a fast conversion of the formed H2O2 and prevents the final reaction to be rate limiting. Additionally, it prevents the accumulation of H2O2, which could have detrimental effects on enzyme stability in the assay. The stability of resorufin fluorescence under these conditions was tested by addition of varying concentrations of hydrogen peroxide (0.1 – 5 μM) to the assay. A stable signal that remained constant throughout the measured period of 45 minutes was observed and maximum signal intensity was reached already during the mixing period before starting the assay. A linear relation between fluorescence and H2O2 concentrations in the range of 0.1 – 2 μM H2O2 was observed and the slope (28450 counts μmol-1) was used for the calculation of an enzyme factor to convert the fluorimeters readout (counts min-1), into enzyme activity. PMO activity was defined as one μmol H2O2 generated per minute under the defined assay conditions.
Most recents protocols related to «Horseradish Peroxidase»
Example 1
a. Materials and Methods
i. Vector Construction
1. Virus-Like Particle
As most broadly neutralizing HPV antibodies are derived from the highly conserved N-terminal region of L2, amino acids 14-122 of HPV16 L2 were used to create HBc VLPs. L2 with flanking linker regions was inserted into the tip of the a-helical spike of an HBc gene copy which was fused to another copy of HBc lacking the L2 insert. This arrangement allows the formation of HBc dimers that contain only a single copy of L2, increasing VLP stability (Peyret et al. 2015). This heterodimer is referred to as HBche-L2. A dicot plant-optimized HPV16 L2 coding sequence was designed based upon the sequence of GenBank Accession No. CAC51368.1 and synthesized in vitro using synthetic oligonucleotides by the method described (Stemmer et al., 1995). The plant-optimized L2 nucleotide sequence encoding residues 1-473 is posted at GenBank Accession No. KC330735. PCR end-tailoring was used to insert Xbal and SpeI sites flanking the L2 aa 14-122 using primers L2-14-Xba-F (SEQ ID NO. 1: CGTCTAGAGTCCGCAACCCAACTTTACAAG) and L2-122-Spe-R (SEQ ID NO. 2: G GGACTAGTTGGGGCACCAGCATC). The SpeI site was fused to a sequence encoding a 6His tag, and the resulting fusion was cloned into a geminiviral replicon vector (Diamos, 2016) to produce pBYe3R2K2Mc-L2(14-122)6H.
The HBche heterodimer VLP system was adapted from Peyret et al (2015). Using the plant optimized HBc gene (Huang et al., 2009), inventors constructed a DNA sequence encoding a dimer comprising HBc aa 1-149, a linker (G2S)5G (SEQ ID NO. 39), HBc aa 1-77, a linker GT(G4S)2 (SEQ ID NO. 40), HPV-16 L2 aa 14-122, a linker (GGS)2GSSGGSGG (SEQ ID NO. 41), and HBc aa 78-176. The dimer sequence was generated using multiple PCR steps including overlap extensions and insertion of BamHI and SpeI restriction sites flanking the L2 aa 14-122, using primers L2-14-Bam-F (SEQ ID NO. 3: CAGGATCCGCAACC CAACTTTACAAGAC) and L2-122-Spe-R (SEQ ID NO. 2). The HBche-L2 coding sequence was inserted into a geminiviral replicon binary vector pBYR2eK2M (
2. Recombinant Immune Complex
The recombinant immune complex (RIC) vector was adapted from Kim et al., (2015). The HPV-16 L2 (aa 14-122) segment was inserted into the BamHI and SpeI sites of the gene encoding humanized mAb 6D8 heavy chain, resulting in 6D8 epitope-tagged L2. The heavy chain fusion was inserted into an expression cassette linked to a 6D8 kappa chain expression cassette, all inserted into a geminiviral replicon binary vector (
ii. Agroinfiltration of Nicotiana benthamiana Leaves
Binary vectors were separately introduced into Agrobacterium tumefaciens EHA105 by electroporation. The resulting strains were verified by restriction digestion or PCR, grown overnight at 30° C., and used to infiltrate leaves of 5- to 6-week-old N. benthamiana maintained at 23-25° C. Briefly, the bacteria were pelleted by centrifugation for 5 minutes at 5,000 g and then resuspended in infiltration buffer (10 mM 2-(N-morpholino)ethanesulfonic acid (MES), pH 5.5 and 10 mM MgSO4) to OD600=0.2, unless otherwise described. The resulting bacterial suspensions were injected by using a syringe without needle into leaves through a small puncture (Huang et al. 2004). Plant tissue was harvested after 5 DPI, or as stated for each experiment. Leaves producing GFP were photographed under UV illumination generated by a B-100AP lamp (UVP, Upland, CA).
iii. Protein Extraction
Total protein extract was obtained by homogenizing agroinfiltrated leaf samples with 1:5 (w:v) ice cold extraction buffer (25 mM sodium phosphate, pH 7.4, 100 mM NaCl, 1 mM EDTA, 0.1% Triton X-100, 10 mg/mL sodium ascorbate, 0.3 mg/mL PMSF) using a Bullet Blender machine (Next Advance, Averill Park, NY) following the manufacturer's instruction. To enhance solubility, homogenized tissue was rotated at room temperature or 4° C. for 30 minutes. The crude plant extract was clarified by centrifugation at 13,000 g for 10 minutes at 4° C. Necrotic leaf tissue has reduced water weight, which can lead to inaccurate measurements based on leaf mass. Therefore, extracts were normalized based on total protein content by Bradford protein assay kit (Bio-Rad) with bovine serum albumin as standard.
iv. SDS-PAGE and Western Blot
Clarified plant protein extract was mixed with sample buffer (50 mM Tris-HCl, pH 6.8, 2% SDS, 10% glycerol, 0.02% bromophenol blue) and separated on 4-15% polyacrylamide gels (Bio-Rad). For reducing conditions, 0.5M DTT was added, and the samples were boiled for 10 minutes prior to loading. Polyacrylamide gels were either transferred to a PVDF membrane or stained with Coomassie stain (Bio-Rad) following the manufacturer's instructions. For L2 detection, the protein transferred membranes were blocked with 5% dry milk in PBST (PBS with 0.05% tween-20) overnight at 4° C. and probed with polyclonal rabbit anti-L2 diluted 1:5000 in 1% PBSTM, followed by goat anti-rabbit horseradish peroxidase conjugate (Sigma). Bound antibody was detected with ECL reagent (Amersham).
v. Immunization of Mice and Sample Collection
All animals were handled in accordance to the Animal Welfare Act and Arizona State University IACUC. Female BALB/C mice, 6-8 weeks old, were immunized subcutaneously with purified plant-expressed L2 (14-122), HBche-L2 VLP, L2 RIC, or PBS mixed 1:1 with Imject® Alum (Thermo Scientific, Rockford, IL). In all treatment groups, the total weight of antigen was set to deliver an equivalent 5 μg of L2. Doses were given on days 0, 21, and 42. Serum collection was done as described (Santi et al. 2008) by submandibular bleed on days 0, 21, 42, and 63.
vi. Antibody Measurements
Mouse antibody titers were measured by ELISA. Bacterially-expressed L2 (amino acids 11-128) was bound to 96-well high-binding polystyrene plates (Corning), and the plates were blocked with 5% nonfat dry milk in PBST. After washing the wells with PBST (PBS with 0.05% Tween 20), the diluted mouse sera were added and incubated. Mouse antibodies were detected by incubation with polyclonal goat anti-mouse IgG-horseradish peroxidase conjugate (Sigma). The plate was developed with TMB substrate (Pierce) and the absorbance was read at 450 nm. Endpoint titers were taken as the reciprocal of the lowest dilution which produced an OD450 reading twice the background. IgG1 and IgG2a antibodies were measured with goat-anti mouse IgG1 or IgG2a horseradish peroxidase conjugate.
vii. Electron Microscopy
Purified samples of HBche or HBche-L2 were initially incubated on 75/300 mesh grids coated with formvar. Following incubation, samples were briefly washed twice with deionized water then negatively stained with 2% aqueous uranyl acetate. Transmission electron microscopy was performed with a Phillips CM-12 microscope, and images were acquired with a Gatan model 791 CCD camera.
viii. Statistical Analysis
The significance of vaccine treatments and virus neutralization was measured by non-parametric Mann-Whitney test using GraphPad prism software. Two stars (**) indicates p values <0.05. Three stars (***) indicates p values <0.001.
b. Design and Expression of HBc VLPs and RIC Displaying HPV16 L2
BeYDV plant expression vectors (
To express L2-containing MC, amino acids 14-122 of HPV16 L2 were fused with linker to the C-terminus of the 6D8 antibody heavy chain and tagged with the 6D8 epitope (Kim et al. 2015). A BeYDV vector (
After rigorous genetic optimization, the N. benthamiana system is capable of producing very high levels of recombinant protein, up to 30-50% of the total soluble plant protein, in 4-5 days (Diamos et al. 2016). Using this system, we produced and purified milligram quantities of fully assembled and potently immunogenic HBc VLPs displaying HPV L2 through a simple one-step purification process (
c. Purification and Characterization of HBche-L2 and L2 RIC
To assess the assembly of HBc-L2 VLP, clarified plant extracts containing either HBche-L2 or HBche were analyzed by sucrose gradient sedimentation. HBche-L2 sedimented largely with HBche, which is known to form VLP, though a small increase in density was observed with HBche-L2, perhaps due to the incorporation of L2 into the virus particle (
L2 RIC was purified from plant tissue by protein G affinity chromatography. By SDS-PAGE, an appropriately sized band was visible >150 kDa that was highly pure (
d. Mouse Immunization with HBche-L2 and L2 RIC
Groups of Balb/c mice (n=8) were immunized, using alum as adjuvant, with three doses each of 5 μg L2 delivered as either L2 alone, HBche-L2 VLP, L2 RIC, or a combination of half VLP and half RIC. VLP and RIC, alone or combined, greatly enhanced antibody titers compared to L2 alone by more than an order of magnitude at all time points tested (
In vitro neutralization of HPV16 pseudovirions showed that the VLP and RIC groups greatly enhanced neutralization compared to L2 alone (
In this study, by displaying amino acids 11-128 on the surface of plant-produced HBc VLPs, L2 antibody titers as high as those seen with L1 vaccines were generated (
Mice immunized with L2 alone had highly variable antibody titers, with titers spanning two orders of magnitude. By contrast, the VLP and VLP/RIC groups had much more homogenous antibody responses, with no animals below an endpoint titer of 1:1,000,000 (
Fc gamma receptors are present on immune cells and strongly impact antibody effector functions such as antibody-dependent cell-mediated cytotoxicity and complement-dependent cytotoxicity (Jefferis 2009). In mice, these interactions are controlled in part by IgG subtypes. IgG1 is associated with a Th2 response and has limited effector functions. By contrast, IgG2a is associated with a Th1 response and more strongly binds complement components (Neuberger and Raj ewsky 1981) and Fc receptors (Radaev 2002), enhancing effector functions and opsonophagocytosis by macrophages (Takai et al. 1994). Immunization with L2 alone was found to produce low levels of IgG2a, however immunization with RIC and VLP produced significant increases in IgG2a titers. VLP-containing groups in particular showed a 3-fold increase in the ratio of IgG2a to IgG1 antibodies (
The glycosylation state of the Fc receptor also plays an important role in antibody function. Advances in glycoengineering have led to the development of transgenic plants with silenced fucosyl- and xylosyl-transferase genes capable of producing recombinant proteins with authentic human N-glycosylation (Strasser et al. 2008). Antibodies produced in this manner have more homogenous glycoforms, resulting in improved interaction with Fc gamma and complement receptors compared to the otherwise identical antibodies produced in mammalian cell culture systems (Zeitlin et al. 2011; Hiatt et al. 2014; Strasser et al. 2014; Marusic et al. 2017). As the known mechanisms by which RIC vaccines increase immunogenicity of an antigen depend in part on Fc and complement receptor binding, HPV L2 RIC were produced in transgenic plants with silenced fucosyl- and xylosyl-transferase. Consistent with these data, we found that L2 RIC strongly enhanced the immunogenicity of L2 (
e. Neutralization of HPV Pseudovirions
Neutralization of papilloma pseudoviruses (HPV 16, 18, and 58) with sera from mice immunized IP with HBc-L2 VLP and L2(11-128) showed neutralization of HPV 16 at titers of 400-1600 and 200-800, respectively (Table 1). More mice IP-immunized with HBc-L2 VLP had antisera that cross-neutralized HPV 18 and HPV 58 pseudoviruses, compared with mice immunized with L2(11-128). Anti-HBc-L2 VLP sera neutralized HPV 18 at titers of 400 and HPV 58 at titers ranging from 400-800 (Table 1), while anti-L2(11-128) sera neutralized HPV 18 at a titer of 200 and HPV 58 at a titer of 400 (Table 1). None of the sera from intranasal-immunized mice demonstrated neutralizing activity, consistent with lower anti-L2 titers for intranasal than for intraperitoneal immunized mice.
Example 2
Bovine serum albumin (BSA), erbB2 extracellular domain (HER2) and streptavidin (100 μl of 2 μg/ml) were separately coated on Maxisorp 96 well plates. After blocking with 0.5% Tween-20 (in PBS), biotinylated and non-biotinylated hu4D5Fabv8-ThioFab-Phage (2×1010 phage particles) were incubated for 1 hour at room temperature followed by incubation with horseradish peroxidase (HRP) labeled secondary antibody (anti-M13 phage coat protein, pVIII protein antibody).
Standard HRP reaction was carried out and the absorbance was measured at 450 nm. Thiol reactivity was measured by calculating the ratio between OD450 for streptavidin/OD450 for HER2. A thiol reactivity value of 1 indicates complete biotinylation of the cysteine thiol. In the case of Fab protein binding measurements, hu4D5Fabv8 (2-20 ng) was used followed by incubation with HRP labeled goat polyclonal anti-Fab antibodies.
Example 2
For Western blot analysis 20 μg of total protein extracted from cells lyzed with Laemmli-lysis buffer was used. Extracts were diluted in reducing sample buffer (Roth), subjected to SDS-PAGE and subsequently electrotransferred onto PVDF membrane (Pall). Immunostaining was performed with polyclonal antibodies reactive to CLDN6 (ARP) and beta-Actin (Abcam) followed by detection of primary antibodies with horseradish-peroxidase conjugated goat anti-mouse and goat anti-rabbit secondary antibodies (Dako).
Tissue lysates from up to five individuals were tested for each normal tissue type. No CLDN6 protein expression was detected in any of the normal tissues analyzed. In contrast to normal tissues, high expression of CLDN6 protein was detected in samples from ovarian cancer and lung cancer. CLDN6 expression was detected in NIH-OVCAR3 (ovarian cancer), MKN7 (gastric cancer), AGS (gastric cancer), CPC-N (SCLC), HCT-116 (colon cancer), FU97 (gastric cancer), NEC8 (testicular embryonal carcinoma), JAR (placental choriocarcinoma), JEG3 (placental choriocarcinoma), BEWO (placental choriocarcinoma), and PA-1 (ovarian teratocarcinoma).
Example 2
For Western blot analysis 20 μg of total protein extracted from cells lyzed with Laemmli-lysis buffer was used. Extracts were diluted in reducing sample buffer (Roth), subjected to SDS-PAGE and subsequently electrotransferred onto PVDF membrane (Pall). Immunostaining was performed with polyclonal antibodies reactive to CLDN6 (ARP) and beta-Actin (Abcam) followed by detection of primary antibodies with horseradish-peroxidase conjugated goat anti-mouse and goat anti-rabbit secondary antibodies (Dako).
Tissue lysates from up to five individuals were tested for each normal tissue type. No CLDN6 protein expression was detected in any of the normal tissues analyzed. In contrast to normal tissues, high expression of CLDN6 protein was detected in samples from ovarian cancer and lung cancer. CLDN6 expression was detected in NIH-OVCAR3 (ovarian cancer), MKN7 (gastric cancer), AGS (gastric cancer), CPC-N(SCLC), HCT-116 (colon cancer), FU97 (gastric cancer), NEC8 (testicular embryonal carcinoma), JAR (placental choriocarcinoma), JEG3 (placental choriocarcinoma), BEWO (placental choriocarcinoma), and PA-1 (ovarian teratocarcinoma).
Top products related to «Horseradish Peroxidase»
More about "Horseradish Peroxidase"
Derived from the horseradish plant, HRP is renowned for its ability to catalyze oxidation-reduction reactions, making it a valuable tool for various applications.
One of the key applications of HRP is in immunoassays, where it is used as a reporter molecule to detect and quantify target analytes.
HRP-based assays, such as enzyme-linked immunosorbent assays (ELISAs), are widely employed in fields like diagnostics, drug discovery, and research.
In addition to immunoassays, HRP finds extensive use in histochemistry, where it serves as a marker to visualize and localize specific proteins or cellular structures within tissue samples.
This technique, known as immunohistochemistry (IHC), is crucial for understanding protein expression and distribution in biological systems.
Researchers can optimize their HRP experiments by utilizing PubCompare.ai, an AI-powered platform that helps locate and compare protocols from literature, preprints, and patents.
This intelligent tool ensures reproducibility and accuracy, enhancing the overall research process.
When working with HRP, researchers often employ various supporting techniques and materials, such as PVDF (Polyvinylidene difluoride) membranes, RIPA lysis buffer, β-actin, and protease inhibitor cocktails.
These tools and reagents are commonly used in Western blotting, a widely-adopted technique that relies on HRP-based detection to quantify and compare protein levels.
Additionally, the BCA (Bicinchoninic Acid) protein assay kit is frequently used in conjunction with HRP experiments to determine the concentration of proteins in complex samples, facilitating accurate normalization and quantification.
In summary, Horseradish Peroxidase is a versatile and indispensable enzyme in biochemical and molecular biology research, with applications ranging from immunoassays to histochemistry.
By leveraging the power of PubCompare.ai and other supporting techniques and materials, researchers can optimize their HRP-based experiments, ensuring reproducibility, accuracy, and deeper insights into biological systems.