The largest database of trusted experimental protocols

Leucine

Leucine is a branched-chain amino acid that plays a crucial role in protein synthesis, muscle growth, and energy metabolism.
It is essential for the proper functioning of the human body and has been the focus of extensive research in the field of nutrition and exercise science.
Leucine can be found in a variety of foods, including meat, dairy, eggs, and legumes, and supplements may be used to enhance its intake.
Researchers have investigated the effects of leucine on various physiological processes, such as muscle protein synthesis, glucose homeostasis, and adipose tissue metabolism.
Ongoing studies continue to explore the potential therapeutic applications of leucine in conditions such as sarcopenia, obesity, and type 2 diabetes.
Optimizing leucine research through AI-driven comparisons of protocols and products can lead to enhanced reproducibility and accuracy, ultimately advancing our understanding of this important amino acid.

Most cited protocols related to «Leucine»

The Luria-Bertani (LB) media (10 g/L tryptone, 5 g/L yeast extract, 10 g/L NaCl) is obtained from Fisher Scientific (Pittsburgh, PA). The supplemented minimal media contains M9 minimal salts (6.8 g/L Na2PO4, 3 g/L KH2PO4, 0.5 g/L NaCl, 1 g/L NH4Cl) from Sigma, 2 mM MgSO4 (Fischer Scientific), 100 μM CaCl2 (Fischer Scientific), 0.4% glucose (Sigma), 0.05 g/L leucine (Acros Organics, Belgium), 5 μg/mL chloramphenicol (Acros Organics), and an adjusted pH of 7.4. The expression system is a ColE1 vector with chloramphenicol resistance (derived from pProTet, Clontech). The expression cassette contains a σ70 constitutive promoter (BioBrick J23100), the RBS sequence, followed by the mRFP1 fluorescent protein reporter. XbaI and SacI restriction sites are located before the RBS and after the start codon. An RBS with a desired sequence is inserted into the expression vector using standard cloning techniques. Pairs of complementary oligonucleotides are designed with XbaI and SacI overhangs and the vector is digested with XbaI and SacI restriction enzymes (NEB, Ipswich, MA). Ligation of the annealed oligonucleotides with cut vector results in a nicked plasmid, which is transformed into E. coli DH10B cells. Sequencing is used to verify a correct clone.
The AND gate genetic circuit is composed of three plasmids: pBACr-AraT7940, pBR939b, and pAC-SalSer914 with kanamycin, ampicillin, and chloramphenicol resistance markers, respectively. The PBAD promoter maximum expression level was modified by inserting designed synthetic RBSs on plasmid pBACr-AraT7940. Plasmid pBACr-AraT7940 was digested with BamHI and ApaLI enzymes and pairs of oligonucleotides were designed to contain the desired RBS sequence and corresponding overhangs. Ligation, transformation, selection, and sequencing proceeded as described above.
Publication 2009
Ampicillin Cells Chloramphenicol Chloramphenicol Resistance Clone Cells Cloning Vectors Codon, Initiator DNA Restriction Enzymes Enzymes Escherichia coli Gene Circuits Glucose Kanamycin Leucine Ligation Mrfp1 protein Oligonucleotides Plasmids Saccharomyces cerevisiae Salts Sodium Chloride Sulfate, Magnesium
lDDT measures how well the environment in a reference structure is reproduced in a protein model. It is computed over all pairs of atoms in the reference structure at a distance closer than a predefined threshold Ro (called inclusion radius), and not belonging to the same residue. These atom pairs define a set of local distances L. A distance is considered preserved in the model M if it is, within a certain tolerance threshold, the same as the corresponding distance in . If one or both the atoms defining a distance in the set are not present in M, the distance is considered non-preserved. For a given threshold, the fraction of preserved distances is calculated. The final lDDT score is the average of four fractions computed using the thresholds 0.5 Å, 1 Å, 2 Å and 4 Å, the same ones used to compute the GDT-HA score (Battey et al., 2007 (link)). For partially symmetric residues, where the naming of chemically equivalent atoms can be ambiguous (glutamic acid, aspartic acid, valine, tyrosine, leucine, phenylalaine and arginine), two lDDTs, one for each of the two possible naming schemes, are computed using all non-ambiguous atoms in M in the reference. The naming convention giving the higher score in each case is used for the calculation of the final structure-wide lDDT score.
The lDDT score can be computed using all atoms in the prediction (the default choice), but also using only distances between Cα atoms, or between backbone atoms. Interactions between adjacent residues can be excluded by specifying a minimum sequence separation parameter. Unless explicitly specified, the calculation of the lDDT scores for all experiments described in this article has been performed using default parameters, i.e. Ro = 15 Å, using all atoms at zero sequence separation.
Publication 2013
Arginine Aspartic Acid Conferences Glutamic Acid Immune Tolerance Leucine Radius Staphylococcal Protein A Tyrosine Valine Vertebral Column
We profiled amino acids, biogenic amines, and other polar plasma metabolites using liquid chromatography-tandem mass spectrometry (LC-MS). Formic acid, ammonium acetate, LC-MS grade solvents, and valine-d8 were purchased from Sigma-Aldrich. We purchased the remainder of the isotopically-labeled analytical standards from Cambridge Isotope Labs, Inc. We prepared calibration curves for a subset of the profiled analytes by serial dilution in stock pooled plasma using stable isotope-labeled reference compounds (leucine-13C, 15N, isoleucine-13C6, 15N, alanine-13C, glutamic acid-13C5, 15N, taurine-13C2, trimethylamine-N-oxide-d9). We ran samples with isotope standards for calibration curves at the beginning, middle, and end of each analytical queue. We prepared plasma samples for LC-MS analyses via protein precipitation with the addition of nine volumes of 74.9:24.9:0.2 v/v/v acetonitrile/methanol/formic acid containing two additional stable isotope-labeled internal standards for valine-d8 and phenylalanine-d8. The samples were centrifuged (10 min, 10,000 rpm, 4°C) and the supernatants were injected directly. Detailed methods are provided in the Supplementary Methods.
Publication 2011
acetonitrile Alanine Amino Acids ammonium acetate Biogenic Amines formic acid Glutamic Acid Isoleucine Isotopes Leucine Liquid Chromatography Methanol Phenylalanine Plasma Proteins Solvents Tandem Mass Spectrometry Taurine Technique, Dilution trimethyloxamine Valine
The human and maize spectral libraries (project specific, obtained via fractionated sample analysis using data-dependent acquisition LC-MS/MS) used to generate the two-species compound library have been described previously12 (link). The maize library was filtered to exclude peptides matched to either the NCBI human redundant database (April 25th, 2018) or the UniProt27 (link) human canonical proteome (3AUP000005640). The human library was filtered to include only peptides matched to the latter. In both cases, filtering was performed with leucine and isoleucine treated as the same amino acid. The libraries were merged, resulting in a library containing only precursor ions matched to either human or maize proteomes, but not both. To enable the use of the library by all of the software tools under consideration, the library was converted to the OpenMS-compatible format with the use of DIA-NN. Following the protocol of Navarro and co-workers21 (link), only precursor ions associated with at least six fragment ions were retained in the library, and all fragments but the top six (ordered by their reference intensities) were discarded. This was done to ensure that there is no bias in terms of the distribution of the number of annotated fragments between human and maize precursors. In addition, although DIA-NN can take advantage of large numbers of fragment ions described in the spectral library, many software tools tend to perform poorly if the number of fragment ions is not restricted, e.g. Spectronaut and Skyline only use the top six fragments by default. Reference retention times (Biognosys iRT scale) below -60.0 were adjusted to -60.0, to enable efficient linear retention time prediction by Skyline and OpenSWATH, as the respective precursors were observed to elute concomitantly. A low number of precursor ions had to be removed from the spectral library, so that the library could be imported error-free into Skyline (Supplementary Note 9). The resulting compound spectral library contained 202310 human precursor ions and 9781 maize precursor ions.
Publication 2019
Amino Acids DNA Library Homo sapiens Ions Isoleucine Leucine Maize Peptides Proteome Retention (Psychology) Tandem Mass Spectrometry
CRBL, OCTX, PUTM and WHMT samples from 12 individuals were analysed using the QG platform for validation of exon array results. We focused on three target genes for validation, leucine-rich repeat kinase 2 (LRRK2), sodium channel, voltage-gated, type VIII, alpha subunit (SCN8A), and microtubule-associated protein tau (MAPT). We selected ribosomal protein, large, P0 and ubiquitin C as housekeeping genes to normalise the target genes as they showed relatively low variability in expression levels (i.e. low coefficient of variation) in all brain regions in our dataset. The approach to the selection of reference genes is explained in previous studies (de Jonge et al. 2007 (link); Coulson et al. 2008 (link)).In addition, a recent study confirms the efficiency of using this approach in selecting housekeeping genes to normalise in different tissues (Chervoneva et al. 2010 ). A summary of the QG probes used for analysis of all five genes is provided in Table 2.
QuantiGene 2.0 Reagent System was used and the protocol in the QuantiGene 2.0 Reagent System User Manual was followed with the exception of the substrate step. Lumigen® Lumi-Phos® Plus and 10% lithium lauryl sulfate was used instead of Lumigen® APS-5 substrate. A Biotek ELx 405 select plate washer was used for all of the wash steps in the assay. The QG 2.0 plates were then read on a Molecular Devices LMax luminometer with the plate incubator set to 45°C to maintain the temperature of the Lumigen® Lumi-Phos® Plus substrate. In total, 13 QG 2.0 plates were run to cover all target genes and the house keeping genes. Each house keeping gene ribosomal protein, large, P0 and ubiquitin C was loaded in duplicates at 12.5 ng/well. In addition, target genes (LRRK2, SCN8A and MAPT) were loaded in duplicates at 75 ng/well.
Full text: Click here
Publication 2011
Biological Assay Brain dodecyl sulfate, lithium salt Exons Genes Genes, Housekeeping Glycoprotein Hormones, alpha Subunit Leucine MAPT protein, human Medical Devices Phosphotransferases Ribosomal Proteins Sodium Channel Tissues Ubiquitin C

Most recents protocols related to «Leucine»

Example 2

A. Seed Treatment with Isolated Microbe

In this example, an isolated microbe from Tables 1-3 will be applied as a seed coating to seeds of corn (Zea mays). Upon applying the isolated microbe as a seed coating, the corn will be planted and cultivated in the standard manner.

A control plot of corn seeds, which did not have the isolated microbe applied as a seed coating, will also be planted.

It is expected that the corn plants grown from the seeds treated with the seed coating will exhibit a quantifiably higher biomass than the control corn plants.

The biomass from the treated plants may be about 1-10% higher, 10-20% higher, 20-30% higher, 30-40% higher, 40-50% higher, 50-60% higher, 60-70% higher, 70-80% higher, 80-90% higher, or more.

The biomass from the treated plants may equate to about a 1 bushel per acre increase over the controls, or a 2 bushel per acre increase, or a 3 bushel per acre increase, or a 4 bushel per acre increase, or a 5 bushel per acre increase, or more.

In some aspects, the biomass increase is statistically significant. In other aspects, the biomass increase is not statistically significant, but is still quantifiable.

B. Seed Treatment with Microbial Consortia

In this example, a microbial consortium, comprising at least two microbes from Tables 1-3 will be applied as a seed coating to seeds of corn (Zea mays). Upon applying the microbial consortium as a seed coating, the corn will be planted and cultivated in the standard manner.

A control plot of corn seeds, which did not have the microbial consortium applied as a seed coating, will also be planted.

It is expected that the corn plants grown from the seeds treated with the seed coating will exhibit a quantifiably higher biomass than the control corn plants.

The biomass from the treated plants may be about 1-10% higher, 10-20% higher, 20-30% higher, 30-40% higher, 40-50% higher, 50-60% higher, 60-70% higher, 70-80% higher, 80-90% higher, or more.

The biomass from the treated plants may equate to about a 1 bushel per acre increase over the controls, or a 2 bushel per acre increase, or a 3 bushel per acre increase, or a 4 bushel per acre increase, or a 5 bushel per acre increase, or more.

In some aspects, the biomass increase is statistically significant. In other aspects, the biomass increase is not statistically significant, but is still quantifiable.

C. Treatment with Agricultural Composition Comprising Isolated Microbe

In this example, an isolated microbe from Tables 1-3 will be applied as an agricultural composition, administered to the corn seed at the time of sowing.

For example, it is anticipated that a farmer will apply the agricultural composition to the corn seeds simultaneously upon planting the seeds into the field. This can be accomplished, for example, by applying the agricultural composition to a hopper/bulk tank on a standard 16 row planter, which contains the corn seeds and which is configured to plant the same into rows. Alternatively, the agricultural composition can be contained in a separate bulk tank on the planter and sprayed into the rows upon planting the corn seed.

A control plot of corn seeds, which are not administered the agricultural composition, will also be planted.

It is expected that the corn plants grown from the seeds treated with the agricultural composition will exhibit a quantifiably higher biomass than the control corn plants.

The biomass from the treated plants may be about 1-10% higher, 10-20% higher, 20-30% higher, 30-40% higher, 40-50% higher, 50-60% higher, 60-70% higher, 70-80% higher, 80-90% higher, or more.

The biomass from the treated plants may equate to about a 1 bushel per acre increase over the controls, or a 2 bushel per acre increase, or a 3 bushel per acre increase, or a 4 bushel per acre increase, or a 5 bushel per acre increase, or more.

In some aspects, the biomass increase is statistically significant. In other aspects, the biomass increase is not statistically significant, but is still quantifiable.

D. Treatment with Agricultural Composition Comprising Microbial Consortia

In this example, a microbial consortium, comprising at least two microbes from Tables 1-3 will be applied as an agricultural composition, administered to the corn seed at the time of sowing.

For example, it is anticipated that a farmer will apply the agricultural composition to the corn seeds simultaneously upon planting the seeds into the field. This can be accomplished, for example, by applying the agricultural composition to a hopper/bulk tank on a standard 16 row planter, which contains the corn seeds and which is configured to plant the same into rows. Alternatively, the agricultural composition can be contained in a separate bulk tank on the planter and sprayed into the rows upon planting the corn seed.

A control plot of corn seeds, which are not administered the agricultural composition, will also be planted.

It is expected that the corn plants grown from the seeds treated with the agricultural composition will exhibit a quantifiably higher biomass than the control corn plants.

The biomass from the treated plants may be about 1-10% higher, 10-20% higher, 20-30% higher, 30-40% higher, 40-50% higher, 50-60% higher, 60-70% higher, 70-80% higher, 80-90% higher, or more.

The biomass from the treated plants may equate to about a 1 bushel per acre increase over the controls, or a 2 bushel per acre increase, or a 3 bushel per acre increase, or a 4 bushel per acre increase, or a 5 bushel per acre increase, or more.

In some aspects, the biomass increase is statistically significant. In other aspects, the biomass increase is not statistically significant, but is still quantifiable.

A. Seed Treatment with Isolated Microbe

In this example, an isolated microbe from Tables 1-3 will be applied as a seed coating to seeds of corn (Zea mays). Upon applying the isolated microbe as a seed coating, the corn will be planted and cultivated in the standard manner.

A control plot of corn seeds, which did not have the isolated microbe applied as a seed coating, will also be planted.

It is expected that the corn plants grown from the seeds treated with the seed coating will exhibit a quantifiable and superior ability to tolerate drought conditions and/or exhibit superior water use efficiency, as compared to the control corn plants.

The drought tolerance and/or water use efficiency can be based on any number of standard tests from the art, e.g leaf water retention, turgor loss point, rate of photosynthesis, leaf color and other phenotypic indications of drought stress, yield performance, and various root morphological and growth patterns.

B. Seed Treatment with Microbial Consortia

In this example, a microbial consortium, comprising at least two microbes from Tables 1-3 will be applied as a seed coating to seeds of corn (Zea mays). Upon applying the microbial consortium as a seed coating, the corn will be planted and cultivated in the standard manner.

A control plot of corn seeds, which did not have the microbial consortium applied as a seed coating, will also be planted.

It is expected that the corn plants grown from the seeds treated with the seed coating will exhibit a quantifiable and superior ability to tolerate drought conditions and/or exhibit superior water use efficiency, as compared to the control corn plants.

The drought tolerance and/or water use efficiency can be based on any number of standard tests from the art, e.g leaf water retention, turgor loss point, rate of photosynthesis, leaf color and other phenotypic indications of drought stress, yield performance, and various root morphological and growth patterns.

C. Treatment with Agricultural Composition Comprising Isolated Microbe

In this example, an isolated microbe from Tables 1-3 will be applied as an agricultural composition, administered to the corn seed at the time of sowing.

For example, it is anticipated that a farmer will apply the agricultural composition to the corn seeds simultaneously upon planting the seeds into the field. This can be accomplished, for example, by applying the agricultural composition to a hopper/bulk tank on a standard 16 row planter, which contains the corn seeds and which is configured to plant the same into rows. Alternatively, the agricultural composition can be contained in a separate bulk tank on the planter and sprayed into the rows upon planting the corn seed.

A control plot of corn seeds, which are not administered the agricultural composition, will also be planted.

It is expected that the corn plants grown from the seeds treated with the with the agricultural composition will exhibit a quantifiable and superior ability to tolerate drought conditions and/or exhibit superior water use efficiency, as compared to the control corn plants.

The drought tolerance and/or water use efficiency can be based on any number of standard tests from the art, e.g leaf water retention, turgor loss point, rate of photosynthesis, leaf color and other phenotypic indications of drought stress, yield performance, and various root morphological and growth patterns.

D. Treatment with Agricultural Composition Comprising Microbial Consortia

In this example, a microbial consortium, comprising at least two microbes from Tables 1-3 will be applied as an agricultural composition, administered to the corn seed at the time of sowing.

For example, it is anticipated that a farmer will apply the agricultural composition to the corn seeds simultaneously upon planting the seeds into the field. This can be accomplished, for example, by applying the agricultural composition to a hopper/bulk tank on a standard 16 row planter, which contains the corn seeds and which is configured to plant the same into rows. Alternatively, the agricultural composition can be contained in a separate bulk tank on the planter and sprayed into the rows upon planting the corn seed.

A control plot of corn seeds, which are not administered the agricultural composition, will also be planted.

It is expected that the corn plants grown from the seeds treated with the with the agricultural composition will exhibit a quantifiable and superior ability to tolerate drought conditions and/or exhibit superior water use efficiency, as compared to the control corn plants.

The drought tolerance and/or water use efficiency can be based on any number of standard tests from the art, e.g leaf water retention, turgor loss point, rate of photosynthesis, leaf color and other phenotypic indications of drought stress, yield performance, and various root morphological and growth patterns.

A. Seed Treatment with Isolated Microbe

In this example, an isolated microbe from Tables 1-3 will be applied as a seed coating to seeds of corn (Zea mays). Upon applying the isolated microbe as a seed coating, the corn will be planted and cultivated in the standard manner.

A control plot of corn seeds, which did not have the isolated microbe applied as a seed coating, will also be planted.

It is expected that the corn plants grown from the seeds treated with the seed coating will exhibit a quantifiable and superior ability to utilize nitrogen, as compared to the control corn plants.

The nitrogen use efficiency can be quantified by recording a measurable change in any of the main nitrogen metabolic pool sizes in the assimilation pathways (e.g., a measurable change in one or more of the following: nitrate, nitrite, ammonia, glutamic acid, aspartic acid, glutamine, asparagine, lysine, leucine, threonine, methionine, glycine, tryptophan, tyrosine, total protein content of a plant part, total nitrogen content of a plant part, and/or chlorophyll content), or where the treated plant is shown to provide the same or elevated biomass or harvestable yield at lower nitrogen fertilization levels compared to the control plant, or where the treated plant is shown to provide elevated biomass or harvestable yields at the same nitrogen fertilization levels compared to a control plant.

B. Seed Treatment with Microbial Consortia

In this example, a microbial consortium, comprising at least two microbes from Tables 1-3 will be applied as a seed coating to seeds of corn (Zea mays). Upon applying the microbial consortium as a seed coating, the corn will be planted and cultivated in the standard manner.

A control plot of corn seeds, which did not have the microbial consortium applied as a seed coating, will also be planted.

It is expected that the corn plants grown from the seeds treated with the seed coating will exhibit a quantifiable and superior ability to utilize nitrogen, as compared to the control corn plants.

The nitrogen use efficiency can be quantified by recording a measurable change in any of the main nitrogen metabolic pool sizes in the assimilation pathways (e.g., a measurable change in one or more of the following: nitrate, nitrite, ammonia, glutamic acid, aspartic acid, glutamine, asparagine, lysine, leucine, threonine, methionine, glycine, tryptophan, tyrosine, total protein content of a plant part, total nitrogen content of a plant part, and/or chlorophyll content), or where the treated plant is shown to provide the same or elevated biomass or harvestable yield at lower nitrogen fertilization levels compared to the control plant, or where the treated plant is shown to provide elevated biomass or harvestable yields at the same nitrogen fertilization levels compared to a control plant.

C. Treatment with Agricultural Composition Comprising Isolated Microbe

In this example, an isolated microbe from Tables 1-3 will be applied as an agricultural composition, administered to the corn seed at the time of sowing.

For example, it is anticipated that a farmer will apply the agricultural composition to the corn seeds simultaneously upon planting the seeds into the field. This can be accomplished, for example, by applying the agricultural composition to a hopper/bulk tank on a standard 16 row planter, which contains the corn seeds and which is configured to plant the same into rows. Alternatively, the agricultural composition can be contained in a separate bulk tank on the planter and sprayed into the rows upon planting the corn seed.

A control plot of corn seeds, which are not administered the agricultural composition, will also be planted.

It is expected that the corn plants grown from the seeds treated with the agricultural composition will exhibit a quantifiable and superior ability to utilize nitrogen, as compared to the control corn plants.

The nitrogen use efficiency can be quantified by recording a measurable change in any of the main nitrogen metabolic pool sizes in the assimilation pathways (e.g., a measurable change in one or more of the following: nitrate, nitrite, ammonia, glutamic acid, aspartic acid, glutamine, asparagine, lysine, leucine, threonine, methionine, glycine, tryptophan, tyrosine, total protein content of a plant part, total nitrogen content of a plant part, and/or chlorophyll content), or where the treated plant is shown to provide the same or elevated biomass or harvestable yield at lower nitrogen fertilization levels compared to the control plant, or where the treated plant is shown to provide elevated biomass or harvestable yields at the same nitrogen fertilization levels compared to a control plant.

D. Treatment with Agricultural Composition Comprising Microbial Consortia

In this example, a microbial consortium, comprising at least two microbes from Tables 1-3 will be applied as an agricultural composition, administered to the corn seed at the time of sowing.

For example, it is anticipated that a farmer will apply the agricultural composition to the corn seeds simultaneously upon planting the seeds into the field. This can be accomplished, for example, by applying the agricultural composition to a hopper/bulk tank on a standard 16 row planter, which contains the corn seeds and which is configured to plant the same into rows. Alternatively, the agricultural composition can be contained in a separate bulk tank on the planter and sprayed into the rows upon planting the corn seed.

A control plot of corn seeds, which are not administered the agricultural composition, will also be planted.

It is expected that the corn plants grown from the seeds treated with the agricultural composition will exhibit a quantifiable and superior ability to utilize nitrogen, as compared to the control corn plants.

The nitrogen use efficiency can be quantified by recording a measurable change in any of the main nitrogen metabolic pool sizes in the assimilation pathways (e.g., a measurable change in one or more of the following: nitrate, nitrite, ammonia, glutamic acid, aspartic acid, glutamine, asparagine, lysine, leucine, threonine, methionine, glycine, tryptophan, tyrosine, total protein content of a plant part, total nitrogen content of a plant part, and/or chlorophyll content), or where the treated plant is shown to provide the same or elevated biomass or harvestable yield at lower nitrogen fertilization levels compared to the control plant, or where the treated plant is shown to provide elevated biomass or harvestable yields at the same nitrogen fertilization levels compared to a control plant.

The inoculants were prepared from isolates grown as spread plates on R2A incubated at 25° C. for 48 to 72 hours. Colonies were harvested by blending with sterile distilled water (SDW) which was then transferred into sterile containers. Serial dilutions of the harvested cells were plated and incubated at 25° C. for 24 hours to estimate the number of colony forming units (CFU) in each suspension. Dilutions were prepared using individual isolates or blends of isolates (consortia) to deliver 1×105 cfu/microbe/seed and seeds inoculated by either imbibition in the liquid suspension or by overtreatment with 5% vegetable gum and oil.

Seeds corresponding to the plants of table 15 were planted within 24 to 48 hours of treatment in agricultural soil, potting media or inert growing media. Plants were grown in small pots (28 mL to 200 mL) in either a controlled environment or in a greenhouse. Chamber photoperiod was set to 16 hours for all experiments on all species. Air temperature was typically maintained between 22-24° C.

Unless otherwise stated, all plants were watered with tap water 2 to 3 times weekly. Growth conditions were varied according to the trait of interest and included manipulation of applied fertilizer, watering regime and salt stress as follows:

    • Low N—seeds planted in soil potting media or inert growing media with no applied N fertilizer
    • Moderate N—seeds planted in soil or growing media supplemented with commercial N fertilizer to equivalent of 135 kg/ha applied N
    • Insol P—seeds planted in potting media or inert growth substrate and watered with quarter strength Pikovskaya's liquid medium containing tri-calcium phosphate as the only form phosphate fertilizer.
    • Cold Stress—seeds planted in soil, potting media or inert growing media and incubated at 10° C. for one week before being transferred to the plant growth room.
    • Salt stress—seeds planted in soil, potting media or inert growing media and watered with a solution containing between 100 to 200 mg/L NaCl.

Untreated (no applied microbe) controls were prepared for each experiment. Plants were randomized on trays throughout the growth environment. Between 10 and 30 replicate plants were prepared for each treatment in each experiment. Phenotypes were measured during early vegetative growth, typically before the V3 developmental stage and between 3 and 6 weeks after sowing. Foliage was cut and weighed. Roots were washed, blotted dry and weighed. Results indicate performance of treatments against the untreated control.

TABLE 15
StrainShootRoot
Microbe sp.IDCropAssayIOC (%)IOC (%)
Bosea thiooxidans123EfficacyEfficacy
overall100%100%
Bosea thiooxidans54522WheatEarly vigor - insol P30-40 
Bosea thiooxidans54522RyegrassEarly vigor50-60 50-60 
Bosea thiooxidans54522RyegrassEarly vigor - moderate P0-100-10
Duganella violaceinigra111EfficacyEfficacy
overall100%100%
Duganella violaceinigra66361TomatoEarly vigor0-100-10
Duganella violaceinigra66361TomatoEarly vigor30-40 40-50 
Duganella violaceinigra66361TomatoEarly vigor20-30 20-30 
Herbaspirillum huttiense222Efficacy
overall100%
Herbaspirillum huttiense54487WheatEarly vigor - insol P30-40 
Herbaspirillum huttiense60507MaizeEarly vigor - salt stress0-100-10
Janthinobacterium sp.222Efficacy
Overall100%
Janthinobacterium sp.54456WheatEarly vigor - insol P30-40 
Janthinobacterium sp.54456WheatEarly vigor - insol P0-10
Janthinobacterium sp.63491RyegrassEarly vigor - drought0-100-10
stress
Massilia niastensis112EfficacyEfficacy
overall80%80%
Massilia niastensis55184WheatEarly vigor - salt stress0-1020-30 
Massilia niastensis55184WinterEarly vigor - cold stress0-1010-20 
wheat
Massilia niastensis55184WinterEarly vigor - cold stress20-30 20-30 
wheat
Massilia niastensis55184WinterEarly vigor - cold stress10-20 10-20 
wheat
Massilia niastensis55184WinterEarly vigor - cold stress<0<0
wheat
Novosphingobium rosa211EfficacyEfficacy
overall100%100%
Novosphingobium rosa65589MaizeEarly vigor - cold stress0-100-10
Novosphingobium rosa65619MaizeEarly vigor - cold stress0-100-10
Paenibacillus amylolyticus111EfficacyEfficacy
overall100%100%
Paenibacillus amylolyticus66316TomatoEarly vigor0-100-10
Paenibacillus amylolyticus66316TomatoEarly vigor10-20 10-20 
Paenibacillus amylolyticus66316TomatoEarly vigor0-100-10
Pantoea agglomerans323EfficacyEfficacy
33%50%
Pantoea agglomerans54499WheatEarly vigor - insol P40-50 
Pantoea agglomerans57547MaizeEarly vigor - low N<00-10
Pantoea vagans55529MaizeEarly vigor<0<0
(formerly P. agglomerans)
Polaromonas ginsengisoli111EfficacyEfficacy
66%100%
Polaromonas ginsengisoli66373TomatoEarly vigor0-100-10
Polaromonas ginsengisoli66373TomatoEarly vigor20-30 30-40 
Polaromonas ginsengisoli66373TomatoEarly vigor<010-20 
Pseudomonas fluorescens122Efficacy
100%
Pseudomonas fluorescens54480WheatEarly vigor - insol P>100 
Pseudomonas fluorescens56530MaizeEarly vigor - moderate N0-10
Rahnella aquatilis334EfficacyEfficacy
80%63%
Rahnella aquatilis56532MaizeEarly vigor - moderate N10-20 
Rahnella aquatilis56532MaizeEarly vigor - moderate N0-100-10
Rahnella aquatilis56532WheatEarly vigor - cold stress0-1010-20 
Rahnella aquatilis56532WheatEarly vigor - cold stress<00-10
Rahnella aquatilis56532WheatEarly vigor - cold stress10-20 <0
Rahnella aquatilis57157RyegrassEarly vigor<0
Rahnella aquatilis57157MaizeEarly vigor - low N0-100-10
Rahnella aquatilis57157MaizeEarly vigor - low N0-10<0
Rahnella aquatilis58013MaizeEarly vigor0-1010-20 
Rahnella aquatilis58013MaizeEarly vigor - low N0-10<0
Rhodococcus erythropolis313Efficacy
66%
Rhodococcus erythropolis54093MaizeEarly vigor - low N40-50 
Rhodococcus erythropolis54299MaizeEarly vigor - insol P>100 
Rhodococcus erythropolis54299MaizeEarly vigor<0<0
Stenotrophomonas chelatiphaga611EfficacyEfficacy
60%60%
Stenotrophomonas chelatiphaga54952MaizeEarly vigor0-100-10
Stenotrophomonas chelatiphaga47207MaizeEarly vigor<0 0
Stenotrophomonas chelatiphaga64212MaizeEarly vigor0-1010-20 
Stenotrophomonas chelatiphaga64208MaizeEarly vigor0-100-10
Stenotrophomonas chelatiphaga58264MaizeEarly vigor<0<0
Stenotrophomonas maltophilia612EfficacyEfficacy
43%66%
Stenotrophomonas maltophilia54073MaizeEarly vigor - low N50-60 
Stenotrophomonas maltophilia54073MaizeEarly vigor<00-10
Stenotrophomonas maltophilia56181MaizeEarly vigor0-10<0
Stenotrophomonas maltophilia54999MaizeEarly vigor0-100-10
Stenotrophomonas maltophilia54850MaizeEarly vigor 00-10
Stenotrophomonas maltophilia54841MaizeEarly vigor<00-10
Stenotrophomonas maltophilia46856MaizeEarly vigor<0<0
Stenotrophomonas rhizophila811EfficacyEfficacy
12.5%37.5%
Stenotrophomonas rhizophila50839MaizeEarly vigor<0<0
Stenotrophomonas rhizophila48183MaizeEarly vigor<0<0
Stenotrophomonas rhizophila45125MaizeEarly vigor<0<0
Stenotrophomonas rhizophila46120MaizeEarly vigor<00-10
Stenotrophomonas rhizophila46012MaizeEarly vigor<0<0
Stenotrophomonas rhizophila51718MaizeEarly vigor0-100-10
Stenotrophomonas rhizophila66478MaizeEarly vigor<0<0
Stenotrophomonas rhizophila65303MaizeEarly vigor<00-10
Stenotrophomonas terrae221EfficacyEfficacy
50%50%
Stenotrophomonas terrae68741MaizeEarly vigor<0<0
Stenotrophomonas terrae68599MaizeEarly vigor<00-10
Stenotrophomonas terrae68599Capsicum *Early vigor20-30 20-30 
Stenotrophomonas terrae68741Capsicum *Early vigor10-20 20-30 

The data presented in table 15 describes the efficacy with which a microbial species or strain can change a phenotype of interest relative to a control run in the same experiment. Phenotypes measured were shoot fresh weight and root fresh weight for plants growing either in the absence of presence of a stress (assay). For each microbe species, an overall efficacy score indicates the percentage of times a strain of that species increased a both shoot and root fresh weight in independent evaluations. For each species, the specifics of each independent assay is given, providing a strain ID (strain) and the crop species the assay was performed on (crop). For each independent assay the percentage increase in shoot and root fresh weight over the controls is given.

Full text: Click here
Patent 2024
Ammonia Asparagine Aspartic Acid Biological Assay Bosea thiooxidans Calcium Phosphates Capsicum Cells Chlorophyll Cold Shock Stress Cold Temperature Crop, Avian Dietary Fiber DNA Replication Droughts Drought Tolerance Embryophyta Environment, Controlled Farmers Fertilization Glutamic Acid Glutamine Glycine Growth Disorders Herbaspirillum Herbaspirillum huttiense Leucine Lolium Lycopersicon esculentum Lysine Maize Massilia niastensis Methionine Microbial Consortia Nitrates Nitrites Nitrogen Novosphingobium rosa Paenibacillus Paenibacillus amylolyticus Pantoea agglomerans Pantoea vagans Phenotype Phosphates Photosynthesis Plant Development Plant Embryos Plant Leaves Plant Proteins Plant Roots Plants Polaromonas ginsengisoli Pseudoduganella violaceinigra Pseudomonas Pseudomonas fluorescens Rahnella Rahnella aquatilis Retention (Psychology) Rhodococcus erythropolis Rosa Salt Stress Sodium Chloride Sodium Chloride, Dietary Stenotrophomonas chelatiphaga Stenotrophomonas maltophilia Stenotrophomonas rhizophila Stenotrophomonas terrae Sterility, Reproductive Strains Technique, Dilution Threonine Triticum aestivum Tryptophan Tyrosine Vegetables Zea mays
Not available on PMC !

Example 2

Directed TpH Engineering

It was found that Homo sapiens TpH2, i.e., the fragment set forth as SEQ ID NO:13; hsTpH2, was sensitive to p-chlorophenylalanine. However, mutations at residues N97 and/or P99 were found to confer resistance to p-chlorophenylalanine and to exhibit improved 5HTP biosynthesis after growing cells in the presence of 100 mg/l of tryptophan overnight at 3TC. A further, saturated mutagenesis, study found that isoleucine (I) was a beneficial amino acid change at residue N97, while cysteine (C), aspartic acid (D), leucine (L) and glutamine (Q) were shown to be beneficial at residue P99. In particular, the combined changes 1\197I/P99D in hsTpH2 showed a >15% increase in 5HTP production in the presence of 100 mg/l tryptophan and the combined changes N97I/P99C in hsTpH2 showed a >25% increase in 5HTP biosynthesis, over the parent TPH2 sequence (SEQ ID NO:13) after acquiring the E2K mutation.

Full text: Click here
Patent 2024
5-Hydroxytryptophan Amino Acids Anabolism Aspartic Acid Cells Cysteine Fenclonine Glutamine Homo sapiens Isoleucine Leucine Melatonin Mutagenesis Mutation Parent Tryptophan

Example 4

The table below presents a formulation for a 12 ounce (355 ml) serving of a sports drink containing a nutritional supplement according to the present disclosure. The formulation also includes L-theanine, creatyl-L-leucine, Corynanthe yohimbe bark extract, and/or theacrine in a total amount of 232 mg. Percentages are based on the weight of the nutritional supplement.

IngredientAmount (mg)Amount (%)
Trimethylglycine2,50072.8
α-GPC40011.6
Caffiene3008.74

Full text: Click here
Patent 2024
1,3,7,9-tetramethyluric acid Betaine Cascara Sagrada Corynanthe Dietary Supplements Leucine theanine Yohimbe

Example 3

The table below presents a formulation for a 12 ounce (355 ml) serving of a sports drink containing a formulation according to the present disclosure. The formulation also includes L-theanine, creatyl-L-leucine, Corynanthe yohimbe bark extract, and/or theacrine in a total amount of 232 mg. Percentages are based on the weight of the nutritional supplement.

IngredientAmount (mg)Amount (%)
Trimethylglycine2,50068.8
α-GPC60016.5
Caffiene3008.25

Full text: Click here
Patent 2024
1,3,7,9-tetramethyluric acid Betaine Cascara Sagrada Corynanthe Dietary Supplements Leucine theanine Yohimbe
Not available on PMC !

Example 4

The linear peptides of the Compound 4 and 11 were prepared by solid phase method as per the analogous process given for Example 2, Part A except here Fmoc protected D-Leucine was first coupled with Wang resin and then sequentially other amino acids were coupled. Grafting of activated fatty acid chain, Moiety A-OSu over the respective linear peptide by following the process of Example 2, Part B afforded the Compound 4 and 11.

Full text: Click here
Patent 2024
Amino Acids Fatty Acids Leucine Peptides Wang resin

Top products related to «Leucine»

Sourced in United States, Germany, Italy, United Kingdom, Sao Tome and Principe, France, Belgium, Canada, Australia
L-leucine is an amino acid that can be used as a laboratory reagent. It serves as a building block for proteins and is commonly used in cell culture media and other biochemical applications.
Sourced in United States, Germany, China, Spain, Switzerland, Sao Tome and Principe
Leucine is an essential amino acid commonly used in biochemical and cell culture applications. It serves as a building block for proteins and plays a role in various metabolic processes. The core function of Leucine is to support cellular growth and development.
Sourced in United States, Germany, Poland, Israel, Spain, United Kingdom, Japan, China, Italy
L-phenylalanine is an essential amino acid that serves as a fundamental building block for proteins. It is a commonly used laboratory reagent in various applications, including biochemical research and analysis.
Sourced in United States, Japan, China, Germany, United Kingdom, France
The PGBKT7 is a plasmid vector used for gene expression in yeast cells. It contains a yeast selectable marker and a multiple cloning site for the insertion of DNA sequences.
Sourced in United States, Germany, United Kingdom, Spain, China, Croatia
Histidine is a naturally occurring amino acid that is used in various laboratory applications. It plays a crucial role in the functioning of numerous enzymes and serves as a buffer in biological systems. Histidine is a widely used component in buffer solutions and culture media for cellular and biomolecular studies.
Sourced in United States
[3H]leucine is a radioactively labeled amino acid that can be used for various research applications. It is a tritium-labeled form of the amino acid leucine, which is commonly used in cell and protein studies.
Sourced in United States, Germany, China, United Kingdom, Sao Tome and Principe, France, Switzerland, Spain
Phenylalanine is an amino acid that is used as a laboratory reagent. It is a colorless and odorless crystalline solid. Phenylalanine is a naturally occurring essential amino acid that is required for protein synthesis.
Sourced in United States, Germany, Italy
L-isoleucine is a branched-chain amino acid that can be used as a laboratory reagent. It is a colorless crystalline solid that is soluble in water and organic solvents. L-isoleucine is commonly used in biochemical and physiological research applications.
Sourced in United States, Germany, China, Spain, Italy
Valine is a laboratory chemical used as an essential amino acid in cell culture and biochemical research applications. It serves as a building block for proteins and plays a role in various metabolic processes. Valine is commonly used in cell culture media formulations to support cell growth and proliferation.

More about "Leucine"

Discover the vital role of leucine, a branched-chain amino acid (BCAA), in protein synthesis, muscle growth, and energy metabolism.
As an essential nutrient, leucine is crucial for proper human body functioning and has been extensively researched in the fields of nutrition and exercise science.
Explore how leucine can be found in a variety of food sources like meat, dairy, eggs, and legumes, and how supplements may be used to enhance its intake.
Researchers have investigated the effects of leucine on various physiological processes, such as muscle protein synthesis, glucose homeostasis, and adipose tissue metabolism.
Ongoing studies continue to explore the potential therapeutic applications of leucine in conditions like sarcopenia (age-related muscle loss), obesity, and type 2 diabetes.
Optimize your leucine research with AI-driven comparisons of protocols from literature, pre-prints, and patents using PubCompare.ai.
Locate the best protocols and products to enhance reproducibility and accuracy in your leucine studies.
Discover how L-leucine, L-phenylalanine, PGBKT7, histidine, [3H]leucine, phenylalanine, L-isoleucine, and valine relate to and influence the efficacy of leucine research.
Experience the power of PubCompare's AI-driven platform today and unlock new insights in your leucine-focused studies.