The largest database of trusted experimental protocols
> Chemicals & Drugs > Amino Acid > Phycoerythrin

Phycoerythrin

Phycoerythrin is a naturally occuring fluorescent pigment found in certain red algae and cyanobacteria.
It is a biliprotein that plays a crucial role in photosynthesis by harvesting light energy and transferring it to chlorophyll.
Phycoerythrin has a wide range of applications in biomedical research, including as a fluorescent label for immunoassays and flow cytometry.
Its unique optical properties make it a valuable tool for enhasing the accuracy and reproducibility of scientific investigations.
Exploring the power of PubCompare.ai can help researchers optimzie their phycoerythrin-related studies by locating the best protocols and products from literature, preprints, and patents throught intelligent comparisons.

Most cited protocols related to «Phycoerythrin»

Tibialis anterior muscles of mice were subjected to enzymatic dissociation (first collagenase 0.2% and then dispase (0.04 units ml−1), Sigma) for 90 min, after which non-muscle tissue was gently removed under a dissection microscope. The cell suspension was filtered through a 70 µm nylon filter (Falcon) and incubated with the following biotinylated antibodies: CD45, CD11b, CD31 and Sca1 (BD Bioscience). Streptavidin beads (Miltenyi Biotech) were then added to the cells together with the following antibodies: integrin-α7–phycoerythrin (PE; a gift from F. Rossi) and CD34–Alexa647 (eBioscience), after which magnetic depletion of biotin-positive cells was performed. The (CD45CD11bCD31Sca1)CD34+integrin-α7+ population was then fractionated twice by flow cytometry (DIVA-Van, Becton-Dickinson). Primary myoblasts were isolated as described previously20 (link).
Publication 2008
Alexa Fluor 647 Antibodies Biotin CASP3 protein, human Cells dispase Dissection Enzymes Flow Cytometry Integrins ITGAM protein, human Microscopy Mus Muscle Tissue Myoblasts Neutrophil Collagenase Nylons Phycoerythrin Streptavidin Tibial Muscle, Anterior
Expression of the HHD monochain and lack of H-2Db and H-2Kb were documented by indirect immunofluorescence analyses using B9.12.1 (anti–HLA class I), B22.249.R.19 (anti–H-2Db), and 20.8.4S unlabeled mAb, detected with F(ab)′2 FITC-conjugated goat anti–mouse IgG. Percentages of single CD4+ and CD8+ T lymphocytes were determined by double staining using phycoerythrin-labeled anti–mouse CD4 (CALTAG Labs., South San Francisco, CA) and biotinylated anti–mouse CD8 (CALTAG Labs.) detected with streptavidin– Perc-P (CALTAG Labs.). Expression of the different Vβ TCR were similarly analyzed using phycoerythrin-labeled anti-CD8 mAb (PharMingen, San Diego, CA) and purified, FITC-labeled Vβ2 (B.20.6), Vβ3 (KJ.25), Vβ4 (KT.10.4), Vβ5.1,.2 (MR.9.4), Vβ6 (44.22), Vβ7 (TR 130), Vβ8.1,.2,.3 (F.23.1), Vβ9 (MR. 10.2), Vβ10 (B.21.5), Vβ11 (RR.3.15), Vβ13 (MR.12.4), and Vβ17 (KJ.23.1)- specific mAb. Splenocytes from three individual Db−/−, β2m−/−, HHD+, or HHD mice were red blood cell depleted and enriched in T lymphocytes by wheat germ agglutinin (Sigma Chemical Co., St Louis, MO) precipitation of B lymphocytes and NK cells as described (18 (link)). Staining of 106 cells was performed in 100 μl of PBS with 0.02% sodium azide for 30 min on ice. Purified mAb or F(ab)′2 were used at 10 μg/ml and F(ab)′2 FITCconjugated goat anti–mouse IgG was used 1:100 diluted. A total of 25,000 1% paraformaldehyde-fixed cells per sample was subjected to one- or two-color analysis on FACScan®.
Publication 1997
anti-IgG B-Lymphocytes CD8-Positive T-Lymphocytes Cells Erythrocytes Fluorescein-5-isothiocyanate Goat Immunoglobulin G Indirect Immunofluorescence Mus Natural Killer Cells paraform Phycoerythrin Sodium Azide Streptavidin T-Lymphocyte Wheat Germ Agglutinins
The steps in assay validation were similar to recently developed bead-based multiplex immunoassays for CMV, EBV, and RSV, with minor modifications as described below [16 (link), 17 (link)]. For the multiplex bead-based immune assay the following antigens obtained from Sino Biological were used: SARS-CoV-2 monomeric spike S1 (40591-V08H), RBD (40592-V08B), and nucleoprotein (N) (40588-V08B). Microplex fluorescent beads were activated in 50 mM 2-(N-morpholino)ethanesulfonic acid (MES) pH 5.5. The proteins were diluted to a concentration of 0.2 mg/mL in phosphate-buffered saline (PBS) pH 7.4 and added at 5 µg per 75 µL of activated beads.
An internal reference sample was created by pooling 13 sera of COVID-19 patients with varying immunoglobulin G (IgG) concentrations. An arbitrary antibody concentration unit of 100 was assigned on the basis of the mean fluorescence intensity (MFI) signal in the upper limit of linearity of a 3-fold serial dilution of the reference sample.
Sera (25 µL) diluted 1:400 and 1:8000 in SM01 buffer (Surmodics) plus 2% fetal calf serum were incubated with antigen-coated beads for 45 minutes at room temperature at 750 rpm in the dark. Following incubation, samples were washed 3 times with PBS, incubated with phycoerythrin-conjugated goat anti-human IgG for 30 minutes and washed. Samples were acquired on an LX200 or FM3D (Luminex). MFI was converted to arbitrary units (AU/mL) by interpolation from a 5-parameter logistic standard curve, using Bioplex Manager 6.2 (Bio-Rad Laboratories) software and exported to Microsoft Excel.
Publication 2020
Antibodies, Anti-Idiotypic Antigens Biological Assay Biopharmaceuticals bioplex COVID 19 ethane sulfonate Fetal Bovine Serum Fluorescence Goat Homo sapiens Immunoassay Immunoglobulin G Immunoglobulins isononanoyl oxybenzene sulfonate Morpholinos Nucleoproteins Patients Phosphates Phycoerythrin Proteins Saline Solution SARS-CoV-2 Serum Technique, Dilution
293T cells containing the stable library were induced with doxycycline (1 μg/mL) and harvested the next day in fluorescence-activated cell sorting (FACS) buffer (HBSS, 1 mM EDTA, 0.5% BSA). Cells containing BG505-SOSIP libraries were transfected with furin 24 hr prior to induction. Cells were stained with IgGs or Fabs for ∼30 min, washed with FACS buffer, and then stained with fluorescein isothiocyanate (FITC)-labeled α-cMyc (Immunology Consultants Laboratory). IgGs were labeled with phycoerythrin (PE)-conjugated α-human IgG (Sigma), Fabs containing HA epitope tags (PGT145, PGT151, and PG16) were labeled with α-HA-PE (Miltenyi Biotec), and Fabs containing V5 epitope tags (B6 and 4025) were labeled with α-V5-FITC (GeneTex). Cells were sorted on a BD Influx (BD Biosciences) FACS sorter. Approximately 2 × 105 double positive cells were collected and expanded for approximately one week in the presence of puromycin and blasticidin before the next round of enrichment. Once the desired population had been obtained, chromosomal DNA was extracted from the cell culture with the GenElute Mammalian Genomic DNA Miniprep Kit (Sigma). The gp120 or gp140 gene was PCR amplified from the genomic DNA and inserted back into the pENTR vector via CPEC cloning or Gibson Assembly and transformed into TOP10 competent cells (Invitrogen); colonies were sequenced at Genewiz.
Full text: Click here
Publication 2016
Buffers Cell Culture Techniques Cells Chromosomes Cloning Vectors cyclopentenyl cytosine DNA Library Doxycycline Edetic Acid Epitopes Fluorescein Furin Genes Genome GP 140 HEK293 Cells Hemoglobin, Sickle HIV Envelope Protein gp120 Homo sapiens isothiocyanate Mammals Phycoerythrin Puromycin
Bloodspot eluates were screened in duplicate with the antigen-coupled beads in a multiplex bead assay [8] (link). Filter-bottom plates (96-well) (Millipore, Bedford, MA) were pre-wet with 0.5% BSA, 0.05% Tween 20, 0.02% sodium azide in PBS (PBN2). Antigen-coupled beads (2500 each) were added to each well and washed twice with PBN2. Control sera and bloodspot eluates (1∶400) were added in duplicate at 50 µl per well to the beads. The plates were vigorously shaken for 30 seconds, covered, and shaken at room temperature for 1.5 hours. After incubation, wells were washed three times with 100 µl of 0.05% Tween 20 in PBS (PBST) with a vacuum device (Millipore). Total IgG was detected with 50 ng of biotinylated mouse anti-human total IgG (clone H2; Southern Biotech, Birmingham, AL) and 40 ng of biotinylated mouse anti-human IgG4 (clone HP6025; Invitrogen, South San Francisco, CA) per well in 50 µl PBN2. After incubation, wells were washed as above. R-phycoerythrin-labeled streptavidin (Invitrogen, South San Francisco, CA) was added at a concentration of 250 ng per well and incubated for 30 minutes at room temperature. Wells were washed as previously after incubation. Wells were additionally incubated in 50 µl of PBN2 to remove any loosely bound antibodies for 30 minutes with shaking. After the final incubation in PBN2, wells were vacuum-evacuated and washed once with PBST. Beads were suspended in 125 µl PBS, shaken, and immediately read on a BioPlex 200 instrument (Bio-Rad, Hercules, CA) equipped with Bio-Plex Manager 6.0 software (Bio-Rad).
Full text: Click here
Publication 2012
anti-IgG Antibodies Antigens Biological Assay bioplex Clone Cells Homo sapiens IgG4 Medical Devices Mus Neoplasm Metastasis Phycoerythrin Serum Sodium Azide Strains Streptavidin Tween 20 Vacuum

Most recents protocols related to «Phycoerythrin»

Example 6

TbpB and NMB0313 genes were amplified from the genome of Neisseria meningitidis serotype B strain B16B6. The LbpB gene was amplified from Neisseria meningitidis serotype B strain MC58. Full length TbpB was inserted into Multiple Cloning Site 2 of pETDuet using restriction free cloning ((F van den Ent, J. Löwe, Journal of Biochemical and Biophysical Methods (Jan. 1, 2006)).). NMB0313 was inserted into pET26, where the native signal peptide was replaced by that of pelB. Mutations and truncations were performed on these vectors using site directed mutagenesis and restriction free cloning, respectively. Pairs of vectors were transformed into E. coli C43 and were grown overnight in LB agar plates supplemented with kanamycin (50 μg/mL) and ampicillin (100 μg/mL).

tbpB genes were amplified from the genomes of M. catarrhalis strain 035E and H. influenzae strain 86-028NP and cloned into the pET52b plasmid by restriction free cloning as above. The corresponding SLAMs (M. catarrhalis SLAM 1, H. influenzae SLAM1) were inserted into pET26b also using restriction free cloning. A 6His-tag was inserted between the pelB and the mature SLAM sequences as above. Vectors were transformed into E. coli C43 as above.

Cells were harvested by centrifugation at 4000 g and were twice washed with 1 mL PBS to remove any remaining growth media. Cells were then incubated with either 0.05-0.1 mg/mL biotinylated human transferrin (Sigma-aldrich T3915-5 MG), α-TbpB (1:200 dilution from rabbit serum for M. catarrhalis and H. influenzae; 1:10000 dilution from rabbit serum for N. meningitidis), or α-LbpB (1:10000 dilution from rabbit serum-obtained a gift from J. Lemieux) or α-fHbp (1:5000 dilution from mouse, a gift from D. Granoff) for 1.5 hours at 4° C., followed by two washes with 1 mL of PBS. The cells were then incubated with R-Phycoerythrin-conjugated Streptavidin (0.5 mg/ml Cedarlane) or R-phycoerythrin conjugated Anti-rabbit IgG (Stock 0.5 mg/ml Rockland) at 25 ug/mL for 1.5 hours at 4° C. The cells were then washed with 1 mL PBS and resuspended in 200 uL fixing solution (PBS+2% formaldehyde) and left for 20 minutes. Finally, cells were washed with 2×1 mL PBS and transferred to 5 mL polystyrene FACS tubes. The PE fluorescence of each sample was measured for PE fluorescence using a Becton Dickinson FACSCalibur. The results were analyzed using FLOWJO software and were presented as mean fluorescence intensity (MFI) for each sample. For N. meningtidis experiments, all samples were compared to wildtype strains by normalizing wildtype fluorescent signals to 100%. Errors bars represent the standard error of the mean (SEM) across three experiments. Results were plotted statistically analysed using GraphPad Prism 5 software. The results shown in FIG. 6 for the SLPs, TbpB (FIG. 6A), LbpB. (FIG. 6B) and fHbp (FIG. 6C) demonstrate that SLAM effects translocation of all three SLP polypeptides in E. coli. The results shown in FIG. 10 demonstrate that translocation of TbpB from M. catarrhalis (FIG. 10C) and in H. influenzae (FIG. 10D) in E. coli require the co-expression of the required SLAM protein (Slam is an outer membrane protein that is required for the surface display of lipidated virulence factors in Neisseria. Hooda Y, Lai C C, Judd A, Buckwalter C M, Shin H E, Gray-Owen S D, Moraes T F. Nat Microbiol. 2016 Feb. 29; 1:16009).

Full text: Click here
Patent 2024
ADRB2 protein, human Agar Ampicillin anti-IgG Cells Centrifugation Cloning Vectors Culture Media Escherichia coli Fluorescence Formaldehyde Genes Genome Haemophilus influenzae Homo sapiens Kanamycin Lipoproteins Membrane Proteins Moraxella catarrhalis Mus Mutagenesis, Site-Directed Mutation Neisseria Neisseria meningitidis Phycoerythrin Plasmids Polypeptides Polystyrenes prisma Rabbits Serum Signaling Lymphocytic Activation Molecule Family Member 1 Signal Peptides Strains Streptavidin Technique, Dilution Transferrin Translocation, Chromosomal Virulence Factors
Not available on PMC !

EXAMPLE 8

In order to determine whether Nanobodies could inhibit the interaction of native CD80 and CD86 with CD28-Ig or CTLA4-Ig, Raji cells were incubated with serial dilutions of purified protein from confirmed clones or an irrelevant Nanobody. Next, either HuCD28-HuIgG1 or HuCTLA4-HuIgG1 was added to the cells/Nanobody suspension without washing the cells in between. After a wash step, cell-bound CD28- or CTLA4-HuIg was revealed using a phycoerythrin-conjugated F(ab′)2 derived from affinity purified goat-anti-human IgG1 antiserum (bovine serum protein crossabsorbed). Percentage inhibition was determined based on MFI values of controls having received an irrelevant specificity Nanobody (high control) or no CD28- or CTLA4-Ig fusion protein at all (low control).

Example FACS profiles of representative inhibitory and non-inhibitory Nanobodies are shown in FIG. 7.

Results from both ELISA and FACS based assays are summarized in Table C-6.

Full text: Click here
Patent 2024
Biological Assay Bos taurus Cardiac Arrest Cells Clone Cells CTLA-4-Ig CTLA4 protein, human Enzyme-Linked Immunosorbent Assay Goat Homo sapiens IgG1 Immune Sera Phycoerythrin Proteins Psychological Inhibition Serum Proteins Technique, Dilution VHH Immunoglobulin Fragments

Example 2

This example provides the results from binding the disclosed anti-PD-L1 antibodies to human lymphocytes. Anti-PD-L1 antibodies were assayed for binding to non-activated lymphocytes. Peripheral blood mononuclear cells were incubated with anti-PD-L1 antibodies (1 μg/ml) followed by washing. Binding of the anti-PD-L1 antibody was detected by staining with a phycoerythrin conjugated and human Ig reagent. To identify the stained populations the cells were co-stained with an anti-CD3 FITC or an anti-CD56 APC reagent. Since the anti-human Ig reagent reacts with immunoglobulin on B lymphocytes the cells were also stained with an anti-human CD19 APC-Cy5 reagent. The data in FIG. 2 were derived from the CD19 negative lymphocytes following analysis using a FACSAria (Becton Dickinson, San Jose, CA). The results show that CD56 positive NK cells, but not CD3+ T cells, react with the anti-PD-L1 antibodies.

Full text: Click here
Patent 2024
Anti-Antibodies Antibodies, Anti-Idiotypic Antigens B-Lymphocytes Binding Proteins CD274 protein, human Cells Fluorescein-5-isothiocyanate Homo sapiens Immunoglobulins Lymphocyte Muromonab-CD3 Natural Killer Cells PBMC Peripheral Blood Mononuclear Cells Phycoerythrin Population Group T-Lymphocyte

Example 7

Sepsis modeling was performed as described by Gorringe A. R., Reddin, K. M., Voet P. and Poolman J. T. (Methods Mol. Med. 66, 241 (Jan. 1, 2001)) and Johswich, K. O. et al. (Infect. Immun. 80, 2346 (Jul. 1, 2012)). Groups of 6 eight-week-old C57BL/6 mice (Charles River Laboratories) were inoculated via intraperitoneal injection with N. meningitidis strain B16B6, B16B6 Δtbpb, or B16B6 Δnmb0313 (N=2 independent experiments). To prepare inoculums, bacterial strains for infection were grown overnight on GC agar, resuspended and then grown for 4 h in 10 ml of Brain Heart Infusion (BHI) medium at 37° C. with shaking. Cultures were adjusted such that each final 500 μl inoculum contained 1×106 colony forming units and 10 mg human holo-transferrin. Mice were monitored at least every 12 h starting 48 h before infection to 48 h after infection for changes in weight, clinical symptoms and bacteremia. Mice were scored on a scale of 0-2 based on the severity of the following clinical symptoms: grooming, posture, appearance of eyes and nose, breathing, dehydration, diarrhea, unprovoked behavior, and provoked behavior. Animals reaching endpoint criteria were humanely euthanized. Animal experiments were conducted in accordance with the Animal Ethics Review Committee of the University of Toronto.

FIG. 7 shows the results obtained. FIG. 7A shows a solid phase binding assay consisting of N.men cells fixed with paraformaldehyde (PFA) or lysed with SDS and were spotted onto nitrocellulose and probed with α-TbpB antibodies. ΔSLAM/tn5 refers to the original strain of SLAM deficient cells obtained through transposon insertion. ΔSLAM describes the knockout of SLAM in Neisseria meningitidis obtained by replacing the SLAM ORF with a kanamycin resistance cassette. FIG. 7B shows a Proteinase K digestion assay showing the degradation of TbpB, LbpB and fHbp only when Nm cells are SLAM deficient (ΔSLAM). Nm cells expressing individual SLPs alone and with SLAM were incubated with proteinase K and Western blots were used to detect levels of all three SLPs levels with and without protease digestion (−/+). Flow cytometry was used to confirm that ΔSLAM cells could not display TbpB (FIG. 7C) or fHbp (FIG. 7D) on the cell surface. Antibodies against TbpB and fHbp were used to bind surface exposed SLPs followed by incubation with a α-Rabbit antibody linked to phycoerythrin to provide fluorescence. The mean fluorescent intensity (MFI) of each sample was measured using the FL2 detector of a BD FACS Calibur. The signal obtained from wildtype cells was set to 100% for comparison with signals from knockout cells. Error bars represent the standard error of the mean (SEM) from three experiments. Shown in FIG. 7E are the results of mice infections with various strains. Mice were infected via intraperitoneal injection with 1×106 CFU of wildtype N. meningitidis strain B16B6, B16B6 with a knockout of TbpB (ΔtbpB), or B16B6 with a knockout of nmb0313 Δslam and monitored for survival and disease symptoms every 12 h starting 48 hr pre-infection to 48 h post-infection and additionally monitored at 3 hr post-infection. Statistical differences in survival were assessed by a Mantel-Cox log rank test (GraphPad Prism 5) (*p<0.05, n.s. not significant). These results show a marked reduction in post-infection mortality in mice infected with the knockout of nmb0313 Δslam strain.

Full text: Click here
Patent 2024
Agar Animals Antibodies Bacteremia Bacterial Infections Biological Assay Brain Cells Cultured Cells Dehydration Diarrhea Digestion Endopeptidase K Eye Flow Cytometry Fluorescence Genes Heart Homo sapiens Immunoglobulins Infection Injections, Intraperitoneal Jumping Genes Kanamycin Resistance Mice, Inbred C57BL Mus Neisseria Neisseria meningitidis Nitrocellulose Nose paraform Peptide Hydrolases Phycoerythrin prisma Rabbits Rivers Sepsis Strains Transferrin Virulence Western Blot

Example 4

In order to check the immobilisation of the proteins at the respective bead regions, a coupling control, was carried out. Here, different amounts of beads were used (250, 500 and 750 beads per bead region). For a reaction mixture, 500 beads for example per bead region were diluted in LxCBS buffer (PBS, 1% BSA) and transferred into an assay plate (96 well half area microplate, Greiner).

Before each washing step, the assay plate with the beads was placed for 2 minutes on a magnet, and the supernatant was then removed. After three washing steps, the beads were incorporated with 100 μl LxWPT buffer (PBS, 0.05% Tween-20), and 10 μl/ml penta-his antibodies (Qiagen) or LxCBS buffer (PBS, 1% BSA) were added by pipette. Following incubation for 45 minutes in the shaker (RT, 900 rpm, protected against light), the supernatant was removed and the beads were washed in two steps, 5 μl/ml goat, anti-mouse IgG-PE (Phycoerythrin) or goat anti-human IgG-PE (Dianova) were then added as secondary antibody to the reaction mixture and incubated for 30 minutes. Following two washing steps, 100 μl of carrier liquid (Luminex) was added to the beads. The fluorescence signal of the beads was detected with the aid of the FlexMAPSD instrument. Here, the bead count on the one hand and the median of the fluorescence intensity (MFI value) on the other hand were measured.

Full text: Click here
Patent 2024
anti-IgG Antibodies Biological Assay Buffers Fluorescence Goat Homo sapiens Immobilization Immunoglobulins Light Mus Phycoerythrin Proteins Tetranitrate, Pentaerythritol Tween 20

Top products related to «Phycoerythrin»

Sourced in United States, Germany, United Kingdom, China, Canada, Japan, Italy, France, Belgium, Switzerland, Singapore, Uruguay, Australia, Spain, Poland, India, Austria, Denmark, Netherlands, Jersey, Finland, Sweden
The FACSCalibur is a flow cytometry system designed for multi-parameter analysis of cells and other particles. It features a blue (488 nm) and a red (635 nm) laser for excitation of fluorescent dyes. The instrument is capable of detecting forward scatter, side scatter, and up to four fluorescent parameters simultaneously.
Sourced in United States, Germany, United Kingdom, China, Canada, Japan, Belgium, France, Spain, Italy, Australia, Finland, Poland, Switzerland, Cameroon, Uruguay, Denmark, Jersey, Moldova, Republic of, Singapore, India, Brazil
The FACSCalibur flow cytometer is a compact and versatile instrument designed for multiparameter analysis of cells and particles. It employs laser-based technology to rapidly measure and analyze the physical and fluorescent characteristics of cells or other particles as they flow in a fluid stream. The FACSCalibur can detect and quantify a wide range of cellular properties, making it a valuable tool for various applications in biology, immunology, and clinical research.
Sourced in United States, Germany, United Kingdom, Belgium, China, Australia, France, Japan, Italy, Spain, Switzerland, Canada, Uruguay, Netherlands, Czechia, Jersey, Brazil, Denmark, Singapore, Austria, India, Panama
The FACSCanto II is a flow cytometer instrument designed for multi-parameter analysis of single cells. It features a solid-state diode laser and up to four fluorescence detectors for simultaneous measurement of multiple cellular parameters.
Sourced in United States, Germany, United Kingdom, Italy, Canada, China, Japan, Belgium, France, Spain, Switzerland, Poland, Uruguay, Denmark, Singapore
CellQuest software is a data acquisition and analysis software designed for flow cytometry applications. It provides tools for acquiring, processing, and analyzing flow cytometry data.
Sourced in United States, Germany, United Kingdom, France, Canada, Belgium, Australia, Italy, Spain, Switzerland, China, Netherlands, Finland, Japan, Jersey, Lao People's Democratic Republic
FACSDiva software is a user-friendly flow cytometry analysis and data management platform. It provides intuitive tools for data acquisition, analysis, and reporting. The software enables researchers to efficiently process and interpret flow cytometry data.
Sourced in United States, Germany, United Kingdom, Belgium, Japan, France, China, Australia, Italy, Spain, Canada, Switzerland, Sweden, Brazil, India, Mexico, Austria
The FACSCanto II is a flow cytometer manufactured by BD. It is a versatile instrument designed for multicolor flow cytometric analysis. The FACSCanto II can detect and analyze various properties of cells or particles suspended in a fluid as they flow through the system.
Sourced in United States, United Kingdom, Germany, France, Canada, Australia, Belgium, China, Uruguay, Japan, Sweden, Switzerland, Cameroon
The LSRFortessa is a flow cytometer designed for multiparameter analysis of cells and other particles. It features a compact design and offers a range of configurations to meet various research needs. The LSRFortessa provides high-resolution data acquisition and analysis capabilities.
Sourced in United States, United Kingdom, Germany, Japan, Belgium, Canada, France, China, Switzerland, Sweden, Australia, Lao People's Democratic Republic, Austria, Uruguay
The FACSAria is a flow cytometry instrument manufactured by BD. It is used for the analysis and sorting of cells and other particles. The FACSAria is designed to provide high-performance cell sorting capabilities, enabling researchers to isolate specific cell populations for further analysis or experimentation.
Sourced in United States, Germany, United Kingdom, China, Italy, Japan, France, Sao Tome and Principe, Canada, Macao, Spain, Switzerland, Australia, India, Israel, Belgium, Poland, Sweden, Denmark, Ireland, Hungary, Netherlands, Czechia, Brazil, Austria, Singapore, Portugal, Panama, Chile, Senegal, Morocco, Slovenia, New Zealand, Finland, Thailand, Uruguay, Argentina, Saudi Arabia, Romania, Greece, Mexico
Bovine serum albumin (BSA) is a common laboratory reagent derived from bovine blood plasma. It is a protein that serves as a stabilizer and blocking agent in various biochemical and immunological applications. BSA is widely used to maintain the activity and solubility of enzymes, proteins, and other biomolecules in experimental settings.
Sourced in United States, Germany, United Kingdom, Canada, France, Australia, Switzerland, Uruguay
The BD LSRII flow cytometer is a multi-parameter instrument designed for advanced flow cytometry applications. It features a modular design that allows for customization to meet specific research needs. The LSRII utilizes laser excitation and sensitive detectors to analyze the physical and fluorescent properties of individual cells or particles passing through a fluid stream.

More about "Phycoerythrin"

Phycoerythrin is a naturally occurring fluorescent pigment found in certain red algae and cyanobacteria.
It is a biliprotein that plays a crucial role in photosynthesis by harvesting light energy and transferring it to chlorophyll.
Phycoerythrin has a wide range of applications in biomedical research, including as a fluorescent label for immunoassays and flow cytometry.
Its unique optical properties make it a valuable tool for enhanding the accuracy and reproducibility of scientific investigations.
Researchers can utilize the power of PubCompare.ai, an AI-driven platform, to optimize their phycoerythrin-related studies.
This tool helps locate the best protocols and products from literature, preprints, and patents through intelligent comparisons.
By exploring PubCompare.ai, researchers can enhance their research accuracy and reproducibility, ultimately advancing their understanding of this fascinating pigment.
Phycoerythrin is closely related to other fluorescent proteins, such as those used in flow cytometry instruments like the FACSCalibur, FACSCanto II, LSRFortessa, and FACSAria.
These instruments, along with associated software like CellQuest and FACSDiva, are commonly used in conjunction with phycoerythrin-labeled samples to analyze and sort cells based on their optical properties.
Furthermore, the use of bovine serum albumin (BSA) is often employed in phycoerythrin-based assays and experiments to enhance stability and reduce non-specific binding.
Researchers can leverage their knowledge of these related terms and technologies to optimze their phycoerythrin-focused studies and achieve more accurate and reproducible results.