Ground feed samples were analyzed according to the official methods in Germany (Verband Deutscher Landwirtschaftlicher Untersuchungs- und Forschungsanstalten (VDLUFA), 2007 ) for DM (method no. 3.1), and CP (no. 4.1.1). Pulverized ileum digesta samples also were analyzed for CP. Pulverized feed and digesta samples were analyzed for P, Ca, and Ti using a modified method from Boguhn et al. (2009 (link)), described in detail by Zeller et al. (2015a (link)).
The extraction and measurement of InsP3–6 isomers in feed and digesta were carried out using the method of Zeller et al. (2015a (link)) with slight modifications. Briefly, samples were extracted twice with a solution of 0.2 M EDTA and 0.1 M sodium fluoride (pH 8.0; 4°C) for 30 min under agitation, and centrifuged after each extraction at 12,000 × g for 15 minutes. The respective supernatants were combined, and a 1-mL sample was centrifuged at 14,000 × g for 15 min, and then filtered before being centrifuged again at 14,000 × g for 30 minutes. Filtrates were analyzed using high-performance ion chromatography and UV detection at 290 nm after post-column reaction with Fe(NO3)3 in HClO4 using an ICS-3000 system (Dionex, Idstein, Germany). Some InsP3 isomers could not be identified because the specific standards were unavailable. A clear discrimination between the isomers Ins(1,2,6)P3, Ins(1,4,5)P3, and Ins(2,4,5)P3 was not possible because of co-elution, and therefore the term InsP3x will be used for these InsP3 isomers of unknown proportions. InsP6 was used for quantification, and correction factors for differences in detector responses for InsP3–5 were used according to Skoglund et al. (1997 ). For the analysis of the InsP1–2 isomers that were analyzed solely in the ileum digesta, an extraction was performed with 0.2 M sodium fluoride at pH 8.0, and otherwise carried out as previously described for InsP3–6 isomers. Filtrates were analyzed by high-performance ion chromatography and conductivity detection using an ICS-3000 system (Dionex, Idstein, Germany). A clear discrimination between the isomers Ins(1)P1 and Ins(2)P1 was not possible because of co-elution, and therefore the term InsP1x will be used for the InsP1 isomers of unknown proportions.
For analysis of MI, samples of feed and digesta were derivatized without sample cleanup. Proteins from plasma samples were precipitated by addition of acetonitrile, and samples were lyophylized prior to derivatization. A 2-step derivatization procedure comprising oximation and silanisation was carried out. Deuterated MI was used as internal standard. MI was measured using a 5977A gas chromatograph/mass spectrometer of Agilent (Waldbronn, Germany).
Analysis of AA was performed according to Rodehutscord et al. (2004 (link)). In brief, samples were oxidized in an ice bath using a mixture of hydrogen peroxide, phenolic formic acid solution, and phenol. Then, samples were hydrolyzed at 113°C for 24 h in a mixture containing hydrochloric acid and phenol. Norleucine was used as an external standard. AA were separated and detected using an L-8900 Amino Acid Analyzer (VWR, Hitachi Ltd, Tokyo, Japan). Methionine and cysteine were determined as methionine sulfone and cysteic acid, respectively. The concentrations of tyrosine, histidine, and phenylalanine may be affected to some extent by the oxidation procedure (Mason et al., 1980 (link)).
Feed samples were analyzed for phytase activity by Enzyme Services and Consultancy (Ystrad Mynach, Wales, UK) using the analytical method of the enzyme producer (pH 4.5; 60°C), followed by transferring the results to the commonly used FTU per kilogram of feed by a validated transfer factor.
The extraction and measurement of InsP3–6 isomers in feed and digesta were carried out using the method of Zeller et al. (2015a (link)) with slight modifications. Briefly, samples were extracted twice with a solution of 0.2 M EDTA and 0.1 M sodium fluoride (pH 8.0; 4°C) for 30 min under agitation, and centrifuged after each extraction at 12,000 × g for 15 minutes. The respective supernatants were combined, and a 1-mL sample was centrifuged at 14,000 × g for 15 min, and then filtered before being centrifuged again at 14,000 × g for 30 minutes. Filtrates were analyzed using high-performance ion chromatography and UV detection at 290 nm after post-column reaction with Fe(NO3)3 in HClO4 using an ICS-3000 system (Dionex, Idstein, Germany). Some InsP3 isomers could not be identified because the specific standards were unavailable. A clear discrimination between the isomers Ins(1,2,6)P3, Ins(1,4,5)P3, and Ins(2,4,5)P3 was not possible because of co-elution, and therefore the term InsP3x will be used for these InsP3 isomers of unknown proportions. InsP6 was used for quantification, and correction factors for differences in detector responses for InsP3–5 were used according to Skoglund et al. (1997 ). For the analysis of the InsP1–2 isomers that were analyzed solely in the ileum digesta, an extraction was performed with 0.2 M sodium fluoride at pH 8.0, and otherwise carried out as previously described for InsP3–6 isomers. Filtrates were analyzed by high-performance ion chromatography and conductivity detection using an ICS-3000 system (Dionex, Idstein, Germany). A clear discrimination between the isomers Ins(1)P1 and Ins(2)P1 was not possible because of co-elution, and therefore the term InsP1x will be used for the InsP1 isomers of unknown proportions.
For analysis of MI, samples of feed and digesta were derivatized without sample cleanup. Proteins from plasma samples were precipitated by addition of acetonitrile, and samples were lyophylized prior to derivatization. A 2-step derivatization procedure comprising oximation and silanisation was carried out. Deuterated MI was used as internal standard. MI was measured using a 5977A gas chromatograph/mass spectrometer of Agilent (Waldbronn, Germany).
Analysis of AA was performed according to Rodehutscord et al. (2004 (link)). In brief, samples were oxidized in an ice bath using a mixture of hydrogen peroxide, phenolic formic acid solution, and phenol. Then, samples were hydrolyzed at 113°C for 24 h in a mixture containing hydrochloric acid and phenol. Norleucine was used as an external standard. AA were separated and detected using an L-8900 Amino Acid Analyzer (VWR, Hitachi Ltd, Tokyo, Japan). Methionine and cysteine were determined as methionine sulfone and cysteic acid, respectively. The concentrations of tyrosine, histidine, and phenylalanine may be affected to some extent by the oxidation procedure (Mason et al., 1980 (link)).
Feed samples were analyzed for phytase activity by Enzyme Services and Consultancy (Ystrad Mynach, Wales, UK) using the analytical method of the enzyme producer (pH 4.5; 60°C), followed by transferring the results to the commonly used FTU per kilogram of feed by a validated transfer factor.