The overall scoring procedure is in three steps. A starting set of 10–50 trial heavy-atom partial structures are each given raw scores based on each of the four criteria described above and shown in Table 1 ▶ . The mean and standard deviation of the raw scores for each criterion are calculated and are then used as a basis for normalizing all these and later raw scores to yield Z scores for each criteria, where the Z score, based on a raw score of A and a mean and standard deviation for the starting set of and , is given by The final score for a heavy-atom solution is the sum of the Z scores for each of the four criteria. To reduce the likelihood of obtaining a high-scoring solution based on just the Patterson, figure of merit or cross-validation difference Fourier Z scores, the final score is adjusted by subtraction of half the differences between each of these and lowest Z score among them.
When the native Fourier is of low quality, the corresponding score is not of significant utility. To reduce the contribution of the scoring from the native Fourier in cases where it is not expected to be of value, we limit the Z score for the native Fourier to a maximum value depending on the figure of merit of the map. The maximum value is set at the value obtained for cases with the corresponding figure of merit in a series of model calculations we carried out using selenomethionine MAD data and the gene 5 protein atomic model (Terwilliger & Berendzen, 1999 ▶ ; Skinner et al., 1994 ▶ ). These model cases resulted in the approximate relation where m is the average figure of merit of the phase calculation. That is, for a map with a figure of merit of 0.4, the maximum Z score allowed for this criteria would be just 0.6, while for a map with a figure of merit of 0.6 it could be as high as 2.7.
When the native Fourier is of low quality, the corresponding score is not of significant utility. To reduce the contribution of the scoring from the native Fourier in cases where it is not expected to be of value, we limit the Z score for the native Fourier to a maximum value depending on the figure of merit of the map. The maximum value is set at the value obtained for cases with the corresponding figure of merit in a series of model calculations we carried out using selenomethionine MAD data and the gene 5 protein atomic model (Terwilliger & Berendzen, 1999 ▶ ; Skinner et al., 1994 ▶ ). These model cases resulted in the approximate relation where m is the average figure of merit of the phase calculation. That is, for a map with a figure of merit of 0.4, the maximum Z score allowed for this criteria would be just 0.6, while for a map with a figure of merit of 0.6 it could be as high as 2.7.
Full text: Click here