In cases where MS/MS-based peptide identification is unavailable or limited in sequence coverage, HDX-WB provides the ability to extract all possible peptides from the protein sequence in place of a predetermined input peptide list. This operates in a manner similar to Hexicon [5 (link)]. To account for low enzymatic specificity, the software determines all possible combinations of peptide sequences between user defined residues in length and runs them through the detect algorithm however cleavage after H, K, P, and R may be eliminated from consideration based upon the Hamuro rules of pepsin specificity [31 (link)]. This has been shown to be a reasonable approach with novel or common enzymes used in HDX, such as pepsin or Fungal XIII, albeit somewhat more computationally expensive. The input list of peptides is not a requirement if this option is used and the approach has been shown to provide increased sequence coverage [5 (link)]. However, care should be taken when using this approach, as no product ion information is considered in the peptide identification.
An important consideration when searching MS1 data from predefined peptide sets is the detection of mass conflicts, in which a putative peptide can share the same or nearly the same mass with one, or many, other peptides within the peptide set. The software defines a mass conflict as two or more peptides within the peptide set whose theoretical monoisotopic mass is less than or equal to the error tolerance designated in the experiment set up. A mass conflict will indicate potential false positives from the detection process, as peptides with the same elemental composition will result in the same isotopic distribution and mass. HDX-WB provides the ability to automatically detect and flag peptides with mass conflicts within a user’s dataset, and allow the user to validate them manually.
HDX-WB is able to detect the potential presence of modifications from raw data; however, site localization is not possible because it is MS1 raw data being interrogated. For example, a search for one serine phosphorylation site on the peptide LULSSTVK would need to consider the forms LUL