One method frequently used to capture associations is the ‘gambit of the group’ (see Franks, Ruxton & James
Silk
It enables users to easily locate protocols from literature, preprints, and patents, and leverages cutting-edge AI technology to compare and identify the best protocols and products for their research needs.
Silk's intuitive tools unleash the full potential of research, empowering scientists to make informed decisions and accelerate their work.
This comprehensive platform combines the latest advancements in artificial intelligence with a user-friendly interface, making research optimization more accessible than ever before.
Most cited protocols related to «Silk»
One method frequently used to capture associations is the ‘gambit of the group’ (see Franks, Ruxton & James
Demultiplexed individual reads were analyzed with dDocent (version 1.0), using three different levels of final reference contig clustering (90%, 96%, and 99% similarity) in an attempt to alter the most comparable analysis variable in dDocent to match the maximum distance between stacks parameter and the maximum distance between stacks from different individuals parameter of Stacks. The coverage cut-off for assembly was 12 for red snapper, 13 for red drum, and nine for silk snapper. All dDocent runs used mapping variables of one, three, and five for match-score value, mismatch score, and gap-opening penalty, respectively. For comparisons, complex variants were decomposed into canonical SNP and I
For analysis with Stacks (version 1.08), reads were demultiplexed and cleaned using process_radtags, removing reads with ‘N’ calls and low-quality base scores. Because dDocent inherently uses both reads for SNP/I
For both dDocent and Stacks runs, VCFtools was used to filter out all I
Most recents protocols related to «Silk»
Example 19
The above silk solutions were transformed to a silk powder through lyophilization to remove bulk water and chopping to small pieces with a blender. pH was adjusted with sodium hydroxide. Low molecular weight silk (−25 kDa) was soluble while high molecular weight silk (−60 kDa) was not.
The lyophilized silk powder can be advantageous for enhanced storage control ranging from 10 days to 10 years depending on storage and shipment conditions. The lyophilized silk powder can also be used as a raw ingredient in the pharmaceutical, medical, consumer, and electronic markets. Additionally, lyophilized silk powder can be re-suspended in water, HFIP, or an organic solution following storage to create silk solutions of varying concentrations, including higher concentration solutions than those produced initially.
In an embodiment, aqueous pure silk fibroin-based protein fragment solutions of the present disclosure comprising 1%, 3%, and 5% silk by weight were each dispensed into a 1.8 L Lyoguard trays, respectively. All 3 trays were placed in a 12 ft2 lyophilizer and a single run performed. The product was frozen with a shelf temperature of ≤−40° C. and held for 2 hours. The compositions were then lyophilized at a shelf temperature of −20° C., with a 3 hour ramp and held for 20 hours, and subsequently dried at a temperature of 30° C., with a 5 hour ramp and held for about 34 hours. Trays were removed and stored at ambient conditions until further processing. Each of the resultant lyophilized silk fragment compositions were able to dissolve in aqueous solvent and organic solvent to reconstitute silk fragment solutions between 0.1 wt % and 8 wt %. Heating and mixing were not required but were used to accelerate the dissolving rate. All solutions were shelf-stable at ambient conditions.
In an embodiment, an aqueous pure silk fibroin-based protein fragment solution of the present disclosure, fabricated using a method of the present disclosure with a 30 minute boil, has a molecular weight of about 57 kDa, a polydispersity of about 1.6, inorganic and organic residuals of less than 500 ppm, and a light amber color.
In an embodiment, an aqueous pure silk fibroin-based protein fragment solution of the present disclosure, fabricated using a method of the present disclosure with a 60 minute boil, has a molecular weight of about 25 kDa, a polydispersity of about 2.4, inorganic and organic residuals of less than 500 ppm, and a light amber color.
Example 11
Example 10
Example 77
Heat applicable acids, lemongrass oil, and/or olive oil to 75° C. Dissolve NaOH in an initial aliquot of water and heat the solution to 70° C. To the alkaline solution add glycerin and silk solution, then add the blend of applicable acids, lemongrass oil, and/or olive oil. Allow the mixture to cool and then add 2M HCl followed by an ending aliquot of water. Where applicable, then add the aspen bark and/or the sodium anisate.
Example 70
Heat lauric acid, stearic acid, myristic acid, oleic acid, squalene oil, rosehip oil, lemongrass oil, olive oil, and/or jojoba oil to about 75° C. Then dissolve NaOH in water (or an initial aliquot of water) and heat the solution to about 70° C. To the NaOH solution add glycerin and silk, then add the blend of lauric acid, stearic acid, myristic acid, oleic acid, squalene oil, rosehip oil, lemongrass oil, olive oil, and/or jojoba oil. Allow the mixture to cool. Where applicable, reheat the mixture and add rosehip oil, squalene oil, and/or 2M HCl. Then, where applicable, add an ending aliquot of water and/or olive oil. Finally, add aspen bark and/or sodium anisate to yield the combination cleanser.
Top products related to «Silk»
More about "Silk"
Unlock the full potential of your research with Silk's intuitive tools and advanced artificial intelligence technology.
Silk enables users to easily locate and compare protocols from a vast array of sources, including literature, preprints, and patents.
Leveraging the latest advancements in AI, Silk empowers researchers to make informed decisions and accelerate their work.
Enhancing the research experience, Silk seamlessly integrates with complementary tools and technologies.
Explore the versatility of UN-SCAN-IT software, a powerful solution for analyzing data from various sources, including Pentobarbital sodium and Rompun.
Harness the capabilities of UN-SCAN-IT gel software and UN-SCAN-IT gel 6.1 software to streamline your data visualization and analysis.
Silk's comprehensive platform combines the power of AI with a user-friendly interface, making research optimization more accessible than ever before.
Elevate your research with the precision of 6-0 silk suture and the reliability of NOA 148.
Experience the future of research optimization with Silk.
Unlock new possibilities, drive innovation, and accelerate your scientific breakthroughs with this transformative AI-driven platform.