The largest database of trusted experimental protocols
> Chemicals & Drugs > Amino Acid > Staphylococcal Protein A

Staphylococcal Protein A

Staphylococcal Protein A is a cell wall protein found in certain strains of Staphylococcus bacteria.
It has the ability to bind to the Fc region of immunoglobulins, making it a valuable tool in immunology research and biotechnology applications.
PubCompare.ai's AI-driven platform can help optimize your research protocols and enhance reproducibility for Staphylococcal Protein A experiments.
Locate protocols from literature, pre-prints, and patents, and use their intelligent comparisons to identify the best protocols and products for your needs.
Simplify your research process and acheive better results with PubCompare.ai.

Most cited protocols related to «Staphylococcal Protein A»

Since its release in 199010 (link), AutoDock has proven to be an effective tool capable of quickly and accurately predicting bound conformations and binding energies of ligands with macromolecular targets9 ,11 (link)–14 . In order to allow searching of the large conformational space available to a ligand around a protein, AutoDock uses a grid-based method to allow rapid evaluation of the binding energy of trial conformations. In this method, the target protein is embedded in a grid. Then, a probe atom is sequentially placed at each grid point, the interaction energy between the probe and the target is computed, and the value is stored in the grid. This grid of energies may then be used as a lookup table during the docking simulation.
The primary method for conformational searching is a Lamarckian genetic algorithm, described fully in Morris et al.9 . A population of trial conformations is created, and then in successive generations these individuals mutate, exchange conformational parameters, and compete in a manner analogous to biological evolution, ultimately selecting individuals with lowest binding energy. The “Lamarckian” aspect is an added feature that allows individual conformations to search their local conformational space, finding local minima, and then pass this information to later generations. A simulated annealing search method and a traditional genetic algorithm search are also available in AutoDock4.
AutoDock4 uses a semiempirical free energy force field to predict binding free energies of small molecules to macromolecular targets. Development and testing of the force field has been described elsewhere11 (link). The force field is based on a comprehensive thermodynamic model that allows incorporation of intramolecular energies into the predicted free energy of binding. This is performed by evaluating energies for both the bound and unbound states. It also incorporates a new charge-based desolvation method that uses a typical set of atom types and charges. The method has been calibrated on a set of 188 diverse protein-ligand complexes of known structure and binding energy, showing a standard error of about 2–3 kcal/mol in prediction of binding free energy in cross-validation studies.
Publication 2009
Biological Evolution Childbirth Ligands Proteins SET protein, human Staphylococcal Protein A
To assess a transcript's coding potential, we extract six features from the transcript's nucleotide sequence. A true protein-coding transcript is more likely to have a long and high-quality Open Reading Frame (ORF) compared with a non-coding transcript. Thus, our first three features assess the extent and quality of the ORF in a transcript. We use the framefinder software (14 ) to identify the longest reading frame in the three forward frames. Known for its error tolerance, framefinder can identify most correct ORFs even when the input transcripts contain sequencing errors such as point mutations, indels and truncations (14 ,15 (link)). We extract the LOG-ODDS SCORE and the COVERAGE OF THE PREDICTED ORF as the first two features by parsing the framefinder raw output with Perl scripts (available for download from the web site). The LOG-ODDS SCORE is an indicator of the quality of a predicted ORF and the higher the score, the higher the quality. A large COVERAGE OF THE PREDICTED ORF is also an indicator of good ORF quality (14 ). We add a third binary feature, the INTEGRITY OF THE PREDICTED ORF, that indicates whether an ORF begins with a start codon and ends with an in-frame stop codon.
The large and rapidly growing protein sequence databases provide a wealth of information for the identification of protein-coding transcript. We derive another three features from parsing the output of BLASTX (16 (link)) search (using the transcript as query, E-value cutoff 1e-10) against UniProt Reference Clusters (UniRef90) which was developed as a nonredundant protein database with a 90% sequence identity threshold (17 (link)). First, a true protein-coding transcript is likely to have more hits with known proteins than a non-coding transcript does. Thus we extract the NUMBER OF HITS as a feature. Second, for a true protein-coding transcript the hits are also likely to have higher quality; i.e. the HSPs (High-scoring Segment Pairs) overall tend to have lower E-value. Thus we define feature HIT SCORE as follows:

where Eij is the E-value of the j-th HSP in frame i, Si measures the average quality of the HSPs in frame i and HIT SCORE is the average of Si across three frames. The higher the HIT SCORE, the better the overall quality of the hits and the more likely the transcript is protein-coding. Thirdly, for a true protein-coding transcript most of the hits are likely to reside within one frame, whereas for a true non-coding transcript, even if it matches certain known protein sequence segments by chance, these chance hits are likely to scatter in any of the three frames. Thus, we define feature FRAME SCORE to measure the distribution of the HSPs among three reading frames:

The higher the FRAME SCORE, the more concentrated the hits are and the more likely the transcript is protein-coding.
We incorporate these six features into a support vector machine (SVM) machine learning classifier (18 ). Mapping the input features onto a high-dimensional feature space via a proper kernel function, SVM constructs a classification hyper-plane (maximum margin hyper-plane) to separate the transformed data (18 ). Known for its high accuracy and good performance, SVM is a widely used classification tool in bioinformatics analysis such as microarray-based cancer classification (19 (link),20 (link)), prediction of protein function (21 (link),22 (link)) and prediction of subcellular localization (23 (link),24 (link)). We employed the LIBSVM package (25 ) to train a SVM model using the standard radial basis function kernel (RBF kernel). The C and gamma parameters were determined by grid-search in the training dataset. We trained the SVM model using the same training data set as CONC used (13 (link)), containing 5610 protein-coding cDNAs and 2670 noncoding RNAs.
Publication 2007
Amino Acid Sequence Base Sequence Codon, Initiator Codon, Terminator DNA, Complementary Gamma Rays Immune Tolerance INDEL Mutation Malignant Neoplasms Microarray Analysis Point Mutation Proteins Reading Frames RNA, Untranslated Staphylococcal Protein A
Protein simulation systems were prepared with the CHARMM-GUI.28 (link) Briefly, protein structures taken from corresponding protein data bank29 (link) files were solvated in pre-equilibrated cubic TIP3P water boxes of suitable sizes and counter-ions were added to keep systems neutral as detailed in Table 1. Periodic boundary conditions were applied and Lennard-Jones (LJ) interactions were truncated at 12 Å with a force switch smoothing function from 10 Å to 12 Å. The non-bonded interaction lists were generated with a distance cutoff of 16 Å and updated heuristically. Electrostatic interactions were calculated using the particle mesh Ewald method30 with a real space cutoff of 12 Å on an approximately 1 Å grid with 6th order spline. Covalent bonds to hydrogen atoms were constrained by SHAKE.31 After a 200 step Steepest Descent (SD) minimization with the protein fixed and another 200 steps without the protein fixed, the systems were first heated to 300 K and then subjected to a 100 ps NVT simulation followed by a 100 ps NPT simulation. The minimization, heating and initial equilibrium was performed with CHARMM,32 (link) and the resultant structures were used to start simulations in NAMD.33 (link) After a 1 ns NPT simulation as equilibration, the production simulations were run for 100 ns in the NVT ensemble (see Table 1). For HEWL NPT ensembles were generated to better compare with previous work that found CMAP helps to better reproduced order parameter S2,34 (link) and simulations were extended to 200 ns to reduce the uncertainty of the computed S2. Langevin thermostat with a damping factor of 5 ps−1 was used for NVT simulation and the Nosé-Hoover Langevin piston method with a barostat oscillation time scale of 200 fs was further applied for the NPT simulation at 300 K and 1 atm. The time step equals 2 fs and coordinates were stored every 10 ps. For each protein the above simulation protocol was applied with the C36 and C22/CMAP FFs, while for ubiquitin an additional 1.2 μs trajectories with C36 was generated. This long simulation is used to check the convergence and also to examine whether computed NMR data deteriorate over a longer simulation time, as it was reported that RDCs significantly deviate from experimental values after approximately 500 ns simulations with the C22 FF.22 (link)
Publication 2013
Cuboid Bone Electrostatics factor A Factor V Familial Mediterranean Fever Hydrogen Bonds Ions Proteins Ring dermoid of cornea Staphylococcal Protein A STEEP1 protein, human Tremor Ubiquitin
One approach for simulating a small part of a large system (e.g.,
the enzyme active site region of a large protein) uses a solvent boundary
potential (SBP). In SBP simulations, the macromolecular system is separated
into an inner and an outer region. In the outer region, part of the
macromolecule may be included explicitly in a fixed configuration, while the
solvent is represented implicitly as a continuous medium. In the inner
region, the solvent molecules and all or part of the macromolecule are
included explicitly and are allowed to move using molecular or stochastic
dynamics. The SBP aims to “mimic” the average
influence of the surroundings, which are not included explicitly in the
simulation.27 ,28 There are several implementations of the SBP
method in CHARMM. The earliest implementation, called the stochastic
boundary potential (SBOU), uses a soft nonpolar restraining potential to
help maintain a constant solvent density in the inner or
“simulation” region while the molecules in a shell
or buffer region are propagated using Langevin dynamics.27 By virtue of its simplicity, this treatment
remains attractive and it is sufficient for many applications.320 (link),321 (link) To improve the treatment of systems with irregular
boundaries in which part of the protein is in the outer region, a refinement
of the method has been developed that first scales the exposed charges to
account for solvent shielding and then corrects for the scaling by
post-processing.307
The Spherical Solvent Boundary Potential (SSBP), which is part of
the Miscellaneous Mean Field Potential (MMFP) module (see Section III F), is
designed to simulate a molecular solute completely surrounded by an
isotropic bulk aqueous phase with a spherical boundary.28 In SSBP the radius of the spherical region is
allowed to fluctuate dynamically and the influence of long-range
electrostatic interactions is incorporated by including the dielectric
reaction field response of the solvent.28 ,29 This approach has
been used to study several systems.322 –325
Because SSBP incorporates the long-range electrostatic reaction field
contribution, the method is particularly useful in free energy calculations
that involve introducing charges.322 –325
Like the SBOU charge-scaling method,307 the Generalized Solvent Boundary Potential (GSBP) is
designed for irregular boundaries when part of the protein is outside the
simulation region.29 However, unlike
SBOU, GSBP includes long-range electrostatic effects and reaction fields. In
the GSBP approach, the influence of the outer region is represented in terms
of a solvent-shielded static field and a reaction field expressed in terms
of a basis set expansion of the charge density in the inner region, with the
basis set coefficients corresponding to generalized electrostatic
multipoles.29 ,326 The solvent-shielded static field from the
outer macromolecular atoms and the reaction field matrix representing the
coupling between the generalized multipoles are both invariant with respect
to the configuration of the explicit atoms in the inner region. They are
calculated only once (with the assumption that the size and shape of inner
region does not change during the simulation) using the finite-difference
Poisson-Boltzmann (PB) equation of the PBEQ module. This formulation is an
accurate and computationally efficient hybrid MD/continuum method for
simulating a small region of a large macromolecular system,326 and is also used in QM/MM approaches.281 (link),327 (link)
Publication 2009
Buffers Dietary Fiber Electrostatics Enzymes Hybrids Proteins Radius Solvents Staphylococcal Protein A
Whole-genome protein sequences and gene positions for Arabidopsis thaliana, Populus trichocarpa, Vitis vinifera, Glycine max, Oryza sativa and Brachypodium distachyon were retrieved from Phytozome v7.0 (http://www.phytozome.net/). Whole-genome protein sequences and gene positions for Sorghum bicolor and Zea mays were retrieved from EnsemblPlants (http://plants.ensembl.org/index.html) and MaizeSequence Release 5b.60 (http://www.maizesequence.org/index.html) respectively. If a gene had more than one transcript, only the first transcript in the annotation was used. To search for homology, the protein-coding genes from each genome was compared against itself and other genomes using BLASTP (49 (link)). For a protein sequence, the best five non-self hits in each target genome that met an E-value threshold of 10−5 were reported.
Publication 2012
Amino Acid Sequence Arabidopsis thalianas Brachypodium distachyon Gene Products, Protein Genes Genome Oryza sativa Plants Populus Sorghum bicolor Soybeans Staphylococcal Protein A Vitis Zea mays

Most recents protocols related to «Staphylococcal Protein A»

Example 3

Recombinant Protein Purification

FIG. 5 shows the steps of one of the purifications carried out on the chimera. In the case of GRNLY, this process was shown in an earlier paper [Ibáñez, R., University of Zaragoza. 2015]. It can be seen in FIG. 5A that the P. Pastoris supernatant obtained after induction (lane 1) contains rather diluted proteins. After concentrating same with Pellicom, protein bands are not seen in the permeate (lane 3), but proteins that are much more concentrated than in the supernatant are seen in the concentrate (lane 2). After dialysis (lane 4), the band profile remains similar to the concentrate. Furthermore, protein bands are not seen in the buffer in which the dialysis bag (lane 5) was introduced. Upon addition of the nickel resin, the chimera binds to said resin as it has a histidine tag. After adding the resin (lane 6), the intensity of a band corresponding to a protein of about 40 kDa decreases with respect to the concentrate and dialysate. This band may correspond to the chimera. The fact that this band does not altogether disappear may indicate that the nickel resin was saturated. In the washes performed on the resin, particularly in the first wash (lane 7), it can be seen how the residues of other proteins are removed. Finally, after the elution of the nickel column, a major protein with a molecular weight of about 40 kDa corresponding to the molecular weight of the chimera (lane 11) is clearly observed. As shown in FIG. 5B, it was confirmed by means of immunoblot that this band of about 40 kDa corresponds to the chimera (lane 11). It is also confirmed that the resin was saturated because a band appears in the post-resin dialysis phase (lane 6).

FIG. 6 shows different elution fractions and the pooling of all of them with the exception of elution fraction 1. FIG. 6A shows several bands in the different elution fractions and in the total eluate. The band with the highest intensity has a molecular weight corresponding to the chimera. Furthermore, other bands having intermediate molecular weights are observed, which means that the chimera undergoes partial proteolysis. The band with the second highest intensity has a molecular weight of about 10 kDa, which corresponds to 9-kDa GRNLY, as its molecular weight increases since it is bound to a histidine tag. In FIG. 6B, it was confirmed by means of immunoblot that these bands of about 40 and 10 kDa correspond to the chimeric recombinant protein and to recombinant GRNLY, respectively.

Once the chimera is generated, its functionality must be assured, that is, on one hand the scFv still recognizes the CEA antigen, and on the other hand GRNLY is still cytotoxic.

Full text: Click here
Patent 2024
Antigens Buffers Chimera Chimeric Proteins, Recombinant Dialysis Dialysis Solutions GNLY protein, human Histidine Immunoblotting Nickel One-Step dentin bonding system Proteins Proteolysis Recombinant Proteins Resins, Plant Staphylococcal Protein A Vision

Example 1

The sequence coding for the light chain variable region of the antibody was inserted into vector pFUSE2ss-CLIg-hK (Invivogen, Catalog Number: pfuse2ss-hclk) using EcoRI and BsiWI restriction sites to construct a light chain expression vector. The sequence coding for the heavy chain variable region of the antibody was inserted into vector pFUSEss-CHIg-hG2 (Invivogen, Catalog Number: pfusess-hchg2) or vector pFUSEss-CHIg-hG4 (Invivogen, Catalog Number: pfusess-hchg4) using EcoRI and NheI restriction sites to construct a heavy chain expression vector.

The culture and transfection of Expi293 cells were performed in accordance with the handbook of Expi293™ Expression System Kit from Invitrogen (Catalog Number: A14635). The density of the cells was adjusted to 2×106 cells/ml for transfection, and 0.6 μg of the light chain expression vector as described above and 0.4 μg of the heavy chain expression vector as described above were added to each ml of cell culture, and the supernatant of the culture was collected four days later.

The culture supernatant was subjected to non-reduced SDS-PAGE gel electrophoresis in accordance with the protocol described in Appendix 8, the Third edition of the “Molecular Cloning: A Laboratory Manual”.

Pictures were taken with a gel scanning imaging system from BEIJING JUNYI Electrophoresis Co., LTD and in-gel quantification was performed using Gel-PRO ANALYZER software to determine the expression levels of the antibodies after transient transfection. Results were expressed relative to the expression level of control antibody 1 (control antibody 1 was constructed according to U.S. Pat. No. 7,186,809, which comprises a light chain variable region as set forth in SEQ ID NO: 10 of U.S. Pat. No. 7,186,809 and a heavy chain variable region as set forth in SEQ ID NO: 12 of U.S. Pat. No. 7,186,809, the same below) (control antibody 2 was constructed according to U.S. Pat. No. 7,638,606, which comprises a light chain variable region as set forth in SEQ ID NO: 6 of U.S. Pat. No. 7,638,606 and a variable region as set forth in SEQ ID NO: 42 of U.S. Pat. No. 7,638,606, the same below). See Tables 2a-2c below for the results.

TABLE 2a
Expression levels of the antibodies of the present
invention after transient transfection (antibodies whose
expression levels are significantly higher than that of control antibody 1):
Number ofExpression level vsNumber of Expression level vs
the antibodycontrol antibody 1the antibodycontrol antibody 1
L1021H10002.08L1000H10281.27
L1020H10001.58L1000H10151.19
L1000H10271.56L1000H10321.18
L1000H10241.51L1000H10261.15
L1000H10251.48L1021H10291.12
L1001H10001.48L1000H10301.1
L1021H10161.43L1024H10311.08
L1000H10141.35L1000H10161.05

TABLE 2b
Expression levels of the antibodies of the present
invention after transient transfection (antibodies whose
expression levels are slightly lower than that of control antibody 1):
Number of Expression level vsNumber of Expression level vs
the antibodycontrol antibody 1the antibodycontrol antibody 1
L1000H10310.99L1017H10000.85
L1021H10310.99L1020H10160.84
L1020H10290.96L1000H10090.81
control anti-0.93L1000H10070.8
body 2
L1012H10000.89L1000H10230.8
L1019H10000.87L1020H10270.78
L1020H10310.87L1024H10070.77
L1021H10200.87L1000H10130.75
L1000H10290.86L1020H10070.74
L1008H10000.86L1021H10070.74
L1000H10010.85L1000H10210.71

TABLE 2c
Expression levels of the antibodies of the present
invention after transient transfection (antibodies whose
expression levels are significantly lower than that of control antibody 1):
Number ofExpression level vsNumber of Expression level vs
the antibodycontrol antibody 1the antibodycontrol antibody 1
L1000H10200.69L1024H10000.52
L1010H10000.69L1000H10080.51
L1000H10220.67L1000H10370.5
L1000H10120.64L1007H10000.49
L1022H10000.64L1016H10000.49
L1011H10000.63L1000H10170.47
L1000H10110.62L1000H10350.46
L1000H10330.62L1012H10270.46
L1020H10200.61L1018H10000.44
L1000H10360.6L1023H10000.43
L1021H10270.6L1012H10160.42
L1012H10070.59L1013H10000.41
L1009H10000.57L1000H10340.4
L1012H10200.57L1000H10180.35
L1012H10310.56L1000H10190.34
L1000H10380.54L1015H10000.27
L1012H10290.54L1014H10000.17
L1000H10100.53

Example 4

6-8 week-old SPF Balb/c mice were selected and injected subcutaneously with antibodies (the antibodies of the present invention or control antibody 2) in a dose of 5 mg/kg (weight of the mouse). Blood samples were collected at the time points before administration (0 h) and at 2, 8, 24, 48, 72, 120, 168, 216, 264, 336 h after administration. For blood sampling, the animals were anesthetized by inhaling isoflurane, blood samples were taken from the orbital venous plexus, and the sampling volume for each animal was about 0.1 ml; 336 h after administration, the animals were anesthetized by inhaling isoflurane and then euthanized after taking blood in the inferior vena cava.

No anticoagulant was added to the blood samples, and serum was isolated from each sample by centrifugation at 1500 g for 10 min at room temperature within 2 h after blood sampling. The collected supernatants were immediately transferred to new labeled centrifuge tubes and then stored at −70° C. for temporary storage. The concentrations of the antibodies in the mice were determined by ELISA:

1. Preparation of Reagents

sIL-4Rα (PEPRO TECH, Catalog Number: 200-04R) solution: sIL-4Rα was taken and 1 ml ddH2O was added therein, mixed up and down, and then a solution of 100 μg/ml was obtained. The solution was stored in a refrigerator at −20° C. after being subpacked.

Sample to be tested: 1 μl of serum collected at different time points was added to 999 μl of PBS containing 1% BSA to prepare a serum sample to be tested of 1:1000 dilution.

Standard sample: The antibody to be tested was diluted to 0.1 μg/ml with PBS containing 1% BSA and 0.1% normal animal serum (Beyotime, Catalog Number: ST023). Afterwards, 200, 400, 600, 800, 900, 950, 990 and 1000 μl of PBS containing 1% BSA and 0.1% normal animal serum were respectively added to 800, 600, 400, 200, 100, 50, 10 and 0 μl of 0.1 μg/ml antibodies to be tested, and thus standard samples of the antibodies of the present invention were prepared with a final concentration of 80, 60, 40, 20, 10, 5, 1, or 0 ng/ml respectively.

2. Detection by ELISA

250 μl of 100 μg/ml sIL-4Rα solution was added to 9.75 ml of PBS, mixed up and down, and then an antigen coating buffer of 2.5 μg/ml was obtained. The prepared antigen coating buffer was added to a 96-well ELISA plate (Corning) with a volume of 100 μl per well. The 96-well ELISA plate was incubated overnight in a refrigerator at 4° C. after being wrapped with preservative film (or covered). On the next day, the 96-well ELISA plate was taken out and the solution therein was discarded, and PBS containing 2% BSA was added thereto with a volume of 300 μl per well. The 96-well ELISA plate was incubated for 2 hours in a refrigerator at 4° C. after being wrapped with preservative film (or covered). Then the 96-well ELISA plate was taken out and the solution therein was discarded, and the plate was washed 3 times with PBST. The diluted standard antibodies and the sera to be detected were sequentially added to the corresponding wells, and three duplicate wells were made for each sample with a volume of 100 μl per well. The ELISA plate was wrapped with preservative film (or covered) and incubated for 1 h at room temperature. Subsequently, the solution in the 96-well ELISA plate was discarded and then the plate was washed with PBST for 3 times. Later, TMB solution (Solarbio, Catalog Number: PR1200) was added to the 96-well ELISA plate row by row with a volume of 100 μl per well. The 96-well ELISA plate was placed at room temperature for 5 minutes, and 2 M H2SO4 solution was added in immediately to terminate the reaction. The 96-well ELISA plate was then placed in flexstation 3 (Molecular Devices), the values of OD450 were read, the data were collected and the results were calculated with Winnonlin software. The pharmacokinetic results were shown in FIG. 1 and Table 6 below.

TABLE 6
Pharmacokinetic results of the antibodies of the present invention in mouse
Area
TimeUnder the
HalftoPeakdrug-timeVolume ofClearance
lifepeakconcentrationCurvedistributionrate
Numberhhμg/mlh*μg/mlml/kgml/h/kg
L1020H1031Mean269.347233.797679.28138.920.38
value
Standard105.730.000.42163.9122.480.09
deviation
L1012H1031Mean167.274845.59852.391.30.38
value
Standard8.520.001.86448.345.580.00
deviation
ControlMean56.67367.881132.68288.923.79
antibody 2value
Standard25.8416.970.2594.4249.451.12
deviation

Example 5

A series of pharmacokinetic experiments were carried out in Macaca fascicularises to further screen antibodies.

3-5 year-old Macaca fascicularises each weighting 2-5 Kg were selected and injected subcutaneously with antibodies (the antibodies of the present invention or control antibody 2) in a dose of 5 mg/kg (weight of the Macaca fascicularis). The antibody or control antibody 2 to be administered was accurately extracted with a disposable aseptic injector, and multi-point injections were made subcutaneously on the inner side of the thigh of the animal, and the injection volume per point was not more than 2 ml. Whole blood samples were collected from the subcutaneous vein of the hind limb of the animal at the time points before administration (0 h) and at 0.5, 2, 4, 8, 24, 48, 72, 120, 168, 240, 336 h, 432 h, 504 h, 600 h, 672 h after administration. The blood volume collected from each animal was about 0.1 ml each time.

No anticoagulant was added to the blood samples, and serum was isolated from each sample by centrifugation at 1500 g for 10 min at room temperature within 2 h after blood sampling. The collected supernatants were immediately transferred to new labeled centrifuge tubes and then stored at −70° C. for temporary storage. The concentrations of the antibodies in the Macaca fascicularises were determined according the method as described in Example 4. The pharmacokinetic results are shown in FIG. 2 and Table 7 below.

TABLE 7
Pharmacokinetic results of the antibodies of the present invention in macaca fascicularis
Area
TimeUnder the
HalftoPeakdrug-timeVolume ofClearance
lifepeakconcentrationCurvedistributionrate
Numberhhμg/mlh*μg/mlml/kgml/h/kg
L1020H1031Mean254.9548.0089.6522189.9175.940.22
value
Standard44.5733.9444.298557.1522.950.10
deviation
L1012H1031Mean185.75486516185.7373.410.28
value
Standard42.5433.944.52506.980.810.06
deviation
ControlMean37.031637.822773.2193.971.78
antibody 2value
Standard18.0311.316.75155.8442.470.07
deviation

Example 10

In vivo pharmacokinetics of the antibodies of the invention are further detected and compared in this Example, in order to investigate the possible effects of specific amino acids at specific positions on the pharmacokinetics of the antibodies in animals. The specific experimental method was the same as that described in Example 4, and the results are shown in Table 9 below.

TABLE 9
Detection results of in vivo pharmacokinetics of the antibodies of the present invention
Area
TimeUnder the
HalftoPeakdrug-timeVolume ofClearance
lifepeakconcentrationCurvedistributionrate
hhug/mlh*ug/mlml/kgml/h/kg
L1020H1031Mean185.494038.948188.8114.280.43
value
Standard18.5213.862.33510.476.50.05
deviation
L1012H1001Mean161.2648.0012.362491.19332.791.47
value
Standard54.300.002.26165.1676.910.20
deviation
L1001H1031Mean171.4156.0042.749273.7399.170.40
value
Standard6.1213.867.381868.6618.690.07
deviation
L1020H1001Mean89.0064.0020.113481.40164.141.30
value
Standard16.7013.862.14268.3922.860.20
deviation

From the specific sequence, the amino acid at position 103 in the sequence of the heavy chain H1031 (SEQ ID NO. 91) of the antibody (in CDR3) is Asp (103Asp), and the amino acid at position 104 is Tyr (104Tyr). Compared with antibodies that have no 103Asp and 104Tyr in heavy chain, the present antibodies which have 103Asp and 104Tyr have a 2- to 4-fold higher area under the drug-time curve and an about 70% reduced clearance rate.

The expression levels of the antibodies of the present invention are also detected and compared, in order to investigate the possible effects of specific amino acids at specific positions on the expression of the antibodies. Culture and transfection of Expi293 cells were conducted according to Example 1, and the collected culture supernatant was then passed through a 0.22 μm filter and then purified by GE MabSelect Sure (Catalog Number: 11003494) Protein A affinity chromatography column in the purification system GE AKTA purifier 10. The purified antibody was collected and concentrated using Amicon ultrafiltration concentrating tube (Catalog Number: UFC903096) and then quantified. The quantitative results are shown in Table 10 below.

TABLE 10
Detection results of the expression
levels of the antibodies of the present invention
Expression level
Antibody(×10−2 mg/ml culture medium)
L1020H10318.39
L1001H10311.79
L1020H10014.04
L1012H10015.00
L1023H10014.63
L1001H10011.75

From the specific sequence, the amino acid at position 31 in the sequence of the light chain L1012 (SEQ ID NO. 44), L1020 (SEQ ID NO. 55) or L1023 (SEQ ID NO. 51) of the antibody (in CDR1) is Ser (31Ser). Compared with antibodies that have no 31Ser in light chain, the present antibodies which have 31Ser have a 2- to 5-fold higher expression level.

The above description for the embodiments of the present invention is not intended to limit the present invention, and those skilled in the art can make various changes and variations according to the present invention, which are within the protection scope of the claims of the present invention without departing from the spirit of the same.

Full text: Click here
Patent 2024
Amino Acids Animals Antibodies Anticoagulants Antigens Asepsis BLOOD Blood Volume Buffers Cell Culture Techniques Cells Centrifugation Chromatography Chromatography, Affinity Cloning Vectors Culture Media Deoxyribonuclease EcoRI Drug Kinetics Electrophoresis Enzyme-Linked Immunosorbent Assay Hindlimb Human Body Immunoglobulin Heavy Chains Immunoglobulin Light Chains Immunoglobulins Interleukin-1 Isoflurane Light Macaca Macaca fascicularis Medical Devices Metabolic Clearance Rate Mice, Inbred BALB C Mus Open Reading Frames Pharmaceutical Preparations Pharmaceutical Preservatives SDS-PAGE Serum Staphylococcal Protein A Technique, Dilution Thigh Transfection Transients Ultrafiltration Veins Vena Cavas, Inferior

Example 8

In selecting genomes for a given bacterial species where a SLAM homolog was identified, preference was given to reference genomes that contained fully sequenced genomes. SLAM homologs were identified using iterative Blast searches into closely related species to Neisseria to more distantly related species. For each of the SLAM homologs identified in these species, the corresponding genomic record (NCBI genome) was used to identify genes upstream and downstream along with their corresponding functional annotations (NCBI protein database, Ensembl bacteria). In a few cases, no genes were predicted upstream or downstream of the SLAM gene as they were too close to the beginning or end of the contig, respectively, and thus these sequences were ignored.

Neighbouring genes were analyzed for 1) an N-terminal lipobox motif (predicted using LipoP, SignalP), and 2) a solute binding protein, Tbp-like (InterPro signature: IPR or IPR011250), or pagP-beta barrel (InterPro signature: IPR011250) fold. If they contained these elements, we identified the adjacent genes as potential SLAM-dependent surface lipoproteins.

A putative SLAM (PM1515, SEQ ID NO: 1087) was identified in Pasteurella multocida using the Neisseria SLAM as a search. The putative SLAM (PM1515, SEQ ID NO: 1087) was adjacent to a newly predicted lipoprotein gene with unknown function (PM1514, SEQ ID NO: 1083) (FIG. 11A). The putative SLAM displayed 32% identity to N. meningitidis SLAM1 while the SLP showed no sequence similarity to known SLAM-dependent neisserial SLPs.

The putative SLAM (PM1515, SEQ ID NO: 1087) and its adjacent lipoprotein (PM1514, SEQ ID NO: 1083) were cloned into pET26b and pET52b, respectively, as previously described and transformed into E. coli C43 and grown overnight on LB agar supplemented with kanamycin (50 ug/ml) and ampicillin (100 ug/ml).

Cells were grown in auto-induction media for 18 hours at 37 C and then harvested, washed twice in PBS containing 1 mM MgCl2, and labeled with α-Flag (1:200, Sigma) for 1 hr at 4 C. The cells were then washed twice with PBS containing 1 mM MgCl2 and then labeled with R-PE conjugated α-mouse IgG (25 ug/mL, Thermo Fisher Scientific) for 1 hr at 4 C. following straining, cells were fixed in 2% formaldehyde for 20 minutes and further washed with PBS containing 1 mM MgCl2. Flow Cytometry was performed with a Becton Dickinson FACSCalibur and the results were analyzed using FLOWJO software. Mean fluorescence intensity (MFI) was calculated using at least three replicates was used to compare surface exposure the lipoprotein in strains either containing or lacking the putative SLAM (PM1515) and are shown in FIG. 11C and FIG. 11D. PM1514 could be detected on the surface of E. coli illustrating i) that SLAM can be used to identify SLPs and ii) that SLAM is required to translocate these SLPs to the surface of the cell—thus identifying a class of proteins call “SLAM-dependent surface lipoproteins”. Antibodies were raised against purified PmSLP (PM1514) and the protein was shown to be on the surface of Pasteurella multocida via PK shaving assays.

Full text: Click here
Patent 2024
Agar Ampicillin Antibodies Bacteria Binding Proteins Biological Assay Cells Escherichia coli Flow Cytometry Fluorescence Formaldehyde Genes Genome Kanamycin Lipoprotein (a-) Lipoproteins Magnesium Chloride Mus Neisseria Neisseria meningitidis Pasteurella multocida Proteins Staphylococcal Protein A Strains
Not available on PMC !

Example 4

To obtain recombinant chimeric anti-FOLR1 mAbs, the expression vectors containing the mouse variable regions (VH and VL) fused to the constant regions of human IgG1 heavy chain and kappa light chain, respectively, were transiently transfected into 293E cells. The recombinant antibodies produced in the suspension of the transfected cells were purified using Protein A affinity chromatography.

Full text: Click here
Patent 2024
Antibodies Cell Culture Techniques Cells Chimera Chromatography, Affinity Cloning Vectors Culture Media FOLR1 protein, human Homo sapiens IgG1 Immunoglobulin kappa-Chains Monoclonal Antibodies Mus Staphylococcal Protein A
Not available on PMC !

Example 11

VEGF-A Protein Expression after Modified RNA Injection to the Heart with Citrate Saline Buffer is Saturable and has Similar Pharmacokinetics Across Multiple Species

To compare VEGF-A protein production, 150 μg of VEGF-A modified RNA in a citrate saline buffer and 100 μg of VEGF-A modified RNA using RNAiMax (a lipid-based formulation) as the delivery carrier were injected into a rat heart. After 24 hours, VEGF-A protein levels in the rats with the citrate saline buffer (NTB) was at a comparable level to rats injected with RNAiMax and the pharmacokinetic profile were similar (FIG. 12A). The protein expression was dose limited and saturable, which was seen across species (FIG. 12B). With a ten-fold increase in dose, there was only a 1.6-fold increase in the area under the curve (FIG. 12C).

Full text: Click here
Patent 2024
Buffers Citrate Drug Kinetics Heart Lipids Obstetric Delivery Polypeptides Proteins Rattus norvegicus Saline Solution Staphylococcal Protein A Transcription, Genetic vascular endothelial growth factor A, rat Vascular Endothelial Growth Factors Vision

Top products related to «Staphylococcal Protein A»

Sourced in United States, Germany, China, United Kingdom, Morocco, Ireland, France, Italy, Japan, Canada, Spain, Switzerland, New Zealand, India, Hong Kong, Sao Tome and Principe, Sweden, Netherlands, Australia, Belgium, Austria
PVDF membranes are a type of laboratory equipment used for a variety of applications. They are made from polyvinylidene fluoride (PVDF), a durable and chemically resistant material. PVDF membranes are known for their high mechanical strength, thermal stability, and resistance to a wide range of chemicals. They are commonly used in various filtration, separation, and analysis processes in scientific and research settings.
Sourced in United States, China, Germany, United Kingdom, Japan, Belgium, France, Switzerland, Italy, Canada, Australia, Sweden, Spain, Israel, Lithuania, Netherlands, Denmark, Finland, India, Singapore
The BCA Protein Assay Kit is a colorimetric detection and quantification method for total protein concentration. It utilizes bicinchoninic acid (BCA) for the colorimetric detection and quantification of total protein. The assay is based on the reduction of Cu2+ to Cu1+ by protein in an alkaline medium, with the chelation of BCA with the Cu1+ ion resulting in a purple-colored reaction product that exhibits a strong absorbance at 562 nm, which is proportional to the amount of protein present in the sample.
Sourced in China, United States, Germany, Puerto Rico, United Kingdom, Switzerland, Japan, Sweden
The BCA protein assay kit is a colorimetric-based method for the quantitative determination of total protein concentration in a sample. It uses bicinchoninic acid (BCA) to detect and quantify the presence of protein.
Sourced in United States, Switzerland, Germany, China, United Kingdom, France, Canada, Japan, Italy, Australia, Austria, Sweden, Spain, Cameroon, India, Macao, Belgium, Israel
Protease inhibitor cocktail is a laboratory reagent used to inhibit the activity of proteases, which are enzymes that break down proteins. It is commonly used in protein extraction and purification procedures to prevent protein degradation.
Sourced in United States, China, United Kingdom, Germany
Protein A/G PLUS-Agarose is a bead-based affinity resin designed for the purification of immunoglobulins and antibodies. It contains a combination of Protein A and Protein G, which are recombinant proteins that bind to the Fc region of immunoglobulins from a variety of species.
Sourced in United States, United Kingdom, Germany, China, Australia, Switzerland, France, Italy, Canada, Spain, Japan, Belgium, Sweden, Lithuania, Austria, Denmark, Poland, Ireland, Portugal, Finland, Czechia, Norway, Macao, India, Singapore
The Pierce BCA Protein Assay Kit is a colorimetric-based method for the quantification of total protein in a sample. It utilizes the bicinchoninic acid (BCA) reaction, where proteins reduce Cu2+ to Cu+ in an alkaline environment, and the resulting purple-colored reaction is measured spectrophotometrically.
Sourced in United States, Germany, United Kingdom, Norway, Switzerland
Dynabeads Protein A are uniform, superparamagnetic beads coated with recombinant Protein A. Protein A is a bacterial cell wall protein that binds to the Fc region of immunoglobulins. These beads can be used for the isolation, purification, and detection of antibodies from various sample types.
Sourced in United States, Germany, China, United Kingdom, Italy, Japan, Sao Tome and Principe, France, Canada, Macao, Switzerland, Spain, Australia, Israel, Hungary, Ireland, Denmark, Brazil, Poland, India, Mexico, Senegal, Netherlands, Singapore
The Protease Inhibitor Cocktail is a laboratory product designed to inhibit the activity of proteases, which are enzymes that can degrade proteins. It is a combination of various chemical compounds that work to prevent the breakdown of proteins in biological samples, allowing for more accurate analysis and preservation of protein integrity.
Sourced in United States, China, Germany, United Kingdom, Canada
Protein A/G agarose beads are a type of affinity chromatography resin. They are composed of agarose beads with covalently coupled Protein A and Protein G, which are bacterial proteins that bind to the Fc region of immunoglobulins. These beads are commonly used for the purification of antibodies from complex biological samples.
Sourced in China, United States, Switzerland, Germany, Japan, United Kingdom
RIPA lysis buffer is a detergent-based buffer solution designed for the extraction and solubilization of proteins from cells and tissues. It contains a mixture of ionic and non-ionic detergents that disrupt cell membranes and solubilize cellular proteins. The buffer also includes additional components that help to maintain the stability and activity of the extracted proteins.

More about "Staphylococcal Protein A"

Staphylococcal Protein A (SpA) is a cell wall protein found in certain strains of Staphylococcus bacteria.
It has the unique ability to bind to the Fc region of immunoglobulins, making it a valuable tool in immunology research and biotechnology applications.
SpA is commonly used in techniques such as immunoprecipitation, affinity chromatography, and Western blotting, where it facilitates the capture and purification of antibodies and other immunoglobulin-containing proteins.
The versatility of Staphylococcal Protein A has led to its widespread use in various experimental protocols and assays.
Researchers often employ PVDF membranes, BCA protein assay kits, and protease inhibitor cocktails in conjunction with SpA-based techniques to ensure accurate and reproducible results.
Additionally, Protein A/G PLUS-Agarose, Pierce BCA Protein Assay Kits, Dynabeads Protein A, and Protein A/G agarose beads are commonly used in SpA-related experiments to enhance the efficiency and specificity of protein capture and purification.
To further optimize your research protocols and improve reproducibility, PubCompare.ai's AI-driven platform can be a valuable resource.
This tool helps researchers locate relevant protocols from literature, pre-prints, and patents, and provides intelligent comparisons to identify the best protocols and products for their specific needs.
By simplifying the research process and providing insights into the most effective experimental approaches, PubCompare.ai can help you achieve better results in your Staphylococcal Protein A studies.
Whether you're working with RIPA lysis buffer or exploring other applications of SpA, PubCompare.ai can be a powerful ally in your research endeavors.
Leveraging the insights and resources available on the platform can streamline your workflow, enhance the reliability of your findings, and ultimately accelerate your progress in the field of immunology and biotechnology.