For the genome-scale analysis we used two recently reconstructed models of E. coli metabolism (Edwards and Palsson, 2000b (link); Reed et al, 2003 (link)). In silico growth was simulated on glucose minimal medium for all six environmental conditions. ADP remained unbalanced, since otherwise formation of adenosine would be carbon-limited. For the proton-balanced model of Reed et al (2003) (link), severe alternate optima occurred in central carbon metabolism given an unlimited proton exchange flux between the cell and the medium and a P-to-O ratio of 2, that is the upper bound of the biologically feasible range of P-to-O ratios (Unden and Bongaerts, 1997 ). To prevent the unlimited production of ATP equivalents through the ATPS4r reaction under this condition, all external protons involved in the respiratory chain and the transhydrogenase reaction were balanced (specifically, we balanced the external protons around the reactions ATPS4r, TDH2, CYTBD, CYTBO3, NO3R1, NO3R2, NADH6, NADH7, NADH8). A P-to-O ratio of 2 was implemented by assuming both the transport of four protons through CYTBO3 and NADH6 across the membrane and the diffusion of four protons through ATPS4r for the formation of one ATP equivalent.
Succinate Dehydrogenase
SDH plays a critical role in energy production and is invovled in various metabolic processes.
Researchers studying SDH can leverage the power of PubCompare.ai, an AI-driven platform that helps optimize experiments by easily locating relevant protocols from published literature, preprints, and patents.
PubCompare.ai's advanced AI-powered comparisons enable researchers to identify the best protocols and products for their SDH studies, taking their experiments to new heights.
Most cited protocols related to «Succinate Dehydrogenase»
For the genome-scale analysis we used two recently reconstructed models of E. coli metabolism (Edwards and Palsson, 2000b (link); Reed et al, 2003 (link)). In silico growth was simulated on glucose minimal medium for all six environmental conditions. ADP remained unbalanced, since otherwise formation of adenosine would be carbon-limited. For the proton-balanced model of Reed et al (2003) (link), severe alternate optima occurred in central carbon metabolism given an unlimited proton exchange flux between the cell and the medium and a P-to-O ratio of 2, that is the upper bound of the biologically feasible range of P-to-O ratios (Unden and Bongaerts, 1997 ). To prevent the unlimited production of ATP equivalents through the ATPS4r reaction under this condition, all external protons involved in the respiratory chain and the transhydrogenase reaction were balanced (specifically, we balanced the external protons around the reactions ATPS4r, TDH2, CYTBD, CYTBO3, NO3R1, NO3R2, NADH6, NADH7, NADH8). A P-to-O ratio of 2 was implemented by assuming both the transport of four protons through CYTBO3 and NADH6 across the membrane and the diffusion of four protons through ATPS4r for the formation of one ATP equivalent.
Protocol full text hidden due to copyright restrictions
Open the protocol to access the free full text link
For endometrial specimen, the mRNA expression of four putative reference genes, glyceraldehyde 3-phosphate dehydrogenase (GAPDHP), 18S rRNA (18S), beta-2-microglobulin (B2M), and beta actin (ACTB) and one non-reference gene, solute carrier family 36 member 2 (SLC36A2) were measured by real-time RT-PCR. For testicular samples, the mRNA expression of GAPDH, 18S, B2M, ACTB, Succinate dehydrogenase complex (SDHA), and beta glucoronidase (GUSB) as putative internal control genes and aromatase (Cyp19a1) as non-reference transcript were determined. For conceptus tissue, the expression of GAPDH, 18S, B2M, ACTB, SDHA, and tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein (YWHAZ) as reference gene candidates and Cyp19a1as non-reference genes was assessed using quantitative PCR. Primers specific for the selected transcripts were designed using Jellyfish 3.3.1 (Field Scientific LLC, Lewisburg, PA) and are listed in Table
Most recents protocols related to «Succinate Dehydrogenase»
Example 7
The MTT Cell Proliferation assay determines cell survival following apple stem cell extract treatment. The purpose was to evaluate the potential anti-tumor activity of apple stem cell extracts as well as to evaluate the dose-dependent cell cytotoxicity.
Principle: Treated cells are exposed to 3-(4,5-dimethythiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT). MTT enters living cells and passes into the mitochondria where it is reduced by mitochondrial succinate dehydrogenase to an insoluble, colored (dark purple) formazan product. The cells are then solubilized with DMSO and the released, solubilized formazan is measured spectrophotometrically. The MTT assay measures cell viability based on the generation of reducing equivalents. Reduction of MTT only occurs in metabolically active cells, so the level of activity is a measure of the viability of the cells. The percentage cell viability is calculated against untreated cells.
Method: A549 and NCI-H520 lung cancer cell lines and L132 lung epithelial cell line were used to determine the plant stem cell treatment tumor-specific cytotoxicity. The cell lines were maintained in Minimal Essential Media supplemented with 10% FBS, penicillin (100 U/ml) and streptomycin (100 μg/ml) in a 5% CO2 at 37 Celsius. Cells were seeded at 5×103 cells/well in 96-well plates and incubated for 48 hours. Triplicates of eight concentrations of the apple stem cell extract were added to the media and cells were incubated for 24 hours. This was followed by removal of media and subsequent washing with the phosphate saline solution. Cell proliferation was measured using the MTT Cell Proliferation Kit I (Boehringer Mannheim, Indianapolis, IN) New medium containing 50 μl of MTT solution (5 mg/ml) was added to each well and cultures were incubated a further 4 hours. Following this incubation, DMSO was added and the cell viability was determined by the absorbance at 570 nm by a microplate reader.
In order to determine the effectiveness of apple stem cell extracts as an anti-tumor biological agent, an MTT assay was carried out and IC50 values were calculated. IC50 is the half maximal inhibitory function concentration of a drug or compound required to inhibit a biological process. The measured process is cell death.
Results: ASC-Treated Human Lung Adenocarcinoma Cell Line A549.
Results: ASC-Treated Human Squamous Carcinoma Cell Line NCI-H520.
Results: ASC-treated Lung Epithelial Cell Line L132.
Summary Results: Cytotoxicity of Apple Stem Cell Extracts.
Apple stem cell extracts killed lung cancer cells lines A549 and NCI-H520 at relatively low doses: IC50s were 12.58 and 10.21 μg/ml respectively as compared to 127.46 μg/ml for the lung epithelial cell line L132. Near complete anti-tumor activity was seen at a dose of 250 μg/ml in both the lung cancer cell lines. This same dose spared more than one half of the L132 cells. See Tables 7-10. The data revealed that apple stem cell extract is cytotoxic to lung cancer cells while sparing lung epithelial cells.
Example 9
The experiment of Example 7 was repeated substituting other plant materials for ASC. Plant stem cell materials included Dandelion Root Extract (DRE), Aloe Vera Juice (AVJ), Apple Fiber Powder (AFP), Ginkgo Leaf Extract (GLE), Lingonberry Stem Cells (LSC), Orchid Stem Cells (OSC) as described in Examples 1 and 2. The concentrations of plant materials used were nominally 250, 100, 50, 25, 6.25, 3.125, 1.562, and 0.781 μg/mL. These materials were tested only for cells the human lung epithelial cell line L132 (as a proxy for normal epithelial cells) and for cells of the human lung adenocarcinoma cell line A549 (as a proxy for lung cancer cells).
A549 cells lung cancer cell line cytotoxicity results for each of the treatment materials.
DRE-Treated Lung Cancer Cell Line A549 Cells.
AVJ-Treated Lung Cancer Cell line A549 Cells.
AFP-Treated Lung Cancer Cell line A549 Cells.
GLE-treated Lung Cancer Cell line A549 Cells.
LSC-treated lung cancer cell lines A549 cells.
OSC-treated Lung Cancer Cell line A549 Cells.
L132 cells (“normal” lung epithelial cell line) cytotoxicity results for each of the treatment materials.
DRE-Treated Lung Epithelial Cell Line L132 cells.
AVJ-Treated Lung Epithelial Cell Line L132 cells.
AFP-Treated Lung Epithelial Cell Line L132 cells.
GLE-Treated Lung Epithelial Cell Line L132 cells.
LSC-Treated Lung Epithelial Cell Line L132 cells.
OSC-Treated Lung Epithelial Cell Line L132 cells.
Calculated values.
Top products related to «Succinate Dehydrogenase»
More about "Succinate Dehydrogenase"
SDH catalyzes the oxidation of succinate to fumarate in the tricarboxylic acid (TCA) cycle, a key metabolic pathway that generates ATP through oxidative phosphorylation.
SDH is composed of four subunits and contains both iron-sulfur clusters and a covalently bound cofactor, flavin adenine dinucleotide (FAD), which are essential for its enzymatic activity.
This complex enzyme plays a pivotal role in mitochondrial function, linking the TCA cycle to the electron transport chain.
Disruptions in SDH activity can have significant impacts on cellular metabolism and energy homeostasis, contributing to various disease states.
Researchers studying SDH can leverage powerful tools like the RNeasy Mini Kit and TRIzol reagent to isolate and analyze RNA from cells or tissues, providing insights into SDH gene expression.
Functional assays such as the Cytochrome c Oxidase Assay Kit and Mitochondrial Complex III Activity Assay Kit can be used to measure SDH activity and assess mitochondrial respiratory function.
Antibodies like Ab14744 can aid in the detection and quantification of SDH subunits.
The Succinate Dehydrogenase Activity Colorimetric Assay Kit provides a convenient way to directly measure SDH activity, while the Ultrospec 5000 spectrophotometer can be used to analyze various mitochondrial and metabolic parameters.
Pharmacological modulators like Rotenone and Antimycin A can be employed to investigate the effects of SDH inhibition on cellular processes.
For a comprehensive understanding of SDH and its role in cellular metabolism, the Citrate Synthase Assay Kit can be used to assess the activity of another key TCA cycle enzyme.
By leveraging these tools and techniques, researchers can gain valuable insights into the regulation and function of SDH, ultimately advancing our understanding of energy production and metabolic homeostasis.