The largest database of trusted experimental protocols

Trypsin

Trypsin is a serine protease enzyme that plays a crucial role in the digestive process, responsible for breaking down proteins into smaller peptides and amino acids.
It is primarily produced in the pancreas and is essential for the efficient absorption and utilization of dietary proteins.
Trypsin exhibits a high specificity for peptide bonds involving the carboxyl group of arginine or lysine residues, making it a valuable tool in biochemical and biotechnological applications, such as protein sequencing, cell culture, and sample preparation for mass spectrometry.
Optimizing trypsin protocols is crucial for ensuring reproducibility and accuracy in research, and PubCompare.ai offers an AI-driven solution to help researchers identify the best trypsin protocols and products from the literature, pre-prints, and patents.
By leveraging this innovative platform, researchers can enhance their workflow and elevate the quality of their trypsin-based experiments.

Most cited protocols related to «Trypsin»

Protocol full text hidden due to copyright restrictions

Open the protocol to access the free full text link

Publication 2010
Peptides Proteins SDS-PAGE Staphylococcal Protein A Tandem Mass Spectrometry Tissue Extracts Tissues Trypsin
The calculation of ligand charges necessitates detailed information on molecular structure and protonation states due to the large variation in the covalent structures of small-molecule protein ligands. The current version of PDB2PQR therefore requires the ligand structure, protonation state and formal charge to be specified by the user in the popular MOL2 (24 ) format. Ligand structures in MOL2 format are readily available from popular molecular modeling software and free web services such as PRODRG (25 (link)). Future versions of PDB2PQR will include a pdb2mol2 parser and automatic assignment of default ligand protonation states from a small-molecule pKa database.
The calculation of ligand charges in PDB2PQR is based on the partial equalization of orbital electronegativities (PEOE) procedure developed by Gasteiger and Marsili (26 ). In the PEOE procedure, orbital electronegativities χ are linked to partial atomic charges q by a polynomial expansion (χ = a +b·q + c·q2 + d·q3). The coefficients a, b, c and d were optimized by Gasteiger and Marsili using gas phase data on ionization potentials and electron affinities. We utilize a PEOE algorithm, which has been optimized by Czodrowski et al. to obtain better agreement between theoretical and experimental solvation energies for a set of small molecules including the polar amino acids (27 (link)). The resulting PEOE_PB charges have been tested for small-molecule complexes with trypsin, thrombin (28 (link)) and HIV protease (29 ), and have been found to give results that are in agreement with experimental values.
Publication 2007
Amino Acids Electrons HIV Protease Ligands Molecular Structure Proteins Thrombin Trypsin
An Escherichia coli K12 strain was grown in standard LB medium, harvested, washed in PBS, and lysed in BugBuster (Novagen Merck Chemicals, Schwalbach, Germany) according to the manufacturer's protocol. HeLa S3 cells were grown in standard RPMI 1640 medium supplemented with glutamine, antibiotics, and 10% FBS. After being washed with PBS, cells were lysed in cold modified RIPA buffer (50 mm Tris-HCl, pH 7.5, 1 mm EDTA, 150 mm NaCl, 1% N-octylglycoside, 0.1% sodium deoxycholate, complete protease inhibitor mixture (Roche)) and incubated for 15 min on ice. Lysates were cleared by centrifugation, and after precipitation with chloroform/methanol, proteins were resuspended in 6 m urea, 2 m thiourea, 10 mm HEPES, pH 8.0. Prior to in-solution digestion, 60-μg protein samples from HeLa S3 lysates were spiked with either 10 μg or 30 μg of E. coli K12 lysates based on protein amount (Bradford assay). Both batches were reduced with dithiothreitol and alkylated with iodoacetamide. Proteins were digested with LysC (Wako Chemicals, GmbH, Neuss, Germany) for 4 h and then trypsin digested overnight (Promega, GmbH, Mannheim, Germany). Digestion was stopped by the addition of 2% trifluroacetic acid. Peptides were separated by isoelectric focusing into 24 fractions on a 3100 OFFGEL Fractionator (Agilent, GmbH, Böblingen, Germany) as described in Ref. 45 (link). Each fraction was purified with C18 StageTips (46 (link)) and analyzed via liquid chromatography combined with electrospray tandem mass spectrometry on an LTQ Orbitrap (Thermo Fisher) with lock mass calibration (47 (link)). All raw files were searched against the human and E. coli complete proteome sequences obtained from UniProt (version from January 2013) and a set of commonly observed contaminants. MS/MS spectra were filtered to contain at most eight peaks per 100 mass unit intervals. The initial MS mass tolerance was 20 ppm, and MS/MS fragment ions could deviate by up to 0.5 Da (48 (link)). For quantification, intensities can be determined alternatively as the full peak volume or as the intensity maximum over the retention time profile, and the latter method was used here as the default. Intensities of different isotopic peaks in an isotope pattern are always summed up for further analysis. MaxQuant offers a choice of the degree of uniqueness required in order for peptides to be included for quantification: “all peptides,” “only unique peptides,” and “unique plus razor peptides” (42 (link)). Here we chose the latter, because it is a good compromise between the two competing interests of using only peptides that undoubtedly belong to a protein and using as many peptide signals as possible. The distribution of peptide ions over fractions and samples is shown in supplemental Fig. S1.
Publication 2014
Acids Antibiotics, Antitubercular Biological Assay Buffers Cells Centrifugation Chloroform Cold Temperature Deoxycholic Acid, Monosodium Salt Digestion Dithiothreitol Edetic Acid Escherichia coli Escherichia coli K12 Glutamine HeLa Cells HEPES Homo sapiens Immune Tolerance Iodoacetamide Ions Isotopes Liquid Chromatography Methanol Peptides Promega Protease Inhibitors Proteins Proteome Radioimmunoprecipitation Assay Retention (Psychology) Sodium Chloride Staphylococcal Protein A Tandem Mass Spectrometry Thiourea Tromethamine Trypsin Urea
Following
data acquisition, Thermo RAW files were processed using
a series of software tools that were developed in-house. First the
RAW files were converted to mzXML using a custom version of ReAdW.exe
(http://sashimi.svn.sourceforge.net/viewvc/sashimi/) that
had been modified to export ion accumulation times and FT peak noise.
During this initial processing we also corrected any erroneous assignments
of monoisotopic m/z. Using Sequest,24 (link) MS2 spectra were searched against the human
UniProt database (downloaded on 08/02/2011), supplemented with the
sequences of common contaminating proteins such as trypsin. This forward
database was followed by a decoy component, which included all target
protein sequences in reversed order.
Searches were performed
using a 50 ppm precursor ion tolerance.25 (link) When searching Orbitrap MS2 data, we used 0.02 Th fragment ion tolerance.
The fragment ion tolerance was set to 1.0 Th when searching ITMS2
data. Only peptide sequences with both termini consistent with the
protease specificity of LysC were considered in the database search,
and up to two missed cleavages were accepted. TMT tags on lysine residues
and peptide N-termini (+ 229.162932 Da) and carbamidomethylation of
cysteine residues (+ 57.02146 Da) were set as static modifications,
while oxidation of methionine residues (+ 15.99492 Da) was treated
as a variable modification. An MS2 spectral assignment false discovery
rate of less than 1% was achieved by applying the target-decoy strategy.26 (link) Filtering was performed using linear discriminant
analysis as described previously27 (link) to create
one composite score from the following peptide ion and MS2 spectra
properties: Sequest parameters XCorr and unique ΔCn, peptide
length and charge state, and precursor ion mass accuracy. The resulting
discriminant scores were used to sort peptides prior to filtering
to a 1% FDR, and the probability that each peptide-spectral-match
was correct was calculated using the posterior error histogram.
Following spectral assignment, peptides were assembled into proteins
and proteins were further filtered based on the combined probabilities
of their constituent peptides to a final FDR of 1%. In cases of redundancy,
shared peptides were assigned to the protein sequence with the most
matching peptides, thus adhering to principles of parsimony.28
Publication 2014
Amino Acid Sequence Cytokinesis Immune Tolerance Lysine Methionine Peptides Proteins Trypsin tyrosyl-alanyl-glycine
The final targeting constructs were prepared for ES cell electroporation from 2 ml of culture (2X LB plus antibiotics) in 96-well format using the Qiagen Turboprep kit. Before electroporation, vectors were linearized with AsiSI and examined by gel electrophoresis. For most clones, the digested DNA migrated as a single high-molecular-mass band of the expected size (Supplementary Fig. 5). Occasionally, contaminating smaller molecular mass bands were also observed on the gel (DNA quality failures).
JM8 mouse ES cell lines derived from the C57BL/6N strain were grown either on a feeder layer of SNL6/7 fibroblasts (neomycin and/or puromycin resistant) or on gelatinized tissue culture plates16 (link). Both feeder-independent and feeder-dependent lines were maintained in Knockout DMEM (500 ml, Gibco) supplemented with 2 mM glutamine, 5 ml 100× β-mercaptoethanol (360 μl in 500 ml PBS, filter sterilized), 10–15% fetal calf serum respectively (Invitrogen) and 500 U ml−1 leukaemia-inhibitory factor (ESGRO, Millipore). Trypsin solution was prepared by adding 20 ml of 2.5% trypsin solution (Gibco) and 5 ml chicken serum (Gibco) to 500 ml filter-sterilized PBS containing 0.1 g EDTA (Sigma) and 0.5 g d-glucose (Sigma).
Electroporations of ES cells were carried out in a 25-well cuvette using the ECM 630 96-well electroporator /HT-200 automatic plate handler (BTX Harvard Apparatus; set at 700 V, 400 Ω, 25 μF). Immediately before electroporation, cell suspensions of ~1 × 107 cells and ~2 μg of linearized targeting vector DNA were mixed in a final volume of 120 μl PBS. Cells were seeded onto a 10-cm dish (with feeders or gelatin) and colonies were picked after 10 d of selection in 100 μg (active) per ml Geneticin (Invitrogen). To expand cells into duplicate wells for archiving and preparation of genomic DNA, confluent cultures of JM8 ES cells grown on feeder cells were washed twice with pre-warmed PBS and trypsinized for 15 min at 37 °C. Five volumes of pre-warmed media were added and the cells were gently dispersed by tituration and passed at a dilution of 1:4 into new plates containing feeder cells. Passage of cells grown on gelatinized plates was carried out in a similar manner except that the cells were trypsinized for 10 min and passed at a dilution of 1:6 into freshly gelatin-coated plates (0.1% gelatin, Sigma G1393). Culture medium was replaced daily and cells reached confluence 2 days after passage. To archive ES cell clones, trypsinized cells from confluent 96-well plates were transferred in 200 μl freezing medium (Knockout DMEM, 15% serum/ 10% DMSO) to 96-well cryovials (Matrix) and overlayed with sterile mineral oil. The cells were placed at −80 °C overnight and then transferred to liquid nitrogen.
Publication 2011
2-Mercaptoethanol Antibiotics Cells Chickens Clone Cells Cloning Vectors Edetic Acid Electrophoresis Electroporation Embryonic Stem Cells Feeder Cell Layers Feeder Cells Fetal Bovine Serum Fibroblasts Gelatins Geneticin Genome Glucose Glutamine Hyperostosis, Diffuse Idiopathic Skeletal LIF protein, human Mus Neomycin Nitrogen Oil, Mineral PRSS2 protein, human Puromycin Serum Sterility, Reproductive Strains Sulfoxide, Dimethyl Technique, Dilution Tissues Trypsin

Most recents protocols related to «Trypsin»

Example 10

The ability of the bacterial strain MRx0518 to activate NF-κB was investigated. The results are presented in FIG. 18. MRx0518 supernatant was the most potent activator of NF-κB. The activation of NF-κB was eliminated after treatment with trypsin.

These data show that flagellin from the genus Enterococcus and in particular from MRx0518 produce a very strong NF-κB response, and so may be useful in therapy.

Full text: Click here
Patent 2024
Aftercare Bacteria Enterococcus Flagellin RELA protein, human Strains Therapeutics Trypsin

Example 17

Contaminating micro-organisms in cosmetics may cause a spoilage of the product and, when pathogenic, they represent a serious health risk for consumers worldwide. The United States Pharmacopoeia (USP) Microbial Limits Test provides several methods for the determination of total microbial count for bacteria, yeast and mold. Various gels of the present disclosure were tested to evaluate the possible microbial contamination in three different states of their use (intact, in-use, ending product). FIG. 96 is a table summarizing the results of such testing.

The samples of gel and water samples from carboys were analyzed for determination of CFU/mL (colony forming units per milliliter) of aerobic bacteria as well as yeast and mold. Samples were exposed to growth medium of Tryptic Soy Agar (TSA) for bacteria and Potato Dextrose Agar (PDA) for fungi (yeast/mold) at an exposure temperature of 23±3° C. Samples were incubated at 30.0±2° C. for 3 days (bacteria) and 5 days (Fungi). Samples were then observed for determination of colony-forming units/mL.

The limit of detection for the assays was 10 CFU/ml or g for bacteria and fungi, and the values of <10 indicate that microorganisms could not be detected in the samples. Values of >1.00E+04 indicate that the microbial colonies are Too Numerous to Count in the dilutions plated.

Full text: Click here
Patent 2024
Agar Bacteria Bacteria, Aerobic Biological Assay Culture Media Fungi Fungus, Filamentous Glucose Pathogenicity Solanum tuberosum Technique, Dilution Trypsin Yeasts

Example 25

This experiment was to evaluate the effect of killing cancer cells by treating MDA-MB-231 cells (human breast cancer cells) with the test substance GI-101 alone or in combination with the TGF-beta signal inhibitor Vactosertib substance in an in vitro environment.

MDA-MB-231 cells were purchased from the Korea cell line bank and cultured in RPMI1640 medium (Gibco) containing 10% FBS (Gibco) and 1% antibiotic/antifungal agent (Gibco). For use in cancer cell killing test, the cells were harvested using trypsin (Gibco), and then suspended in RPMI1640 medium, and then dead cells and debris were removed using Ficoll (GE Healthcare Life Sciences) solution. The cells suspended in RPMI1640 medium were carefully layered on ficoll solution. The cell layer with a low specific gravity formed by centrifuging at room temperature at 350×g for 20 minutes was collected with a pipette, washed with PBS (Gibco), and then centrifuged at room temperature at 350×g for 5 minutes. The separated cell layer was made into a suspension of 2×105 cells/mL with FBS-free RPMI1640 medium. The cancer cell suspension was stained at 37° C. for 1 hour using CELLTRACKER™ Deep Red Dye (Thermo) in order to track proliferation or inhibition of the proliferation of cancer cells. After staining, it was centrifuged at 1300 rpm for 5 minutes, and then it was washed with FBS-free RPMI1640 medium, and then suspended in RPMI1640 medium containing 5% human AB serum (Sigma) to a concentration of 2×105 cells/mL. The cancer cell suspension was added to each well of a 96-well microplate (Corning) by 50 μl (1×104 cells), and then stabilized in an incubator (37° C., 5% CO2) for 1 hour.

Human peripheral blood mononuclear cells (PBMCs) were used in order to identify the effect of killing cancer cells by GI-101. The human PBMCs were purchased from Zen-Bio, and the PBMCs stored frozen were placed in a 37° C. water bath, and thawed as quickly as possible, and then transferred to RPMI1640 medium (Gibco) containing 10% FBS (Gibco) and 1% antibiotic/antifungal agent (Gibco), and centrifuged at 1300 rpm for 5 minutes. The separated cell layer was suspended in RPMI1640 medium, and then dead cells and debris were removed using Ficoll (GE Healthcare Life Sciences) solution in the same manner as the cancer cell line. The cells suspended in RPMI1640 medium were carefully layered on ficoll solution. The cell layer with a low specific gravity formed by centrifuging at room temperature at 350×g for 20 minutes was collected with a pipette, washed with PBS (Gibco), and then centrifuged at room temperature at 350×g for 5 minutes. The separated cell layer was suspended in RPMI1640 medium containing 5% human AB serum (Sigma) to a concentration of 5×105 cells/mL. The PBMC suspension was dispensed 50 μl into each well of a 96-well microplate (Corning) in which cancer cell line has been dispensed, depending on the conditions.

In order to identify the effect of killing the cells, a CytoTox Green reagent (INCUCYTE™ CytoTox Green, Satorius) that binds to the DNA of cells to be killed was prepared in 1 μl per 1 mL of RPMI1640 medium containing 5% human AB serum (Sigma). The prepared medium was used for dilution of the test substance, and the effect of killing the cells could be quantitatively identified by staining the cells to be killed when the test substance was co-cultured with cancer cell lines and PBMCs.

Vactosertib power was dissolved in DMSO (Sigma) to a concentration of 48.4 mM, and diluted using RPMI1640 medium containing a CytoTox Green reagent, and then used in the experiment at a final concentration of 12.1 nM (50 μL) per well of a 96-well microplate.

GI-101 was diluted by ⅓ using RPMI1640 medium containing a CytoTox Green reagent, and then used in the experiment at final concentrations of 0.4 nM, 1.2 nM, 3.7 nM, 11.1 nM, 33.3 nM, and 100 nM by 50 μl per well of a 96-well microplate.

The prepared test substance was placed in each well of a 96-well microplate in which cancer cell lines and PBMCs were dispensed depending on the conditions, and cultured in an incubator (37° C., 5% CO2) for 24 hours, and the proliferation or death of cancer cells was observed through the real-time cell imaging analysis equipment IncuCyte S3 (Satorious). The death of cancer cells was quantified by the integrated intensity of the cells stained in green with a CytoTox Green reagent.

As a result, it was identified that the group having received a combination of GI-101 and Vactosertib exhibited the excellent effect of killing cancer cells as compared with the group having received each drug alone.

Full text: Click here
Patent 2024
A-101 Antibiotics Antifungal Agents Bath Cell Death Cell Lines Cell Proliferation Cells Ficoll Freezing Gastrointestinal Cancer Homo sapiens Malignant Neoplasms Mammary Carcinoma, Human MCF-7 Cells MDA-MB-231 Cells PBMC Peripheral Blood Mononuclear Cells PER1 protein, human Pharmaceutical Preparations Psychological Inhibition Serum Sulfoxide, Dimethyl Technique, Dilution Transforming Growth Factor beta Trypsin vactosertib

Example 16

The antitumor activity of exemplary MEK inhibitor compounds is evaluated in vivo using human cell line derived xenografts (CDX) grown in immunodeficient mice. For these studies, AsPC1 (pancreatic cell line with KRAS G12D mutation), NCI-H2122 (lung cell line with KRAS G12C mutation), and 5637 (bladder cell line with CRAF amplification) models are used. In addition, HCT-116 (colorectal cell line with KRAS G13D mutation), SKM-1 (AML cell line with KRAS K117N mutation), and OCI-AML-3 (AML cell line with NRAS Q61L mutation) models are used. The tumor cell lines (AsPC-1, NCI-H2122, 5637, and HCT-116 cells) are maintained in vitro as monolayer culture in medium at 37° C. in an atmosphere of 5% CO2 in air. The tumor cell lines (SKM-1 and OCI-AML-3 cells) are maintained in vitro as a suspension in medium at 37° C. in an atmosphere of 5% CO2 in air. The tumor cells are routinely sub-cultured before confluence by trypsin-EDTA treatment, not to exceed 4-5 passages. The cells growing in an exponential growth phase are harvested for tumor inoculation. AsPC1, NCI-H2122, and OCI-AML-3 tumors are implanted into Balb/c nude mice. HCT-116 tumors are implanted into Nu/Nu mice. 5637 and SKM-1 tumors are implanted into NOG mice. Each mouse is inoculated subcutaneously on the right flank with tumor cells in a 1:1 mixture with matrigel. Tumors are allowed to grow to approximately 150-200 mm3. At this time, mice are assigned to groups such that the mean tumor volume is the same for each treatment group. The MEK inhibitor compound treatments are administrated to the tumor-bearing mice via oral gavage. Throughout the study, mouse body weight and tumor volume are recorded. The measurement of tumor size is conducted twice weekly with a caliper and recorded. The tumor volume (mm3) is estimated using the formula: TV=a×b2/2, where “a” and “b” are long and short diameters of a tumor, respectively.

In the AsPC-1 model, exemplary MEK inhibitor I-2 was treated at 3 mg/kg QD and a percent TGI (tumor growth inhibition) on Day 21 of 83.4% was observed. The average body weight gain observed on Day 21 was 2.4%.

In the NCI-H2122 model, exemplary MEK inhibitor 1-2 was treated at 3 mg/kg QD and a percent TGI on Day 31 of 104% was observed. The average body weight loss observed on Day 31 was 1.5%.

In the 5637 model, exemplary MEK inhibitor I-2 was treated at 3 mg/kg QD and a percent TGI on Day 21 of 111% was observed. The average body weight loss observed on Day 21 was 6.8%.

In the HCT-116 model, exemplary MEK inhibitor I-2 was treated at 2 mg/kg QD, 3 mg/kg QOD or 6 mg/kg QOD and a percent TGIs on Day 20 of 102.9%, 98.1%, and 98%, respectively, were observed. The average body weight gain observed on Day 20 was 4%, 5.5%, and 12.1%, respectively.

In the SKM-1 model, exemplary MEK inhibitor I-2 was treated at 1 mg/kg QD, 3 mg/kg QD or 6 mg/kg QOD and venetoclax was treated at 100 mg/kg QD and a percent TGIs on Day 22 of 97.7%, 98.4%, 96.2%, and 46.6% respectively, were observed. The average body weight loss observed on Day 22 for the 3 mg/kg QD group was 1.2%, whereas weight gain was observed in 1 mg/kg QD, 6 mg/kg QOD and venetoclax groups (1.2%, 3.9, and 7.5%, respectively).

In the OCI-AML-3 model, exemplary MEK inhibitor I-2 was treated at 1 mg/kg QD, 3 mg/kg QD or 6 mg/kg QOD, and venetoclax was treated at 100 mg/kg QD and a percent TGIs on Day 15 of 94.8, 98.6, 95.2, and 13% respectively, were observed. The average body weight loss observed on Day 15 for the 1 and 3 mg/kg QD group was 2.9% and 7.8%, respectively, whereas weight gain was observed in 6 mg/kg QOD and venetoclax groups (3.3% and 8.3%, respectively).

Full text: Click here
Patent 2024
Atmosphere Body Weight Cancer Vaccines Cell Line, Tumor Cell Lines Cells Edetic Acid HCT116 Cells Heterografts Homo sapiens Human Body Immunologic Deficiency Syndromes K-ras Genes Lung MAP2K2 protein, human matrigel MEK inhibitor I Mice, Inbred BALB C Mice, Nude Mus Mutation Neoplasms NRAS protein, human Pancreas Psychological Inhibition Raf1 protein, human Trypsin Tube Feeding Urinary Bladder venetoclax

Example 1

Reagents for peptide synthesis were purchased from Chem-Impex (Wood Dale, IL), NovaBiochem (La Jolla, CA), or Anaspec (San Jose, CA). Rink amide resin LS (100-200 mesh, 0.2 mmol/g) was purchased from Advanced ChemTech. Cell culture media, fetal bovine serum, penicillin-streptomycin, 0.25% trypsin-EDTA, and DPBS were purchased from Invitrogen (Carlsbad, CA). Methyl 3,5-dimethylbenzoiate, N-bromosuccinimide, diethyl phosphite, 2,2′-dipyridyl disulfide, and other organic reagents/solvents were purchased from Sigma-Aldrich (St. Louis, MO). Anti-GST-Tb and streptavidin-d2 were purchased from Cisbio (Bedford, MA). The NF-κB reporter (Luc)-HEK293 cell line and One-Step™ luciferase assay system were purchased from BPS Bioscience (San Diego, CA).

[Figure (not displayed)]

Full text: Click here
Patent 2024
Anabolism Biological Assay Bromosuccinimide Cell Culture Techniques Cells Culture Media Disulfides Edetic Acid Fetal Bovine Serum HEK293 Cells Luciferases Penicillins Peptide Biosynthesis Phosphite RELA protein, human Rink amide resin Solvents Streptavidin Streptomycin Trypsin

Top products related to «Trypsin»

Sourced in United States, China, United Kingdom, Germany, Australia, Japan, Canada, Italy, France, Switzerland, New Zealand, Brazil, Belgium, India, Spain, Israel, Austria, Poland, Ireland, Sweden, Macao, Netherlands, Denmark, Cameroon, Singapore, Portugal, Argentina, Holy See (Vatican City State), Morocco, Uruguay, Mexico, Thailand, Sao Tome and Principe, Hungary, Panama, Hong Kong, Norway, United Arab Emirates, Czechia, Russian Federation, Chile, Moldova, Republic of, Gabon, Palestine, State of, Saudi Arabia, Senegal
Fetal Bovine Serum (FBS) is a cell culture supplement derived from the blood of bovine fetuses. FBS provides a source of proteins, growth factors, and other components that support the growth and maintenance of various cell types in in vitro cell culture applications.
Sourced in United States, United Kingdom, Germany, Canada, Switzerland, France, China, Australia, Japan, Italy, Spain, New Zealand, Sweden, Singapore, Portugal, Thailand, Belgium, Denmark, Taiwan, Province of China, Ireland, Brazil, Netherlands, Austria, Czechia, India, Morocco, Israel, Poland, Macao
Trypsin-EDTA is a solution used in cell culture applications to dissociate adherent cells from their growth surface. It contains the proteolytic enzyme trypsin and the chelating agent EDTA, which work together to break down the cellular adhesions and allow the cells to be harvested and passaged.
Sourced in United States, United Kingdom, China, Germany, Canada, Japan, France, Australia, Italy, Switzerland, Spain, Brazil, Belgium, Netherlands, Ireland, Singapore, Poland, Macao, India, Sweden, Denmark, Austria, Argentina, Israel, Lithuania
Trypsin is a proteolytic enzyme that hydrolyzes peptide bonds in proteins. It is commonly used in cell biology and molecular biology applications to facilitate cell detachment and dissociation.
Sourced in United States, Germany, United Kingdom, China, Canada, France, Japan, Australia, Switzerland, Israel, Italy, Belgium, Austria, Spain, Gabon, Ireland, New Zealand, Sweden, Netherlands, Denmark, Brazil, Macao, India, Singapore, Poland, Argentina, Cameroon, Uruguay, Morocco, Panama, Colombia, Holy See (Vatican City State), Hungary, Norway, Portugal, Mexico, Thailand, Palestine, State of, Finland, Moldova, Republic of, Jamaica, Czechia
Penicillin/streptomycin is a commonly used antibiotic solution for cell culture applications. It contains a combination of penicillin and streptomycin, which are broad-spectrum antibiotics that inhibit the growth of both Gram-positive and Gram-negative bacteria.
Sourced in United States, Germany, United Kingdom, China, Italy, Japan, Sao Tome and Principe, Canada, Macao, Poland, India, France, Spain, Portugal, Australia, Switzerland, Ireland, Belgium, Sweden, Israel, Brazil, Czechia, Denmark, Austria
Trypsin is a serine protease enzyme that is commonly used in cell biology and biochemistry laboratories. Its primary function is to facilitate the dissociation and disaggregation of adherent cells, allowing for the passive release of cells from a surface or substrate. Trypsin is widely utilized in various cell culture applications, such as subculturing and passaging of adherent cell lines.
Sourced in United States, China, United Kingdom, Germany, France, Australia, Canada, Japan, Italy, Switzerland, Belgium, Austria, Spain, Israel, New Zealand, Ireland, Denmark, India, Poland, Sweden, Argentina, Netherlands, Brazil, Macao, Singapore, Sao Tome and Principe, Cameroon, Hong Kong, Portugal, Morocco, Hungary, Finland, Puerto Rico, Holy See (Vatican City State), Gabon, Bulgaria, Norway, Jamaica
DMEM (Dulbecco's Modified Eagle's Medium) is a cell culture medium formulated to support the growth and maintenance of a variety of cell types, including mammalian cells. It provides essential nutrients, amino acids, vitamins, and other components necessary for cell proliferation and survival in an in vitro environment.
Sourced in United States, Germany, United Kingdom, China, Japan, France, Switzerland, Sweden, Italy, Netherlands, Spain, Canada, Brazil, Australia, Macao
Trypsin is a serine protease enzyme that is commonly used in cell culture and molecular biology applications. It functions by cleaving peptide bonds at the carboxyl side of arginine and lysine residues, which facilitates the dissociation of adherent cells from cell culture surfaces and the digestion of proteins.
Sourced in United States, United Kingdom, Germany, China, France, Canada, Australia, Japan, Switzerland, Italy, Belgium, Israel, Austria, Spain, Netherlands, Poland, Brazil, Denmark, Argentina, Sweden, New Zealand, Ireland, India, Gabon, Macao, Portugal, Czechia, Singapore, Norway, Thailand, Uruguay, Moldova, Republic of, Finland, Panama
Streptomycin is a broad-spectrum antibiotic used in laboratory settings. It functions as a protein synthesis inhibitor, targeting the 30S subunit of bacterial ribosomes, which plays a crucial role in the translation of genetic information into proteins. Streptomycin is commonly used in microbiological research and applications that require selective inhibition of bacterial growth.
Sourced in United States, United Kingdom, Germany, China, France, Canada, Japan, Australia, Switzerland, Italy, Israel, Belgium, Austria, Spain, Brazil, Netherlands, Gabon, Denmark, Poland, Ireland, New Zealand, Sweden, Argentina, India, Macao, Uruguay, Portugal, Holy See (Vatican City State), Czechia, Singapore, Panama, Thailand, Moldova, Republic of, Finland, Morocco
Penicillin is a type of antibiotic used in laboratory settings. It is a broad-spectrum antimicrobial agent effective against a variety of bacteria. Penicillin functions by disrupting the bacterial cell wall, leading to cell death.
Sourced in United States, Germany, United Kingdom, China, Italy, Sao Tome and Principe, France, Macao, India, Canada, Switzerland, Japan, Australia, Spain, Poland, Belgium, Brazil, Czechia, Portugal, Austria, Denmark, Israel, Sweden, Ireland, Hungary, Mexico, Netherlands, Singapore, Indonesia, Slovakia, Cameroon, Norway, Thailand, Chile, Finland, Malaysia, Latvia, New Zealand, Hong Kong, Pakistan, Uruguay, Bangladesh
DMSO is a versatile organic solvent commonly used in laboratory settings. It has a high boiling point, low viscosity, and the ability to dissolve a wide range of polar and non-polar compounds. DMSO's core function is as a solvent, allowing for the effective dissolution and handling of various chemical substances during research and experimentation.

More about "Trypsin"

Trypsin is a critical serine protease enzyme that plays a pivotal role in the digestive process.
It is primarily produced in the pancreas and is essential for the efficient breakdown and absorption of dietary proteins.
Trypsin exhibits a high specificity for peptide bonds involving the carboxyl group of arginine or lysine residues, making it a valuable tool in biochemical and biotechnological applications such as protein sequencing, cell culture, and sample preparation for mass spectrometry.
Optimizing trypsin protocols is crucial for ensuring reproducibility and accuracy in research.
PubCompare.ai, an innovative AI-driven platform, offers a solution to help researchers identify the best trypsin protocols and products from the literature, pre-prints, and patents.
By leveraging this platform, researchers can enhance their workflow and elevate the quality of their trypsin-based experiments.
Trypsin is often used in conjunction with other essential cell culture components, such as Fetal Bovine Serum (FBS), Trypsin-EDTA, Penicillin/Streptomycin, and DMEM (Dulbecco's Modified Eagle Medium).
These elements work together to support cell growth, proliferation, and maintenance in various biological experiments and applications.
Penicillin and Streptomycin are commonly used antibiotics in cell culture media to prevent bacterial contamination, while DMSO (Dimethyl Sulfoxide) is a cryoprotectant used for the preservation of cells during freezing and storage.
By optimizing trypsin protocols and leveraging the insights provided by PubCompare.ai, researchers can enhance the reproducibility, accuracy, and efficiency of their trypsin-based experiments, ultimately advancing their research and discoveries.