The largest database of trusted experimental protocols
> Chemicals & Drugs > Amino Acid > Vaccines

Vaccines

Vaccines are biological preparations that provide active acquired immunity to a particular infectious disease.
They work by exposing the body's immune system to an antigen, which triggers the production of antibodies and other immune responses to fight off the disease.
Vaccines are essential in the prevention and control of infectious diseases, helping to reduce the burden of illness, disability, and death.
This MeSH term covers a wide range of vaccine types, including live-attenuated, inactivated, subunit, conjugate, and mRNA vaccines, among others.
Vaccine research and development is a rapidly evolving field, with ongoing efforts to improve efficacy, safety, and accessibility.
Staty up-to-date on the latest vaccine research and innovations with PubCompare.ai, the AI-driven platform that simplifies the process of locating and comparing vaccine research protocols.

Most cited protocols related to «Vaccines»

The safety analyses included all participants who received at least one dose of BNT162b2 or placebo. The findings are descriptive in nature and not based on formal statistical hypothesis testing. Safety analyses are presented as counts, percentages, and associated Clopper–Pearson 95% confidence intervals for local reactions, systemic events, and any adverse events after vaccination, according to terms in the Medical Dictionary for Regulatory Activities (MedDRA), version 23.1, for each vaccine group.
Analysis of the first primary efficacy end point included participants who received the vaccine or placebo as randomly assigned, had no evidence of infection within 7 days after the second dose, and had no major protocol deviations (the population that could be evaluated). Vaccine efficacy was estimated by 100×(1−IRR), where IRR is the calculated ratio of confirmed cases of Covid-19 illness per 1000 person-years of follow-up in the active vaccine group to the corresponding illness rate in the placebo group. The 95.0% credible interval for vaccine efficacy and the probability of vaccine efficacy greater than 30% were calculated with the use of a Bayesian beta-binomial model. The final analysis uses a success boundary of 98.6% for probability of vaccine efficacy greater than 30% to compensate for the interim analysis and to control the overall type 1 error rate at 2.5%. Moreover, primary and secondary efficacy end points are evaluated sequentially to control the familywise type 1 error rate at 2.5%. Descriptive analyses (estimates of vaccine efficacy and 95% confidence intervals) are provided for key subgroups.
Publication 2020
BNT162B2 COVID 19 Immunizations, Active Infection Placebos Safety Vaccination Vaccines
ImmPort data is annotated with terms from several ontologies including Cell Ontology23 (link), Disease Ontology (disease-ontology.org), Ontology for Biomedical Investigations (OBI; obi-ontology.org), Protein Ontology24 (link), and Vaccine Ontology25 (link). MedDRA (www.meddra.org) is used for adverse event terms and the NCI Thesaurus supplies terms from a variety of sources (e.g., CDISC). The Antibody Ontology (AntiO) is a new resource developed from data curated in ImmPort to provide standardized representation of monoclonal antibodies used in immunology research26 (link). Along with updates to OBI, it exemplifies the ongoing development of data standardization facilitated by ImmPort. An analogous problem arises in the case of cytokines, where no public domain registry has thus far been available. To fill this gap, a registry of cytokines, chemokines and their receptors was compiled (http://www.immport.org/immport-open/public/reference/cytokineRegistry) for the purpose of collecting, integrating, and mapping between entity names and synonyms. The cytokine registry draws on resources such NCBI Gene, HGNC, MGI, Protein Ontology, and UniProt. ImmPort engages with several data standards communities such as the Human Immune Phenotyping Consortium (HIPC) Standards Working Group18 (link), BioSharing (fairsharing.org), the Patient Derived Tumor Xenograft Minimal Information (PDX-MI) working group27 (link) and the NIH Big Data to Knowledge (BD2K) initiative (datascience.nih.gov/bd2k/about) through its collaboration with CEDAR (http://metadatacenter.org).
Full text: Click here
Publication 2018
Cells Chemokine Cytokine Genes Homo sapiens Immunoglobulins Monoclonal Antibodies Neoplasms Patients Proteins Public Domain Vaccines Xenografting
The first primary end point was the efficacy of BNT162b2 against confirmed Covid-19 with onset at least 7 days after the second dose in participants who had been without serologic or virologic evidence of SARS-CoV-2 infection up to 7 days after the second dose; the second primary end point was efficacy in participants with and participants without evidence of prior infection. Confirmed Covid-19 was defined according to the Food and Drug Administration (FDA) criteria as the presence of at least one of the following symptoms: fever, new or increased cough, new or increased shortness of breath, chills, new or increased muscle pain, new loss of taste or smell, sore throat, diarrhea, or vomiting, combined with a respiratory specimen obtained during the symptomatic period or within 4 days before or after it that was positive for SARS-CoV-2 by nucleic acid amplification–based testing, either at the central laboratory or at a local testing facility (using a protocol-defined acceptable test).
Major secondary end points included the efficacy of BNT162b2 against severe Covid-19. Severe Covid-19 is defined by the FDA as confirmed Covid-19 with one of the following additional features: clinical signs at rest that are indicative of severe systemic illness; respiratory failure; evidence of shock; significant acute renal, hepatic, or neurologic dysfunction; admission to an intensive care unit; or death. Details are provided in the protocol.
An explanation of the various denominator values for use in assessing the results of the trial is provided in Table S1 in the Supplementary Appendix, available at NEJM.org. In brief, the safety population includes persons 16 years of age or older; a total of 43,448 participants constituted the population of enrolled persons injected with the vaccine or placebo. The main safety subset as defined by the FDA, with a median of 2 months of follow-up as of October 9, 2020, consisted of 37,706 persons, and the reactogenicity subset consisted of 8183 persons. The modified intention-to-treat (mITT) efficacy population includes all age groups 12 years of age or older (43,355 persons; 100 participants who were 12 to 15 years of age contributed to person-time years but included no cases). The number of persons who could be evaluated for efficacy 7 days after the second dose and who had no evidence of prior infection was 36,523, and the number of persons who could be evaluated 7 days after the second dose with or without evidence of prior infection was 40,137.
Publication 2020
Age Groups Ageusia BNT162B2 Chills Cough COVID 19 Diarrhea Dyspnea Fever Infection Kidney Myalgia Nucleic Acid Amplification Tests Placebos Respiratory Failure Respiratory Rate Safety SARS-CoV-2 Sense of Smell Shock Sore Throat Vaccines

Protocol full text hidden due to copyright restrictions

Open the protocol to access the free full text link

Publication 2013
Antibodies, Neutralizing Cells Diet, Formula DNA Replication Genes, Reporter HIV Seropositivity Luciferases Plasma Pseudotyped Viruses Psychological Inhibition Vaccines Virus
The construction and evaluation of blood transcription modules (BTM) is fully described in the Supplementary Note. The expression values of member genes in a module are combined into a single module activity score (the mean value). The module activity scores are used for subsequent analysis, such as Student t-test or Pearson correlation. All vaccine data were excluded from the BTM construction process. In antibody correlation analysis, the statistical significance of BTM modules was estimated by comparing to random permutation data, i.e., module memberships and sample labels were permutated to estimate the null distribution. Such significance is further enhanced when the same module is seen in two independent vaccine datasets. The analysis result with GSEA using BTM modules is comparable to that presented in this paper (Supplementary Table 3).
Day 30 polysaccharide specific IgG (sum of serogroup A and C) data subtracted by day 0 baseline were used for the antibody responses in MCV4 and MPSV4, as they were robust indicators throughout the study (Supplementary Fig. 1c). Day 30/0 anti-DT IgG data was used as DT specific response in MCV4. As previously reported, day 60 neutralizing antibody titers were used for the yellow fever vaccine 4 (link), and maximum fold change of hemagglutination inhibition (HAI) titers (day 28/0) were used for the influenza TIV vaccine 6 (link).
Publication 2013
anti-IgG Antibodies, Neutralizing Antibody Formation BLOOD Fever Vaccine, Yellow Gene Expression Hemagglutination Inhibition Tests Immunoglobulins Polysaccharides Student Transcription, Genetic Vaccines Vision

Most recents protocols related to «Vaccines»

Example 20

The instant study is designed to test the immunogenicity in rabbits of candidate betacoronavirus (e.g., MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH or HCoV-HKU1 or a combination thereof) vaccines comprising a mRNA polynucleotide encoding the spike (S) protein, the S1 subunit (S1) of the spike protein, or the S2 subunit (S2) of the spike protein obtained from a betacoronavirus (e.g., MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH or HCoV-HKU1).

Rabbits are vaccinated on week 0 and 3 via intravenous (IV), intramuscular (IM), or intradermal (ID) routes. One group remains unvaccinated and one is administered inactivated betacoronavirus. Serum is collected from each rabbit on weeks 1, 3 (pre-dose) and 5. Individual bleeds are tested for anti-S, anti-S1 or anti-S2 activity via a virus neutralization assay from all three time points, and pooled samples from week 5 only are tested by Western blot using inactivated betacoronavirus (e.g., inactivated MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH or HCoV-HKU1).

In experiments where a lipid nanoparticle (LNP) formulation is used, the formulation may include a cationic lipid, non-cationic lipid, PEG lipid and structural lipid in the ratios 50:10:1.5:38.5. The cationic lipid is DLin-KC2-DMA (50 mol %) or DLin-MC3-DMA (50 mol %), the non-cationic lipid is DSPC (10 mol %), the PEG lipid is PEG-DOMG (1.5 mol %) and the structural lipid is cholesterol (38.5 mol %), for example.

Full text: Click here
Patent 2024
Antigens Betacoronavirus Biological Assay Cations Cholesterol Coronavirus 229E, Human Coronavirus OC43, Human Hemorrhage Human coronavirus HKU1 Lipid Nanoparticles Lipids Middle East Respiratory Syndrome Coronavirus M protein, multiple myeloma NL63, Human Coronavirus Oryctolagus cuniculus Polynucleotides Protein Subunits Rabbits RNA, Messenger Serum Severe acute respiratory syndrome-related coronavirus spike protein, SARS-CoV-2 Vaccines Virus Physiological Phenomena

Example 1

a. Materials and Methods

i. Vector Construction

1. Virus-Like Particle

As most broadly neutralizing HPV antibodies are derived from the highly conserved N-terminal region of L2, amino acids 14-122 of HPV16 L2 were used to create HBc VLPs. L2 with flanking linker regions was inserted into the tip of the a-helical spike of an HBc gene copy which was fused to another copy of HBc lacking the L2 insert. This arrangement allows the formation of HBc dimers that contain only a single copy of L2, increasing VLP stability (Peyret et al. 2015). This heterodimer is referred to as HBche-L2. A dicot plant-optimized HPV16 L2 coding sequence was designed based upon the sequence of GenBank Accession No. CAC51368.1 and synthesized in vitro using synthetic oligonucleotides by the method described (Stemmer et al., 1995). The plant-optimized L2 nucleotide sequence encoding residues 1-473 is posted at GenBank Accession No. KC330735. PCR end-tailoring was used to insert Xbal and SpeI sites flanking the L2 aa 14-122 using primers L2-14-Xba-F (SEQ ID NO. 1: CGTCTAGAGTCCGCAACCCAACTTTACAAG) and L2-122-Spe-R (SEQ ID NO. 2: G GGACTAGTTGGGGCACCAGCATC). The SpeI site was fused to a sequence encoding a 6His tag, and the resulting fusion was cloned into a geminiviral replicon vector (Diamos, 2016) to produce pBYe3R2K2Mc-L2(14-122)6H.

The HBche heterodimer VLP system was adapted from Peyret et al (2015). Using the plant optimized HBc gene (Huang et al., 2009), inventors constructed a DNA sequence encoding a dimer comprising HBc aa 1-149, a linker (G2S)5G (SEQ ID NO. 39), HBc aa 1-77, a linker GT(G4S)2 (SEQ ID NO. 40), HPV-16 L2 aa 14-122, a linker (GGS)2GSSGGSGG (SEQ ID NO. 41), and HBc aa 78-176. The dimer sequence was generated using multiple PCR steps including overlap extensions and insertion of BamHI and SpeI restriction sites flanking the L2 aa 14-122, using primers L2-14-Bam-F (SEQ ID NO. 3: CAGGATCCGCAACC CAACTTTACAAGAC) and L2-122-Spe-R (SEQ ID NO. 2). The HBche-L2 coding sequence was inserted into a geminiviral replicon binary vector pBYR2eK2M (FIG. 3), which includes the following elements: CaMV 35S promoter with duplicated enhancer (Huang et al., 2009), 5′ UTR of N. benthamiana psaK2 gene (Diamos et al., 2016), intron-containing 3′ UTR and terminator of tobacco extensin (Rosenthal et al, 2018), CaMV 35S 3′ terminator (Rosenthal et al, 2018), and Rb7 matrix attachment region (Diamos et al., 2016).

2. Recombinant Immune Complex

The recombinant immune complex (RIC) vector was adapted from Kim et al., (2015). The HPV-16 L2 (aa 14-122) segment was inserted into the BamHI and SpeI sites of the gene encoding humanized mAb 6D8 heavy chain, resulting in 6D8 epitope-tagged L2. The heavy chain fusion was inserted into an expression cassette linked to a 6D8 kappa chain expression cassette, all inserted into a geminiviral replicon binary vector (FIG. 3, RIC vector). Both cassettes contain CaMV 35S promoter with duplicated enhancer (Huang et al., 2009), 5′ UTR of N. benthamiana psaK2 gene (Diamos et al., 2016), intron-containing 3′ UTR and terminator of tobacco extensin (Rosenthal et al, 2018), and Rb7 matrix attachment region (Diamos et al., 2016).

ii. Agroinfiltration of Nicotiana benthamiana Leaves

Binary vectors were separately introduced into Agrobacterium tumefaciens EHA105 by electroporation. The resulting strains were verified by restriction digestion or PCR, grown overnight at 30° C., and used to infiltrate leaves of 5- to 6-week-old N. benthamiana maintained at 23-25° C. Briefly, the bacteria were pelleted by centrifugation for 5 minutes at 5,000 g and then resuspended in infiltration buffer (10 mM 2-(N-morpholino)ethanesulfonic acid (MES), pH 5.5 and 10 mM MgSO4) to OD600=0.2, unless otherwise described. The resulting bacterial suspensions were injected by using a syringe without needle into leaves through a small puncture (Huang et al. 2004). Plant tissue was harvested after 5 DPI, or as stated for each experiment. Leaves producing GFP were photographed under UV illumination generated by a B-100AP lamp (UVP, Upland, CA).

iii. Protein Extraction

Total protein extract was obtained by homogenizing agroinfiltrated leaf samples with 1:5 (w:v) ice cold extraction buffer (25 mM sodium phosphate, pH 7.4, 100 mM NaCl, 1 mM EDTA, 0.1% Triton X-100, 10 mg/mL sodium ascorbate, 0.3 mg/mL PMSF) using a Bullet Blender machine (Next Advance, Averill Park, NY) following the manufacturer's instruction. To enhance solubility, homogenized tissue was rotated at room temperature or 4° C. for 30 minutes. The crude plant extract was clarified by centrifugation at 13,000 g for 10 minutes at 4° C. Necrotic leaf tissue has reduced water weight, which can lead to inaccurate measurements based on leaf mass. Therefore, extracts were normalized based on total protein content by Bradford protein assay kit (Bio-Rad) with bovine serum albumin as standard.

iv. SDS-PAGE and Western Blot

Clarified plant protein extract was mixed with sample buffer (50 mM Tris-HCl, pH 6.8, 2% SDS, 10% glycerol, 0.02% bromophenol blue) and separated on 4-15% polyacrylamide gels (Bio-Rad). For reducing conditions, 0.5M DTT was added, and the samples were boiled for 10 minutes prior to loading. Polyacrylamide gels were either transferred to a PVDF membrane or stained with Coomassie stain (Bio-Rad) following the manufacturer's instructions. For L2 detection, the protein transferred membranes were blocked with 5% dry milk in PBST (PBS with 0.05% tween-20) overnight at 4° C. and probed with polyclonal rabbit anti-L2 diluted 1:5000 in 1% PBSTM, followed by goat anti-rabbit horseradish peroxidase conjugate (Sigma). Bound antibody was detected with ECL reagent (Amersham).

v. Immunization of Mice and Sample Collection

All animals were handled in accordance to the Animal Welfare Act and Arizona State University IACUC. Female BALB/C mice, 6-8 weeks old, were immunized subcutaneously with purified plant-expressed L2 (14-122), HBche-L2 VLP, L2 RIC, or PBS mixed 1:1 with Imject® Alum (Thermo Scientific, Rockford, IL). In all treatment groups, the total weight of antigen was set to deliver an equivalent 5 μg of L2. Doses were given on days 0, 21, and 42. Serum collection was done as described (Santi et al. 2008) by submandibular bleed on days 0, 21, 42, and 63.

vi. Antibody Measurements

Mouse antibody titers were measured by ELISA. Bacterially-expressed L2 (amino acids 11-128) was bound to 96-well high-binding polystyrene plates (Corning), and the plates were blocked with 5% nonfat dry milk in PBST. After washing the wells with PBST (PBS with 0.05% Tween 20), the diluted mouse sera were added and incubated. Mouse antibodies were detected by incubation with polyclonal goat anti-mouse IgG-horseradish peroxidase conjugate (Sigma). The plate was developed with TMB substrate (Pierce) and the absorbance was read at 450 nm. Endpoint titers were taken as the reciprocal of the lowest dilution which produced an OD450 reading twice the background. IgG1 and IgG2a antibodies were measured with goat-anti mouse IgG1 or IgG2a horseradish peroxidase conjugate.

vii. Electron Microscopy

Purified samples of HBche or HBche-L2 were initially incubated on 75/300 mesh grids coated with formvar. Following incubation, samples were briefly washed twice with deionized water then negatively stained with 2% aqueous uranyl acetate. Transmission electron microscopy was performed with a Phillips CM-12 microscope, and images were acquired with a Gatan model 791 CCD camera.

viii. Statistical Analysis

The significance of vaccine treatments and virus neutralization was measured by non-parametric Mann-Whitney test using GraphPad prism software. Two stars (**) indicates p values <0.05. Three stars (***) indicates p values <0.001.

b. Design and Expression of HBc VLPs and RIC Displaying HPV16 L2

BeYDV plant expression vectors (FIG. 3) expressing either the target VLP HBche-L2, or L2 and HBche alone as controls, were agroinfiltrated into the leaves of N. benthamiana and analyzed for VLP production. After 4-5 days post infiltration (DPI), leaves displayed only minor signs of tissue necrosis, indicating that the VLP was well-tolerated by the plants (FIG. 4A). Leaf extracts analyzed by reducing SDS-PAGE showed an abundant band near the predicted size of 51 kDa for HBche-L2, just above the large subunit of rubisco (RbcL). HBche was detected around the predicted size of 38 kDa (FIG. 4B). Western blot probed with anti-L2 polyclonal serum detected a band for HBche-L2 at ˜51 kDa (FIG. 4B). These results indicate that this plant system is capable of producing high levels of L2-containing HBc VLP.

To express L2-containing MC, amino acids 14-122 of HPV16 L2 were fused with linker to the C-terminus of the 6D8 antibody heavy chain and tagged with the 6D8 epitope (Kim et al. 2015). A BeYDV vector (FIG. 3) expressing both the L2-fused 6D8 heavy chain and the light chain was agroinfiltrated into leaves of N. benthamiana and analyzed for RIC production. To create more homogenous human-type glycosylation, which has been shown to improve antibody Fc receptor binding in vivo, transgenic plants silenced for xylosyltransferase and fucosyltransferase were employed (Castilho and Steinkellner 2012). By western blot, high molecular weight bands >150 kDa suggestive of RIC formation were observed (FIG. 4C). Expression of soluble L2 RIC was lower than HBche-L2 due to relatively poor solubility of the RIC (FIG. 4C).

After rigorous genetic optimization, the N. benthamiana system is capable of producing very high levels of recombinant protein, up to 30-50% of the total soluble plant protein, in 4-5 days (Diamos et al. 2016). Using this system, we produced and purified milligram quantities of fully assembled and potently immunogenic HBc VLPs displaying HPV L2 through a simple one-step purification process (FIGS. 4A-4C and 6).

c. Purification and Characterization of HBche-L2 and L2 RIC

To assess the assembly of HBc-L2 VLP, clarified plant extracts containing either HBche-L2 or HBche were analyzed by sucrose gradient sedimentation. HBche-L2 sedimented largely with HBche, which is known to form VLP, though a small increase in density was observed with HBche-L2, perhaps due to the incorporation of L2 into the virus particle (FIG. 5A). To demonstrate particle formation, sucrose fractions were examined by electron microscopy. Both HBche and HBche-L2 formed ˜30 nm particles, although the appearance of HBche-L2 VLP suggested slightly larger, fuller particles (FIGS. 5C and 5D). As most plant proteins do not sediment with VLP, pooling peak sucrose fractions resulted in >95% pure HBche-L2 (FIG. 5B), yielding sufficient antigen (>3 mg) for vaccination from a single plant leaf.

L2 RIC was purified from plant tissue by protein G affinity chromatography. By SDS-PAGE, an appropriately sized band was visible >150 kDa that was highly pure (FIG. 5B). Western blot confirmed the presence of L2 in this band, indicating proper RIC formation (FIG. 5B). L2 RIC bound to human complement C1q receptor with substantially higher affinity compared to free human IgG standard, suggesting proper immune complex formation (FIG. 5E).

d. Mouse Immunization with HBche-L2 and L2 RIC

Groups of Balb/c mice (n=8) were immunized, using alum as adjuvant, with three doses each of 5 μg L2 delivered as either L2 alone, HBche-L2 VLP, L2 RIC, or a combination of half VLP and half RIC. VLP and RIC, alone or combined, greatly enhanced antibody titers compared to L2 alone by more than an order of magnitude at all time points tested (FIG. 6). After one or two doses, the combined VLP/RIC treatment group outperformed both the VLP or RIC groups, reaching mean endpoint titers of >200,000, which represent a 700-fold increase over immunization with L2 alone (FIG. 6). After the third dose, both the VLP and combined VLP/RIC groups reached endpoint titers >1,300,000, a 2-fold increase over the RIC alone group. To determine the antibody subtypes produced by each treatment group, sera were assayed for L2-binding IgG1 and IgG2a. All four groups produced predominately IgG1 (FIG. 7, note dilutions). However, RIC and especially VLP-containing groups had an elevated ratio of IgG2a:IgG1 (>3-fold) compared to L2 alone (FIG. 7).

In vitro neutralization of HPV16 pseudovirions showed that the VLP and RIC groups greatly enhanced neutralization compared to L2 alone (FIG. 5, p<0.001). Additionally, VLP and RIC combined further enhanced neutralization activity ($5-fold, p<0.05) compared to either antigen alone, supporting the strong synergistic effect of delivering L2 by both platforms simultaneously.

In this study, by displaying amino acids 11-128 on the surface of plant-produced HBc VLPs, L2 antibody titers as high as those seen with L1 vaccines were generated (FIG. 6). Mice immunized with L2 alone had highly variable antibody titers, with titers spanning two orders of magnitude. By contrast, the other groups had much more homogenous antibody responses, especially the VLP-containing groups, which had no animals below an endpoint titer of 1:1,000,000 (FIG. 6). These results underscore the potential of HBc VLP and RIC to provide consistently potent immune responses against L2. Moreover, significant synergy of VLP and RIC systems was observed when the systems were delivered together, after one or two doses (FIG. 6). Since equivalent amounts of L2 were delivered with each dose, the enhanced antibody titer did not result from higher L2 doses. Rather, these data suggest that higher L2-specific antibody production may be due to augmented stimulation of L2-specific B cells by T-helper cells that were primed by RIC-induced antigen presenting cells. Although treatment with VLP and RIC alone reached similar endpoint titers as the combined VLP/RIC group after 3 doses, virus neutralization was substantially higher (>5-fold) in the combined group (FIG. 8). Together, these data indicate unique synergy exists when VLP and RIC are delivered together. Inventors have observed similarly significant synergistic enhancement of immunogenicity for a variety of other antigens.

Mice immunized with L2 alone had highly variable antibody titers, with titers spanning two orders of magnitude. By contrast, the VLP and VLP/RIC groups had much more homogenous antibody responses, with no animals below an endpoint titer of 1:1,000,000 (FIG. 6). These results underscore the potential of HBc VLP and RIC to provide consistently potent immune responses against L2.

Fc gamma receptors are present on immune cells and strongly impact antibody effector functions such as antibody-dependent cell-mediated cytotoxicity and complement-dependent cytotoxicity (Jefferis 2009). In mice, these interactions are controlled in part by IgG subtypes. IgG1 is associated with a Th2 response and has limited effector functions. By contrast, IgG2a is associated with a Th1 response and more strongly binds complement components (Neuberger and Raj ewsky 1981) and Fc receptors (Radaev 2002), enhancing effector functions and opsonophagocytosis by macrophages (Takai et al. 1994). Immunization with L2 alone was found to produce low levels of IgG2a, however immunization with RIC and VLP produced significant increases in IgG2a titers. VLP-containing groups in particular showed a 3-fold increase in the ratio of IgG2a to IgG1 antibodies (FIG. 7). Importantly, production of IgG2a is associated with successful clearance of a plethora of viral pathogens (Coutelier et al. 1988; Gerhard et al. 1997; Wilson et al. 2000; Markine-Goriaynoff and Coutelier 2002).

The glycosylation state of the Fc receptor also plays an important role in antibody function. Advances in glycoengineering have led to the development of transgenic plants with silenced fucosyl- and xylosyl-transferase genes capable of producing recombinant proteins with authentic human N-glycosylation (Strasser et al. 2008). Antibodies produced in this manner have more homogenous glycoforms, resulting in improved interaction with Fc gamma and complement receptors compared to the otherwise identical antibodies produced in mammalian cell culture systems (Zeitlin et al. 2011; Hiatt et al. 2014; Strasser et al. 2014; Marusic et al. 2017). As the known mechanisms by which RIC vaccines increase immunogenicity of an antigen depend in part on Fc and complement receptor binding, HPV L2 RIC were produced in transgenic plants with silenced fucosyl- and xylosyl-transferase. Consistent with these data, we found that L2 RIC strongly enhanced the immunogenicity of L2 (FIG. 6). However, yield suffered from insolubility of the RIC (FIG. 4C). We found that the 11-128 segment of L2 expresses very poorly on its own in plants and may be a contributing factor to poor L2 RIC yield. Importantly, we have produced very high yields of RIC with different antigen fusions. Thus, in some aspects, antibody fusion with a shorter segment of L2 could substantially improve the yield of L2 RIC.

e. Neutralization of HPV Pseudovirions

Neutralization of papilloma pseudoviruses (HPV 16, 18, and 58) with sera from mice immunized IP with HBc-L2 VLP and L2(11-128) showed neutralization of HPV 16 at titers of 400-1600 and 200-800, respectively (Table 1). More mice IP-immunized with HBc-L2 VLP had antisera that cross-neutralized HPV 18 and HPV 58 pseudoviruses, compared with mice immunized with L2(11-128). Anti-HBc-L2 VLP sera neutralized HPV 18 at titers of 400 and HPV 58 at titers ranging from 400-800 (Table 1), while anti-L2(11-128) sera neutralized HPV 18 at a titer of 200 and HPV 58 at a titer of 400 (Table 1). None of the sera from intranasal-immunized mice demonstrated neutralizing activity, consistent with lower anti-L2 titers for intranasal than for intraperitoneal immunized mice.

TABLE 1
L2-specific serum IgG and pseudovirus neutralization
titers from IP immunized mice
Neutralization of Pseudoviruses
ImmunogenSerum IgGHPV 16HPV 18HPV 58
HBc-L2>50,000 400
~70,0001600400400
>80,0001600400800
L2 (11-128)~8000 200
~12,000 400
~50,000 800200400

Full text: Click here
Patent 2024
3' Untranslated Regions 5' Untranslated Regions AA 149 Agrobacterium tumefaciens aluminum potassium sulfate aluminum sulfate Amino Acids Animals Animals, Transgenic Antibodies Antibody Formation Antigen-Presenting Cells Antigens B-Lymphocytes Bacteria Bromphenol Blue Buffers Cell Culture Techniques Cells Centrifugation Chromatography, Affinity Cloning Vectors Cold Temperature Combined Modality Therapy complement 1q receptor Complement Receptor Complex, Immune Complex Extracts Cytotoxicities, Antibody-Dependent Cell Cytotoxin Digestion DNA, A-Form DNA Sequence Edetic Acid Electron Microscopy Electroporation Enzyme-Linked Immunosorbent Assay Epitopes ethane sulfonate Fc Receptor Females Formvar Fucosyltransferase G-substrate Gamma Rays Genes Genes, vif Glycerin Goat Helix (Snails) Helper-Inducer T-Lymphocyte Homo sapiens Homozygote Horseradish Peroxidase Human papillomavirus 16 Human papillomavirus 18 Human Papilloma Virus Vaccine IGG-horseradish peroxidase IgG1 IgG2A Immune Sera Immunoglobulin Heavy Chains Immunoglobulins Immunologic Factors Institutional Animal Care and Use Committees Introns Inventors L2 protein, Human papillomavirus type 16 Light Macrophage Mammals Matrix Attachment Regions Mice, Inbred BALB C Microscopy Milk, Cow's Morpholinos Mus Necrosis Needles Nicotiana Oligonucleotide Primers Oligonucleotides Open Reading Frames Opsonophagocytosis Papilloma Pathogenicity Plant Development Plant Extracts Plant Leaves Plant Proteins Plants Plants, Transgenic polyacrylamide gels Polystyrenes polyvinylidene fluoride prisma Protein Glycosylation Proteins Punctures Rabbits Receptors, IgG Recombinant Proteins Replicon Reproduction Response, Immune Ribulose-Bisphosphate Carboxylase Large Subunit Satellite Viruses SDS-PAGE Serum Serum Albumin, Bovine Sodium Ascorbate Sodium Chloride sodium phosphate Specimen Collection Stars, Celestial Strains Sucrose Sulfate, Magnesium Syringes System, Immune Technique, Dilution Tissue, Membrane Tissues Transferase Transmission Electron Microscopy Triton X-100 Tromethamine Tween 20 Ultraviolet Rays uranyl acetate Vaccination Vaccines Vaccines, Recombinant Virion Viroids Virus Vision Western Blotting xylosyltransferase

Example 3

Investigation of Virus Infectivity as a Factor that Determines Plaque Size.

With the revelation that plaque formation is strongly influenced by the immunogenicity of the virus, the possibility that infectivity of the virus could be another factor that determines plaque sizes was investigated. The uptake of viruses into cells in vitro was determined by measuring the amounts of specific viral RNA sequences through real-time PCR.

To measure total viral RNA, total cellular RNA was extracted using the RNEasy Mini kit (Qiagen), and complementary DNA synthesized using the iScript cDNA Synthesis kit (Bio-Rad). To measure total viral RNA, quantitative real-time PCR was done using a primer pair targeting a highly conserved region of the 3′ UTR common to all four serotypes of dengue; inter-sample normalization was done using GAPDH as a control. Primer sequences are listed in Table 5. Pronase (Roche) was used at a concentration of 1 mg/mL and incubated with infected cells for five minutes on ice, before washing with ice cold PBS. Total cellular RNA was then extracted from the cell pellets in the manner described above.

TABLE 5
PCR primer sequences.
Gene TargetPrimer Sequence
DENV LYL 3′UTRForward: TTGAGTAAACYRTGCTGCCTGTA
TGCC (SEQ ID NO: 24)
Reverse: GAGACAGCAGGATCTCTGGTCTY
TC (SEQ ID NO: 25)
GAPDH (Human)Forward: GAGTCAACGGATTTGGTCGT
(SEQ ID NO: 26)
Reverse: TTGATTTTGGAGGGATCTCG
(SEQ ID NO: 27)
CXCL10 (Human)Forward: GGTGAGAAGAGATGTCTGAATCC
(SEQ ID NO: 28)
Reverse: GTCCATCCTTGGAAGCACTGCA
(SEQ ID NO: 29)
ISG20 (Human)Forward: ACACGTCCACTGACAGGCTGTT
(SEQ ID NO: 30)
Reverse: ATCTTCCACCGAGCTGTGTCCA
(SEQ ID NO: 31)
IFIT2 (Human)Forward: GAAGAGGAAGATTTCTGAAG
(SEQ ID NO: 32)
Reverse: CATTTTAGTTGCCGTAGG
(SEQ ID NO: 33)
IFNα (Canine)Forward: GCTCTTGTGACCACTACACCA
(SEQ ID NO: 34)
Reverse: AAGACCTTCTGGGTCATCACG
(SEQ ID NO: 35)
IFNβ (Canine)Forward: GGATGGAATGAGACCACTGTCG
(SEQ ID NO: 36)
Reverse: ACGTCCTCCAGGATTATCTCCA
(SEQ ID NO: 37)

The proportion of infected cells was assessed by flow cytometry. Cells were fixed and permeabilised with 3% paraformaldehyde and 0.1% saponin, respectively. DENV envelope (E) protein was stained with mouse monoclonal 4G2 antibody (ATCC) and AlexaFluor488 anti-mouse secondary antibody. Flow cytometry analysis was done on a BD FACS Canto II (BD Bioscience).

Unexpectedly, despite DENV-2 PDK53 inducing stronger antiviral immune responses, it had higher rates of uptake by HuH-7 cells compared to DENV-2 16681 (FIG. 5). This difference continued to be observed when DENV-2 PDK53 inoculum was reduced 10-fold. In contrast, DENV-3 PGMK30 and its parental strain DENV-3 16562 displayed the same rate of viral uptake in host cells. Furthermore, DENV-2 PDK53 showed a higher viral replication rate compared to DENV-2 16681. This was determined by measuring the percentage of cells that harbored DENV E-protein, detected using flow cytometry. DENV-2 PDK53 showed a higher percentage of infected cells compared to DENV-2 16681 at the same amount of MOI from Day 1 to 3 (FIG. 6). In contrast, DENV-3 PGMK30 showed a reverse trend and displayed lower percentage of infected cells compared to DENV-3 16562. Results here show that successfully attenuated vaccines, as exemplified by DENV-2 PDK53, have greater uptake and replication rate.

Results above demonstrate that the DENV-2 PDK53 and DENV-3 PGMK30 are polarized in their properties that influence plaque morphologies. While both attenuated strains were selected for their formation of smaller plaques compared to their parental strains, the factors leading to this outcome are different between the two.

Accordingly, this study has demonstrated that successfully attenuated vaccines, as exemplified by DENV-2 PDK53 in this study, form smaller plaques due to induction of strong innate immune responses, which is triggered by fast viral uptake and spread of infection. In contrast, DENV-3 PGMK30 form smaller plaques due to its slower uptake and growth in host cells, which inadvertently causes lower up-regulation of the innate immune response.

Based on the results presented in the foregoing Examples, the present invention provides a new strategy to prepare a LAV, which expedites the production process and ensures the generation of effectively attenuated viruses fit for vaccine use.

Full text: Click here
Patent 2024
Antibodies, Anti-Idiotypic Antigens, Viral Antiviral Agents Canis familiaris Cells Common Cold Cowpox virus Dengue Fever Dental Plaque DNA, Complementary DNA Replication Flow Cytometry GAPDH protein, human Genes Homo sapiens Immunity, Innate Infection Interferon-alpha Monoclonal Antibodies Mus Oligonucleotide Primers paraform Parent Pellets, Drug Pronase Proteins Real-Time Polymerase Chain Reaction Response, Immune RNA, Viral Saponin Senile Plaques Strains Vaccines Virus Virus Diseases Virus Replication

Example 8

Based on the differences in immune responses and protection, several multiple regressions were used to test whether antigen-responsive CD4 or CD8 T cell numbers (BAL) or frequencies (PBMC) after immunization were associated with disease severity (CFU; FIG. 23D). Results indicate that when controlling for all vaccine routes, peak CD4 T cells in the BAL and PBMC, and peak CD8 T cells in the BAL do not have a significant association with total CFU. Of note, in PBMC, higher peak CD8 frequencies are associated with lower total CFU after controlling for route. Overall, these results show that the route of BCG vaccination is the primary determinant of Mtb control with IV being the only route that was significantly protective against TB (FIG. 18F).

Full text: Click here
Patent 2024
Antigens Bacteria BCG Vaccine CD4 Positive T Lymphocytes CD8-Positive T-Lymphocytes Immunization Response, Immune Vaccines

Example 9

Determination of the binding of recombinant ACE2-Fc was performed to confirm the native, physiologically-relevant folding of the S RBD after expression from the hAd5 S-Fusion+N-ETSD vaccine candidate. S RBD binds ACE2 during the course of SARS-CoV-2 infection and an effective neutralizing antibody prevents this interaction and thus infection. Such a neutralizing antibody is more likely to be effective if raised in response to S presented in the correct conformation. In addition to enhancement of cell surface expression, the optimized S allows for proper protein folding. It was found that compared to either hAd5 S-WT or hAd5 S-Fusion (FIGS. 11a and b, respectively), ACE2-Fc binding to S RBD expressed from the hAd5 S-Fusion+N-ETSD was clearly enhanced (FIG. 11c). Anti-RBD antibody binding studies (FIG. 1 if j) performed with the same experiment, confirmed the enhanced surface expression findings noted by ACE2-Fc binding. These findings of conformationally correct and enhanced S RBD expression, important for production of neutralizing antibodies, directed us to elect the hAd5 S-Fusion+N-ETSD vaccine candidate for clinical trials.

Full text: Click here
Patent 2024
ACE2 protein, human Antibodies, Anti-Idiotypic Antibodies, Neutralizing Antibody Formation Cells COVID 19 Infection Transfection Vaccines

Top products related to «Vaccines»

Sourced in United States, United Kingdom, Germany, China
BNT162b2 is a vaccine candidate developed by Pfizer and BioNTech. It is a messenger RNA (mRNA) vaccine that encodes the SARS-CoV-2 spike protein. The core function of BNT162b2 is to induce an immune response against the SARS-CoV-2 virus.
Sourced in United States, China, United Kingdom, Germany, Australia, Japan, Canada, Italy, France, Switzerland, New Zealand, Brazil, Belgium, India, Spain, Israel, Austria, Poland, Ireland, Sweden, Macao, Netherlands, Denmark, Cameroon, Singapore, Portugal, Argentina, Holy See (Vatican City State), Morocco, Uruguay, Mexico, Thailand, Sao Tome and Principe, Hungary, Panama, Hong Kong, Norway, United Arab Emirates, Czechia, Russian Federation, Chile, Moldova, Republic of, Gabon, Palestine, State of, Saudi Arabia, Senegal
Fetal Bovine Serum (FBS) is a cell culture supplement derived from the blood of bovine fetuses. FBS provides a source of proteins, growth factors, and other components that support the growth and maintenance of various cell types in in vitro cell culture applications.
Sourced in United States, Austria, Japan, Cameroon, Germany, United Kingdom, Canada, Belgium, Israel, Denmark, Australia, New Caledonia, France, Argentina, Sweden, Ireland, India
SAS version 9.4 is a statistical software package. It provides tools for data management, analysis, and reporting. The software is designed to help users extract insights from data and make informed decisions.
Sourced in United States, United Kingdom
MRNA-1273 is an mRNA-based vaccine candidate developed by Moderna. It is designed to encode the prefusion stabilized full-length spike protein of SARS-CoV-2. The core function of MRNA-1273 is to generate an immune response against the SARS-CoV-2 virus.
Sourced in United States, Austria, Japan, Belgium, United Kingdom, Cameroon, China, Denmark, Canada, Israel, New Caledonia, Germany, Poland, India, France, Ireland, Australia
SAS 9.4 is an integrated software suite for advanced analytics, data management, and business intelligence. It provides a comprehensive platform for data analysis, modeling, and reporting. SAS 9.4 offers a wide range of capabilities, including data manipulation, statistical analysis, predictive modeling, and visual data exploration.
Sourced in United States, China, United Kingdom, Germany, France, Australia, Canada, Japan, Italy, Switzerland, Belgium, Austria, Spain, Israel, New Zealand, Ireland, Denmark, India, Poland, Sweden, Argentina, Netherlands, Brazil, Macao, Singapore, Sao Tome and Principe, Cameroon, Hong Kong, Portugal, Morocco, Hungary, Finland, Puerto Rico, Holy See (Vatican City State), Gabon, Bulgaria, Norway, Jamaica
DMEM (Dulbecco's Modified Eagle's Medium) is a cell culture medium formulated to support the growth and maintenance of a variety of cell types, including mammalian cells. It provides essential nutrients, amino acids, vitamins, and other components necessary for cell proliferation and survival in an in vitro environment.
Sourced in United States, France, Denmark
AddaVax is a squalene-based oil-in-water emulsion adjuvant. It is designed to enhance the immune response to vaccines.
Sourced in United States, Germany
Comirnaty is a nucleoside-modified messenger RNA (modRNA) vaccine used for the prevention of COVID-19 disease caused by SARS-CoV-2 virus. The vaccine consists of a lipid nanoparticle formulation that encapsulates a single-stranded, 5'-capped messenger RNA (mRNA) that encodes the viral spike (S) protein of SARS-CoV-2.
Sourced in United States, Austria, Germany, Poland, United Kingdom, Canada, Japan, Belgium, China, Lao People's Democratic Republic, France
Prism 9 is a powerful data analysis and graphing software developed by GraphPad. It provides a suite of tools for organizing, analyzing, and visualizing scientific data. Prism 9 offers a range of analysis methods, including curve fitting, statistical tests, and data transformation, to help researchers and scientists interpret their data effectively.
Sourced in China, United States, Germany, Japan, Canada, United Kingdom, France, Italy, Spain
BALB/c mice are an inbred strain of laboratory mice commonly used in scientific research. They are a widely utilized model organism for various experiments and studies. The BALB/c strain is known for its susceptibility to certain diseases and its ability to produce high levels of antibodies, making it a valuable tool for immunological research.

More about "Vaccines"

Vaccines are essential biological preparations that provide active acquired immunity against infectious diseases.
These immunizations work by exposing the body's immune system to an antigen, triggering the production of antibodies and other protective responses.
Vaccine research and development is a rapidly evolving field, with ongoing efforts to improve efficacy, safety, and accessibility.
From live-attenuated and inactivated vaccines to subunit, conjugate, and mRNA-based formulations (e.g., BNT162b2, MRNA-1273, Comirnaty), researchers are constantly innovating to combat a wide range of pathogens.
The MeSH term 'Vaccines' encompasses a diverse array of vaccine types, including those leveraging technologies like FBS (fetal bovine serum) and AddaVax adjuvants.
Analyzing vaccine research protocols using AI-driven platforms like PubCompare.ai can help identify optimal solutions and streamline the development process.
By navigating the vast landscape of vaccine literature, pre-prints, and patents, researchers can make informed decisions and drive progress in this critical field.
Staying up-to-date on the latest vaccine research and innovations is crucial.
Tools like SAS version 9.4 and Prism 9 statistical software can assist in data analysis, while cell culture media like DMEM provide the necessary nutrients for vaccine development and testing in models like BALB/c mice.
By leveraging these resources and technologies, the scientific community can continue to advance the prevention and control of infectious diseases, reducing the burden of illness, disability, and death worldwide.