Vegfr3 protein, human
It plays a crucial role in lymphatic vessel development and maintenance.
Vegfr3 is expressed on lymphatic endothelial cells and is essential for their proliferation, migration, and survival.
It's invovled in the regulation of lymphangiogenesis, the process of new lymphatic vessel formation.
Vegfr3 signaling is implicated in various physiological and pathological conditions, including tumor lymphangiogenesis and metastasis.
Understanding the function and regulation of Vegfr3 protein is an active area of research in the fields of vascular biology, oncology, and regenerative medicine.
Most cited protocols related to «Vegfr3 protein, human»
The established VEGFR3 homology model was then used for the following docking study. A sphere containing the key residues in VEGFR3 (including CYS930, ALA877, VAL859, PHE929, LEU1044, LYS879, ASP1055, CYS1054, VAL910, GLU896, ILE899, and LEU900) was defined as the binding site. GOLD 5.0 was used for molecular docking since it was an excellent docking program. Gold Score was selected as the score function; number of dockings was set as 30; and the other parameters were set as default. The docking results were shown in Fig.
Sufficient RNA was isolated from 308 FFPE specimens followed by qRT-PCR, as previously described [31 (link)]. From each FFPE section or macrodissected tissue fragment (10 μm thick), RNA was isolated using a standardized fully automated isolation method for total RNA from FFPE tissue, based on silica-coated magnetic beads (VERSANT Tissue Preparation Reagents, Siemens Healthcare Diagnostics, Tarrytown, NY, USA) in combination with a liquid handling robot, as previously described in detail [22 (link)]. The method involves extraction-integrated deparaffinization and DNase I digestion steps. DNA-free total RNA was eluted with 100 μL elution buffer and stored at -80°C.
One-step qRT-PCR was applied for the relative quantification of VEGF-A, VEGF-B, VEGF-C, VEGFR1, VEGFR2 and VEGFR3 mRNA expression, by using gene-specific TaqMan® based assays. Forty cycles of nucleic acid amplification were applied and the cycle threshold (CT) values of the target genes were identified. CT values were normalized by subtracting the CT value of the housekeeping gene RPL37A (ribosomal protein L37a) from the CT value of the target genes (ΔCT). RNA results were then reported as 40-ΔCT values, which correlate proportionally with the mRNA expression level of the target genes. For assessment of DNA contamination, a qPCR analysis specific for the PAEP gene (progestagen-associated endometrial protein) was performed, without the preceding reverse-transcription step. Samples were considered to be substantially free of DNA when CT values above 38 were detected. In the case of DNA contamination, samples were manually re-digested with DNase I. The quantity of RNA following isolation (yield) was checked by measuring RPL37A expression as a surrogate marker for amplifiable mRNA. Samples with average RPL37A CT values <32 were considered to have sufficient RNA and were eligible for analysis. Only 3 of the 311 extracted samples (1%) had an average RPL37A CT value of ≥32 and were, therefore, excluded from further analysis, resulting in successful RNA extraction from 99% of the samples.
Expression of the target genes, as well as the reference gene RPL37A, was assessed in triplicate by qRT-PCR using the SuperScript III PLATINUM One-Step Quantitative RT-PCR System with ROX (Invitrogen, Karlsruhe, Germany) in an ABI PRISM 7900HT (Applied Biosystems, Darmstadt, Germany) [21 (link)]. The lengths of the amplicons detected by the VEGF-A, VEGF-B, VEGF-C, VEGFR1, VEGFR2, VEGFR3 and RPL37A assays were 80 bp, 81 bp, 77 bp, 85 bp, 68 bp, 70 bp and 65 bp, respectively, with PCR efficiencies [E = 1(10-slope)] of 85.5, 110.3, 88.2, 95.7, 94.3, 84.7 and 86.0%, respectively. A commercially available human reference RNA (Stratagene qPCR Human Reference Total RNA, Agilent Technologies, Waldbronn, Germany) was used as positive control. No-template controls were assessed in parallel to exclude contamination.
The Primer/Probe (FAM/TAMRA-labeled) sets used for amplification of the target and reference genes were the following (5' -> 3'):
VEGF-A Probe CACCATGCAGATTATGCGGATCAAACCT
Forward Primer GCCCACTGAGGAGTCCAACA
Reverse Primer TCCTATGTGCTGGCCTTGGT
VEGF-B Probe CACATCTATCCATGACACCACTTTCCTCTGG
Forward Primer TGGCAGGTAGCGCGAGTAT
Reverse Primer CCCTGTCTCCCAGCCTGAT
VEGF-C Probe TTGAGTCATCTCCAGCATCCGAGGAAA
Forward Primer CCACAGATGTCATGGAATCCAT
Reverse Primer TGCCTGGCTCAGGAAGATTT
VEGFR1 Probe TGCTGTCGCCCTGGTAGTCATCAAACA
Forward Primer CATGGGAGAGGCCAACAGA
Reverse Primer AACCTTTGAAGAACTTTTACCGAATG
VEGFR2 Probe TCTTGGCATCGCGAAAGTGTATCCACA
Forward Primer TTCCAAGTGGCTAAGGGCAT
Reverse Primer CGTGCCGCCAGGTCC
VEGFR3 Probe TGCCTGCTTCCCTGGGTAGTCCC
Forward Primer GCACCCACTTACCCCGC
Reverse Primer GAGTTTAACTCAGGTGTCACCTTTGA
RPL37A Probe TGGCTGGCGGTGCCTGGA
Forward Primer TGTGGTTCCTGCATGAAGACA
Reverse Primer GTGACAGCGGAAGTGGTATTGTAC
Most recents protocols related to «Vegfr3 protein, human»
EXAMPLE 5
Summary
OPCML, a GPI anchored tumor suppressor gene is inactivated by somatic methylation in multiple cancers. We previously identified this gene by LOH mapping and demonstrated that it was inactivated by somatic methylation in 80% of ovarian cancers. Restoring OPCML expression by stable transfection suppressed in-vitro growth and in-vivo tumorigenicity. We investigated the role of OPCML in growth signaling pathways. In SKOV-3 and PEO1, ovarian cancer cell lines with no expression of OPCML, we demonstrated that OPCML negatively regulates a specific repertoire of receptor tyrosine kinases (RTKs) EPHA2, FGFR1, FGFR3, HER2 and HER4, and reciprocally, OPCML siRNA knockdown in normal ovarian surface epithelial cells up-regulates these same RTKs. OPCML has no effect on the RTKs EPHA10, FGFR2, FGFR4, EGFR, HER3, VEGFR1 and VEGFR3. Example immunoprecipitation experiments revealed that OPCML binds to EphA2, FGFR1 and HER2 extracellular domains with no such interaction to EGFR, thus OPCML binds directly to RTKS that it negatively regulates. We demonstrate that OPCML is located exclusively in the raft membrane fraction and sequesters RTKs that it binds to the raft fraction, leading to polyubiquitination and proteosomal degradation via a cav-1 endosomal mechanism resulting in systems depletion of this specific RTK repertoire, that does not occur with RTKs that OPCML does not bind. We demonstrate that OPCML abrogates EGF mediated phosphorylation of FGFR1, HER2 and EGFR and the downstream phosphosignaling of pErk and pAKT.
A recombinant modified OPCML-like protein without a GPI anchor, signal peptide or glycosylation was constructed and expressed in E. coli. This rOPCML tumor suppressor protein therapeutic caused growth inhibition by apoptosis in 6/7 ovarian cancer cell lines tested, with no effect on OPCML expressing normal ovarian surface epithelium, by an identical mechanism to the transfected normal protein. rOPCML was then injected intraperitoneally twice weekly in two murine intraperitoneal models of ovarian cancer (nude mouse A2780 and SKOV3) and demonstrated profound inhibition of tumour weight, ascites volume and peritoneal dissemination compared with BSA control.
Mechanism of OPCML TSG Function
OPCML is a non-transmembrane, external lipid leaflet GPI-anchored protein, and is frequently lost from cells by somatic inactivation of the gene. We hypothesised that it may mediate its tumour suppressor properties via interactions with transmembrane signalling proteins, and so we analysed the effect of receptor tyrosine kinase (RTK) growth factor stimulation on OPCML gene expression. Treatment of 4/4 ovarian cancer cell lines with EGF or FGF 1/2 resulted in rapid OPCML RNA and concomitant protein expression (data not shown) suggesting that OPCML may be a putative suppressor-type immediate-early negative feedback regulator.
Stable transfection of OPCML in the basal unstimulated or ligand-stimulated SKOV-3 ovarian cancer cells, resulted in the profound protein down-regulation of a specific repertoire of RTKs: EPHA2; FGFR1; FGFR3; HER2 and HER4 (
Negative Regulation of Specific RTKs by OPCML is Related to Direct Protein Interaction
We further explored as examples EPHA2, FGFR1 and HER2, RTKs that are strongly inactivated at the protein level upon OPCML expression. We also analysed EGFR as an example of a protein that is unaffected by OPCML. Immunoprecipitation (IP) experiments demonstrated protein/protein interactions with EPHA2, FGFR1 and HER2, but no such binding to EGFR (
Downstream Signalling
Upon acute ligand stimulation, OPCML expression led to profound abrogation of phospho-FGFR1-Y766, phospho-HER2-Y1248 and, also, phospho-EGFR-Y1173. Whilst EGFR total protein down-regulation is NOT observed, presumably due to the absence of an RTK ECD physical interaction with OPCML, the consequence of OPCML mediated loss of the activating dimerisation partners of EGFR, (HER2 and HER4), coupled with the continuing availability of the HER3 family member (that results in an inhibitory dimerisation with EGFR), explain the down-regulation of EGFR signalling even though total EGFR levels are unaffected (
Analysis of downstream signalling demonstrated abrogation of phospho-ERK 1 & 2 (T202 & T204) and phospho-AKT-S473 (
OPCML-Mediated RTK Degradation Mechanism
Using HER2 as a paradigm molecule of OPCML-RTK regulation, we found that the available HER2 in OPCML expressing cells was sequestered in the detergent resistant membrane (DRM) fraction. In the OPCML non-expressing line, HER2 was found equally distributed between the DRM and the detergent soluble (non-raft) fractions. The total level of EGFR was not affected by the expression of OPCML and its distribution showed a much less pronounced but discernible shift to the DRM fraction (
This analysis demonstrated that OPCML expression was associated with increased ubiquitination of HER2 (that binds OPCML), which was strongly increased upon EGF stimulation (
These findings suggest that OPCML-mediated negative regulation of this specific repertoire of RTKs is the result of direct binding of OPCML to the ECD of that RTK. These multiple but specific binding events result in ‘lipid-raft’ sequestration, enhanced ubiquitination, and a switch away from clathrin-mediated endocytosis to proteasomal degradation of those specific RTKs negatively regulating their signaling through reducing their protein level. Our data, in the context of very recent publications (Howes et al (2010) J. Cell Biol. 190(4): 675-91; Howes et al (2010) Curr. Opin. Cell Bio. 22(4): 519-527)), would suggest that CLIC/GEEC bulk internalization route is a strong candidate pathway for OPCML-mediated degradation of HER2 and that this is linked to RTK inactivation and the observable strong tumour suppressor phenotype of OPCML.
Recombinant OPCML (r-OPCML) inhibits tumour growth in vitro and in vivo Purified recombinant human OPCML domain 1-3 protein (r-OPCML) (
In view of these in-vitro findings, we proceeded to determine whether r-OPCML protein had potential and relevance as an in-vivo tumour suppressor therapy. Mice with either SKOV-3 or A2780 cancer cells injected intraperitoneally (IP), after tumour establishment, received twice-weekly IP injections of either 1 ml (10 μM) bovine serum albumin (BSA) or 1 ml (10 μM) r-OPCML. The experiment was terminated after 3 weeks due to obvious extensive IP tumour growth and deteriorating condition of BSA-treated control animals whereas r-OPCML treated mice remained well (
EXAMPLE 1
Summary
Epithelial ovarian cancer (EOC) is the leading cause of death from gynecologic malignancy. Its molecular basis is poorly understood but involves dysfunction of p53 (Hall et al (2004) “Critical evaluation of p53 as a prognostic marker in ovarian cancer”. Expert Reviews in Molecular Medicine 6: 1-20), BRCA1 and −2 (Radice (2002) “Mutations of BRCA genes in hereditary breast and ovarian cancer” J Exp Clin Cancer Res. 21(3 Suppl): 9-12), PI3K (Meng et al (2002) “Role of PI3K and AKT specific isoforms in ovarian cancer cell migration, invasion and proliferation through the p70S6K1 pathway” Cellular Signaling 18(12): 2262-2271), and growth factor and angiogenic signaling pathways (Maihle et al (2002) “EGF/ErbB receptor family in ovarian cancer” Cancer Treat Res. 107: 247-58; Le Page et al (2006) “Gene expression profiling of primary cultures of ovarian epithelial cells identifies novel molecular classifiers of ovarian cancer” British Journal of Cancer 94: 436-445; Birrer et al (2007) “Whole genome oligonucleotide-based array comparative genomic hybridization analysis identified Fibroblast Growth Factor 1 as a prognostic marker for advanced-stage serous ovarian adenocarcinomas” Journal of Clinical Oncology 25(16): 2281-2287; Trinh et al (2009) “The VEGF pathway and the AKT/mTOR/p70S6K1 signaling pathway in human epithelial ovarian cancer” British Journal of Cancer 100: 971-978; and Lafky et al (2008) “Clinical implications of the ErbB/epidermal growth factor (EGF) receptor family and its ligands in ovarian cancer” Biochim Biophys Acta. 1785(2): 232-65).
We previously identified opioid binding protein cell adhesion molecule (OPCML) as epigenetically inactivated in 83% of ovarian cancers and demonstrated that it was a functional tumor suppressor in vitro and in vivo (Sellar et al (2003) “OPCML at 11q25 is epigenetically inactivated and has tumor-suppressor function in epithelial ovarian cancer” Nat. Genet. 34(3): 337-43). Here, we show that OPCML interacts with and downregulates HER2 and FGFR1 proteins, leading to inhibition of those signaling pathways, with consequent inhibition of in-vitro growth in SK-OV-3 ovarian cancer cells. siRNA knockdown of physiologically expressed OPCML in OSE-C2 normal ovarian surface epithelial cells strongly upregulated HER2 and FGFR1. OPCML sensitized HER2 positive ovarian cancer cells to lapatinib and trastuzumab in vitro and was a good prognostic indicator in patients with HER2 positive ovarian cancer. The finding that OPCML actively mediates negative regulation of multiple RTK pathways opens novel research avenues in normal cell and cancer biology.
Experimental Procedures
Antibodies
The polyclonal goat and monoclonal mouse anti-OPCML antibodies were purchased from R&D. Anti-HER2 antibodies were purchased from Calbiochem (anti-ErbB2 (Ab-4) and (3B5) mouse MAbs). Anti-EGFR antibody was from R&D Systems. Anti-EGFR goat pAb-cat no AF-231. Phospho-specific EGFR and HER2 antibodies were purchased from AbCam. Anti-HA antibody was from Santa Cruz Biotechnology (Santa Cruz CA) HRP-conjugated secondary antibodies were from Dako. Alexa-Fluor 488 goat anti-rabbit IgG, Alexa-Fluor 555 goat anti-mouse were from Molecular Probes (Eugene, OR).
Cell Culture
The SK-OV-3 derived OPCML expressing lines (SKOBS-3.5, BKS2.1 and empty vector SKOBS-V1.2) were described previously (Sellar et al, 2003). Stimulation time courses were undertaken with 50 ng/ml human recombinant epidermal growth factor (hrEGF-Promega) following serum-starvation overnight.
Plasmid Constructs
The OPCML cDNA expression plasmids in pcDNA3.1zeo previously described (Sellar et al, 2003) were used for transient transfections. The cDNAs encoding all three Ig domains and domains 1 and 2 were generated by PCR and introduced into the bacterial GST-fusion expression vector pGEX-6P-1 (GE-Healthcare) and sequenced to confirm their fidelity. Vector pIRES-AcGFP1 (Clontech) was employed in transient transfections of OPCML complete cDNA. The HA-tagged Ubiquitin pRK5-HA-Ubiquitin-WT was obtained from Dr. Luke Gaughan, Newcastle University, and the EGFR and HER2 cDNA in pcDNA-3.1zeo was provided by Prof. Bill Gullick, University of Kent. FGFR1 cDNA clones was provided by Prof. Graeme Guy, FGFR1 extracellular domain clones provided by Prof. Kyung Hyun Kim.
Expression of Recombinant OPCML and FGFR Ectodomain
Recombinant proteins were produced in the BL21 bacterial cell line (Promega) as described.
Solubilisation and Refolding of Inclusion Bodies
Inclusion bodies were solubilised in denaturation buffer (8 M Urea, 20 mM Tris-HCl, pH 8.0, 150 mM NaCl and 10 mM DTT) to a final concentration of 5 mg/ml. The suspension was centrifuged and filtered through 0.45 μm membrane filter. Refolding of proteins was undertaken by extensive dialysis against cold PBS in 10 kDa MWCO dialysis tubing. The suspension was then centrifuged and filtered to remove insoluble protein precipitates and soluble aggregates. Protein concentrations were monitored throughout the experiment with protein assay reagent (Bio-Rad Laboratories, California) using bovine serum albumen as a standard
RNA Extraction and cDNA Synthesis
Total RNA was extracted from cell pellets using TriReagent® (Sigma-Aldrich, Dorset, UK) following their protocol. Synthesis of cDNA was from 1 μg of RNA template with OligodT15 primers (Promega, UK), by Moloney-Murine Leukaemia Virus Reverse Transcriptase (MMLV-RT) (Promega, UK) and cDNA was stored at −20° C.
qRT-PCR
Primers were designed using PerlPrimer v.1.14 open source software. Custom oligonucleotide synthesis was carried out by Invitrogen, UK. Quantitative reverse-transcription PCR (qRT-PCR) analysis of gene expression was carried out on an Applied Biosystems 7900HT thermal cycler using SYBR green I technology. Premixed qPCR reagent, Platinum® Quantitative PCR SuperMix-UDG with ROX (Invitrogen, UK), was used for amplification. The expression of specific genes was normalized to the expression of the endogenous control gene HPRT1.
Co-Immunoprecipitation and Pull-Down Assays
Cell layers were washed in PBS and incubated for 30 minutes in lysis buffer (1% TritonX-100, 10 mM Tris pH8.0, 150 mM NaCl, 2.5 mM MgCl2, 5 mM EGTA, 1 mM Na3VO4, 50 mM NaF and protein inhibitor cocktail (Roche). Cell Lysates were then cleared by centrifugation at 13,000 rpm for 20 minutes at 4° C. and aliquots containing equal amounts of protein were incubated with the appropriate antibody before addition of secondary antibody conjugated to sepharose resin. Beads were then washed 3× with lysis buffer and eluted by heating for 5 minutes in 50 μl of SDS sample buffer.
Pull-down assays were performed using recombinant GST-OPCML fusion proteins bound to magnetic glutathione beads (Promega). Cell lysates prepared as for immunoprecipitation, proteins produced using TNT in vitro Rabbit reticulocyte lysate expression system (Promega) or expressed in bacteria were used analysed for interactions.
Immunofluorescent Microscopy
Cells grown on glass slides were fixed in 4% paraformaldehyde for 10 minutes at room temperature. Cells were then permeabilized for 20 minutes with PBS containing 0.2% Saponin prior to blocking in PBS containing 10% goat serum, 2% albumen 2% fetal calf serum for 1 h. Slides were incubated with appropriate combinations of mAb OPCML, mAb HER2 and pAb EGFR primary antibodies for 1 h at room temperature, followed by incubation for 1 h with animal anti-mouse Alexa-555 (OPCML), animal anti-rabbit Alexa 488 (HER2) before mounting and imaging on a Zeiss LSM 510 confocal microscope.
siRNA Knockdown
Endogenous OPCML was knocked down in OSE-C2 cells by transient transfection of a specific pool of 3 siRNAs (Stealth knockdown-Invitrogen) using lipofectamine RNAiMAX reagent.
MTT Proliferation Assay
Cell proliferation assays were carried out in quadruplicate using the thiazolyl blue tetrazolium bromide (MTT) assay. Cells were plated out in 96-well plates at a density of 2,000 cells/well and cultured in low serum medium (0.25% FCS) or low serum medium supplemented with 50 ng/ml EGF. At appropriate time points, the medium was removed from cells and replaced with 100 μl PBS and 11 μl of 5 mg/ml MTT (w/v). Cells were incubated in this solution for 2 hours at 37° C. and the purple fomazan product was solubilised in 100 μl DMSO, resuspended and read on plate reader at 540 nm.
Statistical Analyses
Data are expressed as mean±SEM. Differences were analysed by Fishers exact or Student's t test. P<% 0.05 was considered significant. Progression-free survival curves were estimated using the Kaplan-Meier method and analysed by the log-rank test. Correlation between the mRNA expression indices of genes was analysed using Pearson's correlation analysis.
Statistical Analysis and Mining of Tothill Data
Gene expression data on the 251 epithelial ovarian cancers within 285 ovarian tumors (published by Tothill et al (2008) Clinical Cancer Research 14: 5198) were obtained from the Gene Expression Omnibus (GEO). OPCML, EGFR and ERBB2 gene expression Pearson correlation coefficients were computed for all probe-sets. For survival analyses included all patients followed up to 5-years, and excluded patients with borderline/low malignant potential histology in view of their distinct natural history compared to invasive tumors. The effect of gene expression (probe: OPCML 206215_at, ERBB2 210930_s_at) on survival was assessed as a continuous variable using Cox-regression, and after transformation to categorical variables by median dichotomization or quartiles using Kaplan-Meier curves and the log-rank test.
Results
OPCML is Rapidly Induced by EGF and FGF 1/2
Serum starved SK-OV-3 cells (low OPCML expression) {Sellar, 2003 #2} were stimulated with 50 ng/ml EGF or 10 ng/ml FGF. EGF induced OPCML rapidly, achieving maximal mRNA expression at 30 min, with return to basal levels of expression by 60 min (
OPCML Interacts with HER2 and FGFR1 Via Different Binding Sites
To determine if OPCML interacted with RTKs, co-immunoprecipitation (co-IP) using an OPCML polyclonal antibody was performed in a SK-OV-3 cell lines stably transfected with OPCML (BKS2.1) and vector-only controls (SKOBS-V1.2). Other OPCML stable transfected clones have been reported previously and behave identically as BKS2.1 (Sellar et al, 2003). Immunoblotting with anti-HER2 and anti-EGFR demonstrated that both interacted with OPCML, however reciprocal Co-IP using anti-HER2 and anti-EGFR antibodies confirmed the Co-IP only for OPCML with HER2 and not with EGFR (
OPCML Downregulates HER2 and FGFR1, and Abrogates Phosphorylation of HER and EGFR, Together with Downstream Signaling of the MEK-ERK Cascade
We then explored the functional consequences of these OPCML-RTK interactions. OPCML expressing BKS2.1 demonstrated strong downregulation of HER2 but not EGFR protein as compared with SKOBS-V1.2 (
We explored the impact of OPCML on cellular RTK phospho-activation and signaling in ovarian cancer cells. Phosphorylation of 2 analogous autophosphorylation sites, HER2-Y1248 and EGFR-Y1173 was abrogated in BKS2.1 (
To explore the physiological role of OPCML, normal epithelial cell line OSE-C2 (OPCML expressing) was transfected with OPCML siRNA, which abolished OPCML protein. This resulted in a strong induction of HER2 and FGFR1 (but not EGFR or FGFR2) and phospho activation of HER2-Y1248 and EGFR-Y1173 levels (
OPCML Prevents HER2/EGFR Hetero Dimer Formation and Reduces EGF Receptor Availability.
SKOBS-V1.2 and BKS2.1 cell extracts were subjected to Co-IP and immunoblotted with antibodies as shown in
OPCML is Localized in the Detergent—Resistant (Raft) Membrane Fraction and Co-Localizes with EGFR and HER2 in Ovarian Cancer Cells.
To define the mechanism of OPCML-based RTK degradation, we used HER2 as a paradigm for further study. Initially, we investigated the influence of OPCML expression upon the mode of HER2 degradation linked to immunofluorescent confocal microscopy (IFM) analysis to examine the trafficking of OPCML and HER2 in cells. It has been previously reported that GPI-anchored proteins are sequestered in the detergent insoluble ‘lipid-raft’ membrane microdomain of cells (Sangiorgio et al (2004) Ital J Biochem 53(2): 98-111). To examine the localisation of OPCML (a GPI anchored protein) within lipid rafts, purified membrane of OPCML negative (SKOBS-V1.2) and positive (BKS-2.1) were subjected to solubilisation in 1% Triton X100 (for detailed method see Materials and Methods) and samples subjected to ultracentrifugation to separate detergent solubilised and insoluble proteins (
We next transfected both OPCML-expressing and non-expressing cell lines with a HA-tagged ubiquitin construct to analyze the levels of receptor ubiquitination +/−OPCML. Twenty four hours post transfection, cells were serum starved and subjected to acute stimulation with EGF (50 ng/ml) for 60 minutes. Consistent with the significant reduction in receptor levels, OPCML expression was associated with enhanced ubiquitination of HER2, which was strongly increased upon EGF stimulation (
OPCML Regulates/Predicts Response to Lapatinib in Ovarian and Breast Cancer.
The finding that OPCML could regulate activity of HER2 and EGFR led us to explore whether OPCML might influence the efficacy of anti-EGFR/HER2 therapeutics. OPCML transfected and control cells were pre-incubated with lapatinib, trastuzumab, cituximab, erlotinib and gefitinib. We then used EGF induced phospho-ERK activation as an assay to define the effectiveness of therapeutic inhibition. The dual inhibitor of EGFR and HER2 tyrosine kinases, lapatinib, exhibited strong OPCML mediated sensitization, reducing the effective concentration of lapatinib required to abolish the phospho-ERK signal by 10-fold for BKS2.1 compared with SKOBS-V1.2 (
We then investigated whether siRNA knockdown of physiological OPCML expression in normal OSE-C2 cells could affect sensitivity to lapatinib. We observed that the lapatinib-mediated reduction in phospho-ERK signal strength was significantly reversed by OPCML siRNA knockdown in these normal ovarian surface epithelial cells (
We next tested whether OPCML could be used to predict response to lapatinib in ovarian and breast cancer. Histology was obtained by new biopsy of recurrent disease and TTP (time in months to progression from start of therapy until progression) assessed. Docetaxel and anthracyclines were administered for a maximum of 6 cycles and capecitabine was administered until disease progression or unacceptable toxicity. HER2 immunohistochemistry (IHC) was performed using the Dako Herceptest kit: 3+ in all cases. The results are shown in Table 1 below.
In view of the strong tumor suppressor role of OPCML and these findings, we explored whether its expression was related to ovarian cancer prognosis. We used a recently published expression microarray dataset of 251 ovarian cancers (Tothill et al, 2008) with full clinical annotation and follow-up of patients for progression free survival (PFS). The relationship between OPCML mRNA expression and PFS was examined for all 251 ovarian cancer patients with epithelial ovarian cancers in the dataset. Overall high OPCML expression demonstrated a significant association with better survival, as shown by the Kaplan-Meier curve in
A possible explanation for this clinical data is that strong OPCML expression (in the context of strong HER2 expression) regulates HER2 protein level/activity and abrogates HER2 pro-oncogenic signaling with consequent better patient prognosis, whereas tumors with weak OPCML expression and strong HER2 expression have unrestrained HER2 pro-oncogenic signaling and consequently poor prognosis.
EXAMPLE 2
To complement the findings described in Example 1, we expressed and purified recombinant human OPCML and assessed its affect on in vitro tyrosine kinase signaling and cell growth. The results are in agreement with those in Example 1.
EXAMPLE 3
Having established that OPCML is a prognostic factor in strongly HER2 expressing ovarian cancer (see Example 1), we assessed whether its expression was related to the prognosis of other cancers. This was done by a Kaplan Meier analysis of overall survival according to OPCML dichotomized survival.
instructions for the respective ELISA Kit, summarized in
sample are determined by comparing it to a serially diluted standard solution
with a defined protein concentration by optical density using a plate reader
(Infinite M Plex, TECAN, Männedorf, Switzerland). For this, cell-seeded
scaffolds were prepared as described previously and incubated in the presence or
absence of fibrin for 1 and 7 days.
Summarized proteins and ELISA Kits.
Protein | Full name | Kit | Manufacturer | Range | Sensitivity |
---|---|---|---|---|---|
HF1a | Hypoxia-·lnduced factor 1-alpha | Human HIFIA ELiSA kit | Invitrogen, thermo Fisher Scientific Waltham, MA, USA | 81.92-20.000 pg/mL | <30 pg/mL |
PROX1 | Prospero homobox 1 | PROX1 ELISA kit | ELAab Science lnc. Housto, Texas, USA | 0 156-10 ng/mL | <0.057 ng/mL |
VEGFA | Vascular endothelial growth factor A | Human VEGF-A cell Lysates ELISA kit | Invitrogen, thermo Fisher Scientific Waltham, MA, USA | 8.23-6000 pg/mL | <10 pg/mL |
VEGFB | Vascular endothelial growth factor B | Human VEGF-B ELISA kit | Invitrogen, thermo Fisher Scientific Waltham, MA, USA | 0.4-100 ng/mL | <0.4 ng/mL |
VEGFC | Vascular endothelial growth factor C | Human VEGF-C ELISA kit | Invitrogen, thermo Fisher Scientific Waltham, MA, USA | 0.23-15.0 ng/mL | <0.057 ng/mL |
FLTI (VEGFR) | FMS related receptor tyrosine kinase 1 | Human VEGFR1/Fit-1 quantikine ELISA kit | R&D Systems Minneapolis, MN, USA | 31.3-2.000 pg/mL | <8.46 pg/mL |
KDR (VEGFR2) | Kinase insert domain receptor | Human VEGFR2/QRD quantikine ELISA kit | R&D Systems Minneapolis, MN, USA | 78.1-5000 pg/mL | <11.4 pg/mL |
FLT4 (VEGFR3) | FMS related kinase 4 (FLT4) | Human sVEGFR3/Fit-4 Duoset ELISA kit | R&D Systems Minneapolis, MN, USA | 0.9 pg/mL-50ng/mL | <90 pg/mL |
Top products related to «Vegfr3 protein, human»
More about "Vegfr3 protein, human"
This member of the vascular endothelial growth factor receptor (VEGFR) family is expressed on lymphatic endothelial cells and plays a vital role in their proliferation, migration, and survival.
Vegfr3 is a key regulator of lymphangiogenesis, the process of new lymphatic vessel formation, which has important implications in various physiological and pathological conditions, including tumor lymphangiogenesis and metastasis.
Uncover the latest advancements in Vegfr3 protein research with the help of PubCompare.ai's cutting-edge AI-driven platform.
Explore a wide range of protocols from literature, pre-prints, and patents, and utilize our intelligent comparisons to enhance reproducibility and optimize your research.
Discover the power of AI-driven analysis and unlock new insights into the functions and regulation of this fascinating protein.
Delve deeper into Vegfr3 research with the use of related techniques and tools, such as Goat-anti-human VEGF-R3 antibodies, Pyrrolidine dithiocarbamate (PDTC) as a potential therapeutic agent, DuoSet IC ELISA for quantifying Vegfr3 levels, Mini-PROTEAN TGX Precast Gels for protein separation, Alexa Fluor 488 phalloidin for visualizing actin cytoskeleton, Pierce BCA Protein Assay for protein quantification, Ab92742 as a Vegfr3-specific antibody, and Protein A/G agarose beads for immunoprecipitation.
Leverage the power of SimpleStep ELISA Kits to streamline your Vegfr3 protein research and uncover new insights.
Emrace the latest advancements in Vegfr3 protein research and unlock the secrets of lymphatic vessel development, tumor lymphangiogenesis, and beyond.
Join the thrilling journey of discovery with PubCompare.ai's AI-driven platform and elevate your research to new heights.