The largest database of trusted experimental protocols
> Chemicals & Drugs > Antibiotic > Gentamicin

Gentamicin

Gentamicin is a broad-spectrum aminoglycoside antibiotic used to treat serious bacterial infections.
It is effective against a variety of Gram-negative and some Gram-positive bacteria, including Escherichia coli, Klebsiella, Pseudomonas, and Staphylococcus.
Gentamicin works by inhibiting bacterial protein synthesis, leading to cell death.
It is commonly administered intravenously or intramuscularly and is known for its potent antibacterial activity and relatively low cost.
However, it can also have serious side effects, such as nephrotoxicity and ototoxicity, so its use requires careful monitoring.
Researchers in the field of Gentamicin study its pharmacokinetics, efficacy, and safety to optimize its clinical applications.

Most cited protocols related to «Gentamicin»

Human myoblasts were isolated from biopsies and cultivated as described previously [19 (link)] in a growth medium consisting of 199 medium and DMEM (Invitrogen Carlsbad, CA) in a 1:4 ratio, supplemented with 20% FCS (Invitrogen), 2.5 ng/ml hepatocyte growth factor (Invitrogen), 0.1 μmol/l dexamethasone (Sigma-Aldrich, St. Louis, MO, USA) and 50 μg/ml gentamycin (Invitrogen). The myogenic purity of the populations was monitored by immunocytochemistry using desmin as marker. Enrichment of myogenic cells was performed using an immunomagnetic cell sorting system (MACS; Miltenyi Biotec, Paris, France) according to the manufacturer's instructions. Briefly, cells were labeled with anti-CD56 (a specific marker of myoblasts) microbeads, and then separated in a MACS column placed in a magnetic field. Purification was checked by immunochemistry using a desmin marker. Differentiation was induced at confluence by replacing the growth medium with DMEM supplemented with 100 μg/ml transferrin, 10 μg/ml insulin and 50 μg/ml of gentamycin (Sigma-Aldrich).
Full text: Click here
Publication 2011
Biopsy Cells Culture Media Desmin Dexamethasone Gentamicin Hepatocyte Growth Factor Homo sapiens Immunocytochemistry Insulin Magnetic Fields Microspheres Myoblasts Myogenesis Population Group Transferrin

Protocol full text hidden due to copyright restrictions

Open the protocol to access the free full text link

Publication 2013
artenimol Atmosphere Biological Assay BLOOD Cell Nucleus Erythrocytes Gentamicin Heparin Sodium Parasitemia Parasites Percoll Pharmaceutical Preparations Schizonts Sorbitol Sulfoxide, Dimethyl Thermal Plasma Trophozoite Volumes, Packed Erythrocyte

Protocol full text hidden due to copyright restrictions

Open the protocol to access the free full text link

Publication 2008
5-fluoro-2'-deoxyuridine Agar Antibiotics, Antitubercular Bacteria BLOOD Brain Carbon Cysteine Equus caballus Erythromycin Gentamicin Glucose Heart Hematin Histidine Magnesium Chloride Plasmids Polysaccharides Serum Sodium Chloride Tetracycline Vitamin B12 Vitamin K3 Yeast, Dried
Caulobacter crescentus CB15N (8 (link)) and its derivatives were grown in PYE rich or M2G minimal medium (6 (link)) at 28°C. For cloning purposes, plasmids were propagated in Escherichia coli TOP10 (Invitrogen), which was cultivated in Luria-Bertani medium at 37°C. When appropriate, media were supplemented with antibiotics at the following concentrations (liquid/solid media for C. crescentus; liquid/solid media for E. coli; in μg/ml): spectinomycin (25/50; 50/100), kanamycin (5/25; 30/50), rifampicin (2.5/5; 25/50), gentamicin (0.5/5; 15/20), oxytetracycline (1/1; 12/12), chloramphenicol (2/1; 20/30), apramycin (10/60; 30/30). Plasmid transfer into C. crescentus was achieved by electroporation (6 (link)). Escherichia coli was transformed using a chemical method (9 (link)). The CB15N derivatives MT219 (▵vanR) and MT231 (▵vanA) were generated with the help of plasmids pMT422 and pMT487, respectively, following a previously described gene replacement protocol (10 (link)). Strains MT232, MT236 and MT240 were created by transforming strain CB15N with integration plasmids pMT627, pMT704 or pMT760, respectively, and selecting for homologous recombination of the constructs into the chromosomal vanA or xylX locus.
Publication 2007
Antibiotics, Antitubercular apramycin Caulobacter crescentus Chloramphenicol Chromosomes derivatives Electroporation Escherichia coli Genes Gentamicin Homologous Recombination Kanamycin Oxytetracycline Plasmids Rifampin Spectinomycin Strains

Protocol full text hidden due to copyright restrictions

Open the protocol to access the free full text link

Publication 2010
Biopsy Cloning Vectors DNA, Complementary Embryo Ethics Committees, Research Females Fibroblasts Gentamicin Homo sapiens Human Embryonic Stem Cells Hyperostosis, Diffuse Idiopathic Skeletal IGF1 protein, human Induced Pluripotent Stem Cells Infection KLF4 protein, human Lentivirus matrigel MECP2 protein, human Mice, Laboratory Neurons Oncogenes, myc POU5F1 protein, human Retroviridae Short Hairpin RNA SOX2 protein, human Stem Cells Synapsin I Vertebral Column

Most recents protocols related to «Gentamicin»

Example 12

Plant transformation—The Arabidopsis thaliana var Columbia (To plants) were transformed according to the Floral Dip procedure [Clough S J, Bent A F. (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16(6): 735-43; and Desfeux C, Clough S J, Bent A F. (2000) Female reproductive tissues were the primary targets of Agrobacterium-mediated transformation by the Arabidopsis floral-dip method. Plant Physiol. 123(3): 895-904] with minor modifications. Briefly, Arabidopsis thaliana Columbia (C010) T0 plants were sown in 250 ml pots filled with wet peat-based growth mix. The pots were covered with aluminum foil and a plastic dome, kept at 4° C. for 3-4 days, then uncovered and incubated in a growth chamber at 18-24° C. under 16/8 hours light/dark cycles. The T0 plants were ready for transformation six days before anthesis.

Single colonies of Agrobacterium carrying the binary vectors harboring the genes of some embodiments of the invention were cultured in YEBS medium (Yeast extract 1 gr/L, Beef extract 5 gr/L, MgSO4*7H2O, Bacto peptone 5 gr/L) supplemented with kanamycin (50 mg/L) and gentamycin (50 mg/L). The cultures were incubated at 28° C. for 48 hours under vigorous shaking to desired optical density at 600 nm of 0.85 to 1.1. Before transformation into plants, 60 μl of Silwet L-77 was added into 300 ml of the Agrobacterium suspension.

Transformation of T0 plants was performed by inverting each plant into an Agrobacterium suspension such that the above ground plant tissue was submerged for 1 minute. Each inoculated T0 plant was immediately placed in a plastic tray, then covered with clear plastic dome to maintain humidity and was kept in the dark at room temperature for 18 hours to facilitate infection and transformation. Transformed (transgenic) plants were then uncovered and transferred to a greenhouse for recovery and maturation. The transgenic T0 plants were grown in the greenhouse for 3-5 weeks until siliques were brown and dry, then seeds were harvested from plants and kept at room temperature until sowing.

For generating T1 and T2 transgenic plants harboring the genes of some embodiments of the invention, seeds collected from transgenic T0 plants were surface-sterilized by exposing to chlorine fumes (6% sodium hypochlorite with 1.3% HCl) for 100 minutes. The surface-sterilized seeds were sown on culture plates containing half-strength Murashig-Skoog (Duchefa); 2% sucrose; 0.5% plant agar; 50 mg/L kanamycin; and 200 mg/L carbenicylin (Duchefa). The culture plates were incubated at 4° C. for 48 hours and then were transferred to a growth room at 25° C. for three weeks. Following incubation, the T1 plants were removed from culture plates and planted in growth mix contained in 250 ml pots. The transgenic plants were allowed to grow in a greenhouse to maturity. Seeds harvested from T1 plants were cultured and grown to maturity as T2 plants under the same conditions as used for culturing and growing the T1 plants.

Full text: Click here
Patent 2024
Agar Agrobacterium Aluminum Animals, Transgenic Arabidopsis Arabidopsis thalianas Bacto-peptone Beef Chlorine Cloning Vectors Culture Media Decompression Sickness Females Genes Genes, Plant Gentamicin Humidity Infection Kanamycin Marijuana Abuse Plant Diseases Plant Embryos Plants Plants, Transgenic Reproduction Saccharomyces cerevisiae silwet L-77 Sodium Hypochlorite Sucrose Sulfate, Magnesium Tissues

Example 4

Since no mortality was observed in mice injected with PGN5+mucE, it was determined whether cells of this strain might localize differently than VE2 cells within the mice post-injection. To test this, the luxCDABEG operon was used to tag each strain with bioluminescence. VE2 and PGN5+mucE both carry gentamicin resistance genes, while the plasmids used for labeling with bioluminescence required gentamicin sensitivity. Thus, the luxCDABEG operon was incorporated into the chromosome of PAO1 and PGN5, and then the pUCP20-pGm-mucE plasmid was introduced into each strain to induce alginate production and mucoidy. Intraperitoneal injection of C57BL/6 mice with bioluminescent PAO1+mucE showed either localization at the injection site or dissemination through the body, and lethality resulted in all mice injected (FIGS. 5A-5B). Conversely, localization at the injection site but no dissemination was observed with bioluminescent PGN5+mucE, and no mortality was observed in injected mice (FIGS. 5C-5D).

Full text: Click here
Patent 2024
Alginate Cells Chromosomes Cultured Cells Figs Genes Gentamicin Human Body Hypersensitivity Injections, Intraperitoneal Mice, Inbred C57BL Mus Operon Plasmids Strains
Pancreatic cancer cell lines (AsPC-1 and BxPC-3) were cultured in RPMI-1640 (Corning, NY, USA) with 10% fetal bovine serum (FBS) and 1% penicillin–streptomycin. Two additional pancreatic cancer cell lines (PANC-1, MIA Paca-2) were cultured in DMEM (Dulbecco’ modified eagle medium) (Gibco, Grand Island, NY, USA) supplemented with 10% FBS and 1% penicillin–streptomycin. Human pancreatic ductal epithelium (hTERT-HPNE) cells were cultured in Medium D with mixtures of M3 and DMEM medium containing one volume of medium M3TM Base F culture media (InCell Corp., San Antonio, TX, USA), three volumes of glucose-free DMEM, 5% FBS, 5.5 mM glucose, 10 ng/ml EGF, and 50 µg/ml gentamycin [26 (link)]. All these cells were cultured at 37 °C in a humidified atmosphere containing 5% CO2. RNA was extracted from tissues using the TRIzol reagent (Invitrogen, Carlsbad, CA, USA) and was reverse-transcribed into cDNA using the PrimeScript RT Master Mix (Takara, Otsu, Shiga, Japan). RT-qPCR analyses were quantified with PowerUp™ SYBR® Green Master Mix (Applied Biosystems, Austin, TX, USA), and expression levels were normalized to GAPDH levels. Proteins were extracted in RIPA buffer supplemented with a complete, EDTA-free protease and phosphatase inhibitor single-use cocktail (Thermo Scientific). Proteins were separated by SDS-PAGE and blotted onto a PVDF membrane. Anti-TSC22D2 (1:1000 dilution, #25,418–1-AP, Proteintech) was used as primary antibodies for immunoblotting. Reacted antibodies were detected using an enhanced chemiluminescence detection system.
Full text: Click here
Publication 2023
Antibodies Atmosphere austin Buffers Cell Lines Cells Chemiluminescence Culture Media DNA, Complementary Eagle Edetic Acid Epithelium Fetal Bovine Serum GAPDH protein, human Gentamicin Glucose Homo sapiens Pancreatic Cancer Pancreatic Duct Penicillins Peptide Hydrolases Phosphoric Monoester Hydrolases polyvinylidene fluoride Proteins Radioimmunoprecipitation Assay SDS-PAGE Streptomycin SYBR Green I Technique, Dilution Tissue, Membrane Tissues trizol
Minimum inhibitory concentrations (MICs) to ampicillin, gentamicin, vancomycin, teicoplanin, ciprofloxacin, tigecycline, linezolid, daptomycin and quinupristin/dalfopristin were examined by E-test (Liofilchem, Italy). MICs results were interpreted according to the recommendations of The European Committee on Antimicrobial Susceptibility Testing (EUCAST Breakpoint tables for interpretation of MICs and zone diameters, version 11.0, 2021, http://www.eucast.org/clinical_breakpoints/). The Clinical and Laboratory Standards Institute (CLSI) guidelines, 2021, https://clsi.org/standards/ were used to interpret the MICs for daptomycin. The presence of vanABCDMN genes was investigated by colony multiplex PCR assay using the primer sequences and PCR protocol described by Nomura et al. [22 (link)]. Briefly, a modified PCR mix for detection of the investigated genes was applied containing 0.4 µM (each) primer, 200 µM (each) dNTP, 1 U of Taq (Canvax, Spain), 1X reaction buffer, 2.5 mM MgCl2, ultrapure PCR H2O and 10 ng DNA template to a final volume of 20 µL. The PCR thermal conditions consisted of initial denaturation (94 °C for 4 min), followed by 30 cycles of denaturation (94 °C for 30 s), annealing (62 °C for 35 s) and extension (68 °C for 1 min), with a single final extension of 7 min at 68 °C. The amplified PCR products were analyzed by capillary electrophoresis.
Full text: Click here
Publication 2023
Ampicillin Biological Assay Buffers Ciprofloxacin Clinical Laboratory Services Daptomycin Electrophoresis, Capillary Europeans Genes Genes, vif Gentamicin Linezolid Magnesium Chloride Microbicides Minimum Inhibitory Concentration Multiplex Polymerase Chain Reaction Oligonucleotide Primers quinupristin-dalfopristin Susceptibility, Disease Teicoplanin Tigecycline Vancomycin
Positive blood cultures were identified in the database and the sample date, age, sex and microbiological findings were retrieved. For species with clinically used names that were changed during the study period (such as Cutibacterium acnes previously called Propionibacterium acnes) we have consistently aimed to use the valid names as of 2022 according to the International Code of Nomenclature of Prokaryotes [12 (link)]. Antimicrobial susceptibility was described for Enterobacterales only, for fluoroquinolones (ciprofloxacin), third generation cephalosporins (cefotaxime) and aminoglycosides (gentamicin). Due to a database update in 2010, susceptibility data were available from 2011 to 2019 only. In addition, zone diameters were incomplete in > 50% of records. Therefore, clinical classification into susceptible (S), increased exposure (I) and resistant (R) was used to describe susceptibility, using breakpoints as per the original microbiology reports [13 (link)]. For cases with zone data, susceptibility testing according to the 2022 EUCAST breakpoints was compared with the original SIR classification in a sensitivity analysis [11 ]. Negative blood cultures were retrieved on an aggregate level (only the total number of blood culture sets per year was available). Population data were retrieved from Statistics Sweden [14 ].
Full text: Click here
Publication 2023
Aminoglycosides Blood Culture Cefotaxime Cephalosporins Ciprofloxacin Fluoroquinolones Gentamicin Hypersensitivity Microbicides Prokaryotic Cells Propionibacterium acnes Susceptibility, Disease

Top products related to «Gentamicin»

Sourced in United States, United Kingdom, Germany, Canada, France, Belgium, Switzerland, Italy, Spain, China, Ireland, Israel, Sweden, Austria, Australia, Japan, India, Argentina, Denmark, Netherlands, Macao, Brazil, Portugal, Panama
Gentamicin is a laboratory reagent used for the detection and quantification of the antibiotic gentamicin in biological samples. It is a commonly used tool in research and clinical settings.
Sourced in United States, Germany, United Kingdom, Italy, Spain, France, Sao Tome and Principe, Canada, Switzerland, China, India, Japan, Australia, Austria, Brazil, Denmark, Macao, Israel, Ireland, Argentina, Poland, Portugal, Czechia, Belgium
Gentamicin is a laboratory product manufactured by Merck Group. It is an antibiotic used for the detection and identification of Gram-negative bacteria in microbiological analysis and research.
Sourced in United States, China, United Kingdom, Germany, Australia, Japan, Canada, Italy, France, Switzerland, New Zealand, Brazil, Belgium, India, Spain, Israel, Austria, Poland, Ireland, Sweden, Macao, Netherlands, Denmark, Cameroon, Singapore, Portugal, Argentina, Holy See (Vatican City State), Morocco, Uruguay, Mexico, Thailand, Sao Tome and Principe, Hungary, Panama, Hong Kong, Norway, United Arab Emirates, Czechia, Russian Federation, Chile, Moldova, Republic of, Gabon, Palestine, State of, Saudi Arabia, Senegal
Fetal Bovine Serum (FBS) is a cell culture supplement derived from the blood of bovine fetuses. FBS provides a source of proteins, growth factors, and other components that support the growth and maintenance of various cell types in in vitro cell culture applications.
Sourced in United States, United Kingdom, Germany, Switzerland, Belgium, France, Canada, Italy, China, Spain, Netherlands, Iceland, India, Austria, Australia, Japan
Gentamycin is a broad-spectrum antibiotic used in laboratory settings. It is effective against a variety of gram-negative and some gram-positive bacteria. Gentamycin functions by inhibiting bacterial protein synthesis, leading to cell death.
Sourced in United States, China, United Kingdom, Germany, France, Australia, Canada, Japan, Italy, Switzerland, Belgium, Austria, Spain, Israel, New Zealand, Ireland, Denmark, India, Poland, Sweden, Argentina, Netherlands, Brazil, Macao, Singapore, Sao Tome and Principe, Cameroon, Hong Kong, Portugal, Morocco, Hungary, Finland, Puerto Rico, Holy See (Vatican City State), Gabon, Bulgaria, Norway, Jamaica
DMEM (Dulbecco's Modified Eagle's Medium) is a cell culture medium formulated to support the growth and maintenance of a variety of cell types, including mammalian cells. It provides essential nutrients, amino acids, vitamins, and other components necessary for cell proliferation and survival in an in vitro environment.
Sourced in United States, United Kingdom, Germany, France, Canada, Switzerland, Italy, Australia, Belgium, China, Japan, Austria, Spain, Brazil, Israel, Sweden, Ireland, Netherlands, Gabon, Macao, New Zealand, Holy See (Vatican City State), Portugal, Poland, Argentina, Colombia, India, Denmark, Singapore, Panama, Finland, Cameroon
L-glutamine is an amino acid that is commonly used as a dietary supplement and in cell culture media. It serves as a source of nitrogen and supports cellular growth and metabolism.
Sourced in United States, Germany, United Kingdom, Australia, Italy, France, Switzerland, Canada, Austria, Sao Tome and Principe, India, Netherlands, Hungary, Poland, Macao
Gentamycin is a laboratory reagent used for the detection and quantification of the antibiotic gentamicin in various samples. It is a widely used tool in pharmacological and medical research applications.
Sourced in United States, United Kingdom, Germany, China, France, Canada, Japan, Australia, Switzerland, Italy, Israel, Belgium, Austria, Spain, Brazil, Netherlands, Gabon, Denmark, Poland, Ireland, New Zealand, Sweden, Argentina, India, Macao, Uruguay, Portugal, Holy See (Vatican City State), Czechia, Singapore, Panama, Thailand, Moldova, Republic of, Finland, Morocco
Penicillin is a type of antibiotic used in laboratory settings. It is a broad-spectrum antimicrobial agent effective against a variety of bacteria. Penicillin functions by disrupting the bacterial cell wall, leading to cell death.
Sourced in United States, United Kingdom, Germany, China, France, Canada, Australia, Japan, Switzerland, Italy, Belgium, Israel, Austria, Spain, Netherlands, Poland, Brazil, Denmark, Argentina, Sweden, New Zealand, Ireland, India, Gabon, Macao, Portugal, Czechia, Singapore, Norway, Thailand, Uruguay, Moldova, Republic of, Finland, Panama
Streptomycin is a broad-spectrum antibiotic used in laboratory settings. It functions as a protein synthesis inhibitor, targeting the 30S subunit of bacterial ribosomes, which plays a crucial role in the translation of genetic information into proteins. Streptomycin is commonly used in microbiological research and applications that require selective inhibition of bacterial growth.
Sourced in United States, Germany, United Kingdom, China, Canada, France, Japan, Australia, Switzerland, Israel, Italy, Belgium, Austria, Spain, Gabon, Ireland, New Zealand, Sweden, Netherlands, Denmark, Brazil, Macao, India, Singapore, Poland, Argentina, Cameroon, Uruguay, Morocco, Panama, Colombia, Holy See (Vatican City State), Hungary, Norway, Portugal, Mexico, Thailand, Palestine, State of, Finland, Moldova, Republic of, Jamaica, Czechia
Penicillin/streptomycin is a commonly used antibiotic solution for cell culture applications. It contains a combination of penicillin and streptomycin, which are broad-spectrum antibiotics that inhibit the growth of both Gram-positive and Gram-negative bacteria.

More about "Gentamicin"

Gentamicin, also known as Gentamicyn or G-mycin, is a powerful broad-spectrum aminoglycoside antibiotic widely used to treat serious bacterial infections.
It is particularly effective against a variety of Gram-negative bacteria, such as Escherichia coli, Klebsiella, and Pseudomonas, as well as some Gram-positive bacteria like Staphylococcus.
Gentamicin works by inhibiting bacterial protein synthesis, leading to cell death and preventing the spread of the infection.
This antibiotic is commonly administered intravenously or intramuscularly and is known for its potent antibacterial activity and relatively low cost, making it a popular choice in medical settings.
However, Gentamicin use requires careful monitoring due to its potential for serious side effects, including nephrotoxicity (kidney damage) and ototoxicity (hearing loss).
Researchers in the field of Gentamicin study its pharmacokinetics (how the drug is absorbed, distributed, metabolized, and eliminated by the body), efficacy, and safety to optimize its clinical applications.
This research often involves the use of related compounds and media, such as Fetal Bovine Serum (FBS), Gentamycin, Dulbecco's Modified Eagle Medium (DMEM), L-glutamine, Penicillin, Streptomycin, and Penicillin/Streptomycin.
By leveraging the insights gained from these studies, researchers can develop more effective and safer protocols for the use of Gentamicin in treating a variety of bacterial infections, ultimately improving patient outcomes and advancing the field of antimicrobial research.