The largest database of trusted experimental protocols
> Chemicals & Drugs > Antibiotic > Penicillins

Penicillins

Penicillins are a class of β-lactam antibiotics derived from the Penicillium fungi.
They work by inhibiting bacterial cell wall synthesis, leading to cell lysis and death.
Penicillins are widely used to treat a variety of bacterial infections, including pneumonia, streptococcal infections, and syphilis.
Key features include a core β-lactam ring structure and a side chain that determines the specific antimicrobial spectrum and pharmacokinetic properties.
Penicillins are generally well-tolerated, though allergic reactions and antibiotic resistance can occur.
Reseachers can utilize PubCompare.ai's AI-driven tools to streamline penicillins research, locate optimal protocols, and enhace reproducibility and accuracy.

Most cited protocols related to «Penicillins»

A negative pressure instrument (Electronic Diversities, Finksburg, MD, USA) constructed to produce standard suction blisters upon application of negative pressure, was used on healthy skin (ex vivo: abdominal skin; in vivo: lower forearm). Subcutaneous fat was partially removed from ex vivo skin using a scissor. Subsequently, skin (10 × 10 cm2) was placed (not fixed, not kept in medium) on a styrofoam lid that was covered with aluminium foil to provide (at least partial) backpressure. Suction chambers with 5 openings (Ø = 5 mm) on the orifice plate were attached to skin, topped with a styrofoam lid and pressed with 1 kg weight in order to avoid movement of the plate. A pressure of 200–250 millimeter (mm) mercury (Hg) (ex vivo) or 150–200 mm Hg (in vivo) caused the skin to be drawn through the openings creating typical suction blisters of different size within 6–8 h (ex vivo) and 1–2 h (in vivo). Suction blister fluid (~110 µl/5 blisters) was collected using a syringe with a needle. Cells within the fluid were counted and placed on adhesion slides for staining and analysis. Blister roof epidermis was cut with a scissor, fixed with ice-cold acetone (10 minutes) and used for staining. For comparison and control, epidermal sheets were prepared from unwounded skin biopsy punches (Ø = 6 mm; 3.8% ammonium thiocyanate (Carl Roth GmbH + Co. KG, Germany) in PBS (Gibco, Thermo Fisher, Waltham, MA, USA), 1 h, 37 °C). Removal of the blister roof created a wound area. Biopsies (Ø = 6 mm) from wounded and unwounded areas were cultivated for 12 days in either duplicates or triplicates in 12 well culture plates and Dulbecco’s modified Eagle’s medium (DMEM) (Gibco) supplemented with 10% fetal bovine serum (FBS) (Gibco) and 1% penicillin-streptomycin (Gibco) and were cultured at the air-liquid interphase. Medium was changed every second day.
Full text: Click here
Publication 2020
Abdomen Acetone Aluminum ammonium thiocyanate Biopsy Cells Cold Temperature Eagle Epidermis Fetal Bovine Serum Forearm Interphase Mercury-200 Movement Needles Penicillins Pressure Skin Streptomycin styrofoam Subcutaneous Fat Suction Drainage Syringes
A375-Cas9 cells were infected in four biological replicates. Small molecules were added to puromycin-selected cells 7 days post-infection. Cells either received a media change or were passaged every two or three days over the course of the screen in complete media supplemented with 1% penicillin/streptomycin. Vemurafenib (PLX-4032, Selleckchem, S1267) was screened at a final concentration of 2 μM. Selumetinib (AZD-6244, Selleckchem, S1008) was screened at a final concentration of 200 nM. 6-thioguanine (Sigma A4660) was screened at a final concentration of 2 μg/mL. Etoposide (Sigma E1383) was screened at a final concentration of 1 μg/mL. Surviving cells were harvested after 14 days of small molecule treatment. For analysis, the log2-fold-change of each sgRNA was determined relative to control cells treated with DMSO.
Publication 2015
AZD 6244 Biopharmaceuticals Cells Etoposide Infection Penicillins PLX4032 Puromycin selumetinib Streptomycin Sulfoxide, Dimethyl Thioguanine Vemurafenib

Protocol full text hidden due to copyright restrictions

Open the protocol to access the free full text link

Publication 2020
Antibiotics Arboviruses Cell Lines Cells Cercopithecus aethiops Culture Media Eagle Epithelial Cells Glucose Kidney Mycoplasma Patients Penicillins SARS-CoV-2 Strains Streptomycin Vero Cells Virus
All of the UM-SCC cell lines were established from head and neck cancer patients who gave written informed consent in studies reviewed and approved by the University of Michigan Medical School Institutional Review Board. Current and early passage human UM-SCC cell lines established at the University of Michigan (1 –3 (link), 5 (link), 30 (link)) were retrieved from liquid nitrogen storage. Cell lines were grown in complete Dulbecco’s Modified Eagle’s Medium (cDMEM) containing 2 mM L-glutamine, 1% nonessential amino acids, 1% Penicillin-Streptomycin (Invitrogen, Carlsbad, CA) and 10% fetal bovine serum, in a humidified atmosphere of 5% CO2 at 37°C. All cell lines were tested for mycoplasma, using the MycoAlert Detection Kit (Cambrex, Rockland, ME). Contaminated cultures were treated with Plasmocin according to the manufacturer’s protocol, and testing was repeated at monthly intervals.
Publication 2010
Amino Acids Atmosphere Cancer of Head and Neck Cell Lines Eagle Ethics Committees, Research Fetal Bovine Serum Glutamine Homo sapiens Mycoplasma Nitrogen Patients Penicillins plasmocin Streptomycin

Protocol full text hidden due to copyright restrictions

Open the protocol to access the free full text link

Publication 2014
A-83-01 Acetylcysteine Cells Collagenase Culture Media Culture Media, Conditioned Digestion Dinoprostone Epidermal growth factor FGF10 protein, human Gastrins HEPES Homo sapiens matrigel Neoplasms Niacinamide noggin protein Penicillins Recombinant Proteins Repifermin Soybeans Streptomycin Tissues Trypsin Inhibitors

Most recents protocols related to «Penicillins»

Example 49

The functional activity of compounds was determined in a cell line where p70S6K is constitutively activated. Test article was dissolved in DMSO to make a 10 μM stock. PathScan® Phospho-S6 Ribosomal Protein (Ser235/236) Sandwich ELISA Kit was purchased from Cell Signaling Technology. A549 lung cancer cell line, was purchased from American Type Culture Collection. A549 cells were grown in F-12K Medium supplemented with 10% FBS. 100 μg/mL penicillin and 100 μg/mL streptomycin were added to the culture media. Cultures were maintained at 37° C. in a humidified atmosphere of 5% CO2 and 95% air. 2.0×105 cells were seeded in each well of 12-well tissue culture plates for overnight. Cells were treated with DMSO or test article (starting at 100 μM, 10-dose with 3 fold dilution) for 3 hours. The cells were washed once with ice cold PBS and lysed with 1× cell lysis buffer. Cell lysates were collected and samples were added to the appropriate wells of the ELISA plate. Plate was incubated for overnight at 4° C. 100 μL of reconstituted Phospho-S6 Ribosomal Protein (Ser235/236) Detection Antibody was added to each well and the plate was incubated at 37° C. for 1 hour. Wells were washed and 100 μl of reconstituted HRP-Linked secondary antibody was added to each well. The plate was incubated for 30 minutes at 37° C. Wash procedure was repeated and 100 μL of TMB Substrate was added to each well. The plate was incubated for 10 minutes at 37° C. 100 μL of STOP Solution was added to each well and the absorbance was read at 460 nm using Envision 2104 Multilabel Reader (PerkinElmer, Santa Clara, CA). IC50 curves were plotted and IC50 values were calculated using the GraphPad Prism 4 program based on a sigmoidal dose-response equation.

TABLE 2
In vitro biological data for representative compounds of Formula
I-IX Unless otherwise noted, compounds that were tested had an IC50
of less than 50 μM in the S6K binding assay.
Example NumberS6K Binding Activity
1A
2B
3B
4A
5A
6A
7A
8A
9B
10B
11B
12C
13C
14C
15A
16A
17B
18A
19A
20A
21A
22C
23B
24A
25A
26C
27A
28C
29C
30C
31A
32A
33C
34C
35C
36C
37C
38A
39A
40A
41A

Unless otherwise noted, compounds that were tested had an IC50 of less than 50 μM in the S6K Binding assay. A=less than 0.05 μM; B=greater than 0.05 μM and less than 0.5 μM; C=greater than 0.5 μM and less than 10 μM;

Full text: Click here
Patent 2024
A549 Cells Atmosphere Biological Assay Biopharmaceuticals Buffers Cell Lines Cells Cold Temperature Culture Media Enzyme-Linked Immunosorbent Assay Immunoglobulins Lung Cancer Penicillins prisma Psychological Inhibition Ribosomal Proteins Ribosomal Protein S6 Ribosomal Protein S6 Kinases, 70-kDa Streptomycin Sulfoxide, Dimethyl Technique, Dilution Tissues
Not available on PMC !

Example 7

The MTT Cell Proliferation assay determines cell survival following apple stem cell extract treatment. The purpose was to evaluate the potential anti-tumor activity of apple stem cell extracts as well as to evaluate the dose-dependent cell cytotoxicity.

Principle: Treated cells are exposed to 3-(4,5-dimethythiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT). MTT enters living cells and passes into the mitochondria where it is reduced by mitochondrial succinate dehydrogenase to an insoluble, colored (dark purple) formazan product. The cells are then solubilized with DMSO and the released, solubilized formazan is measured spectrophotometrically. The MTT assay measures cell viability based on the generation of reducing equivalents. Reduction of MTT only occurs in metabolically active cells, so the level of activity is a measure of the viability of the cells. The percentage cell viability is calculated against untreated cells.

Method: A549 and NCI-H520 lung cancer cell lines and L132 lung epithelial cell line were used to determine the plant stem cell treatment tumor-specific cytotoxicity. The cell lines were maintained in Minimal Essential Media supplemented with 10% FBS, penicillin (100 U/ml) and streptomycin (100 μg/ml) in a 5% CO2 at 37 Celsius. Cells were seeded at 5×103 cells/well in 96-well plates and incubated for 48 hours. Triplicates of eight concentrations of the apple stem cell extract were added to the media and cells were incubated for 24 hours. This was followed by removal of media and subsequent washing with the phosphate saline solution. Cell proliferation was measured using the MTT Cell Proliferation Kit I (Boehringer Mannheim, Indianapolis, IN) New medium containing 50 μl of MTT solution (5 mg/ml) was added to each well and cultures were incubated a further 4 hours. Following this incubation, DMSO was added and the cell viability was determined by the absorbance at 570 nm by a microplate reader.

In order to determine the effectiveness of apple stem cell extracts as an anti-tumor biological agent, an MTT assay was carried out and IC50 values were calculated. IC50 is the half maximal inhibitory function concentration of a drug or compound required to inhibit a biological process. The measured process is cell death.

Results: ASC-Treated Human Lung Adenocarcinoma Cell Line A549.

TABLE 7
Results of cytotoxicity of apple stem cell extract on lung cancer cell
line A549 as measured by MTT assay (performed in triplicate).
Values of replicates are % of cell death.
Concentration*replicatereplicatereplicateMean of% Live
(μg/ml)123replicatesSDSEMCells
25093.1890.8690.3491.461.510.878.54
10086.8885.1885.6985.920.870.5014.08
5080.5879.4981.0480.370.800.4619.63
2574.2873.8176.3974.831.380.7925.17
12.567.9868.1371.7569.282.131.2330.72
6.2561.6762.4567.1063.742.931.6936.26
3.12555.3756.7762.4558.203.752.1641.80
1.56249.0751.0857.8052.654.572.6447.35
0.78142.7745.4053.1547.115.403.1252.89

Results: ASC-Treated Human Squamous Carcinoma Cell Line NCI-H520.

TABLE 8
Results of cytotoxicity of apple stem cell extract on lung cancer
cell line NCI-H520 measured by MTT assay (performed in triplicate).
Values of replicates are % of cell death.
Concen-%
tration*replicatereplicatereplicateMean ofLive
(μg/ml)123replicatesSDSEMcell
25088.2889.2987.7388.430.790.4611.57
10078.1379.1978.1378.480.610.3521.52
5067.9869.0968.5468.540.560.3231.46
2557.8358.9958.9458.590.660.3841.41
12.547.6848.8949.3448.640.860.5051.36
6.2537.5338.7939.7538.691.110.6461.31
3.12527.3728.6930.1528.741.390.8071.26
1.56217.2218.5920.5618.791.680.9781.21
0.781 7.07 8.4810.96 8.841.971.1491.16

Results: ASC-treated Lung Epithelial Cell Line L132.

TABLE 9
Results of cytotoxicity of apple stem cell extract on
lung epithelial cell line L132 as measured by MTT assay
(performed in triplicate). Values of replicates are % of cell death.
Concen-rep-rep-rep-Mean%
tration*licatelicatelicateofLive
(μg/ml)123replicatesSDSEMcell
25039.5142.5244.0342.022.301.3357.98
10032.9334.4433.6933.690.750.4466.31
5030.6028.9430.5230.020.940.5469.98
2527.9627.8127.1327.630.440.2572.37
12.525.6225.5525.4025.520.120.0774.48
6.2523.1320.8718.6120.872.261.3179.13
3.12513.3411.0811.8312.081.150.6687.92
1.562 6.56 7.31 9.57 7.811.570.9192.19
0.781 8.06 4.30 3.54 5.302.421.4094.70

Summary Results: Cytotoxicity of Apple Stem Cell Extracts.

TABLE 10
IC50 values of the apple stem cell extracts on the on the target
cell lines as determined by MTT assay.
Target Cell
LineIC50
A54912.58
NCI-H52010.21
L132127.46

Apple stem cell extracts killed lung cancer cells lines A549 and NCI-H520 at relatively low doses: IC50s were 12.58 and 10.21 μg/ml respectively as compared to 127.46 μg/ml for the lung epithelial cell line L132. Near complete anti-tumor activity was seen at a dose of 250 μg/ml in both the lung cancer cell lines. This same dose spared more than one half of the L132 cells. See Tables 7-10. The data revealed that apple stem cell extract is cytotoxic to lung cancer cells while sparing lung epithelial cells. FIG. 6 shows a graphical representation of cytotoxicity activity of apple stem cell extracts on lung tumor cell lines A549, NCIH520 and on L132 lung epithelial cell line (marked “Normal”). The γ-axis is the mean % of cells killed by the indicated treatment compared to unexposed cells. The difference in cytotoxicity levels was statistically significant at p≤05.

Example 9

The experiment of Example 7 was repeated substituting other plant materials for ASC. Plant stem cell materials included Dandelion Root Extract (DRE), Aloe Vera Juice (AVJ), Apple Fiber Powder (AFP), Ginkgo Leaf Extract (GLE), Lingonberry Stem Cells (LSC), Orchid Stem Cells (OSC) as described in Examples 1 and 2. The concentrations of plant materials used were nominally 250, 100, 50, 25, 6.25, 3.125, 1.562, and 0.781 μg/mL. These materials were tested only for cells the human lung epithelial cell line L132 (as a proxy for normal epithelial cells) and for cells of the human lung adenocarcinoma cell line A549 (as a proxy for lung cancer cells).

A549 cells lung cancer cell line cytotoxicity results for each of the treatment materials.

DRE-Treated Lung Cancer Cell Line A549 Cells.

TABLE 11
Triplicate results of cell death of DRE-treated
A549 cells measured by MTT assay.
Percentage of live cells calculated as 100% − Mean of triplicates.
Concentration%
(μg/mL)-DRE-Live
treated A549% of cell deathMeanSDSEMcell
25080.4376.4074.8477.232.891.6722.77
10067.6075.2663.7768.885.853.3831.12
5065.3262.9459.9462.732.701.5637.27
2556.8357.9748.1454.315.383.1145.69
6.2555.5949.6949.1751.483.572.0648.52
3.12551.7648.4545.3448.523.211.8551.48
1.56243.6944.0036.0241.244.522.6158.76
0.78137.4726.1919.5727.749.055.2372.26

AVJ-Treated Lung Cancer Cell line A549 Cells.

TABLE 12
Triplicate results of cell death of AVJ-treated
A549 cells measured by MTT assay.
Percentage of live cells calculated as 100% − Mean of triplicates.
Concentration%
(μg/mL)-AVJ-treatedLive
A549% of cell deathMeanSDSEMcell
25076.8178.1675.8876.951.140.6623.05
10076.4075.2673.7175.121.350.7824.88
5065.3266.1559.9463.803.371.9536.20
2550.1048.4556.6351.734.322.5048.27
6.2547.5246.3846.1746.690.720.4253.31
3.12539.8638.6143.7940.752.701.5659.25
1.56232.4019.7730.5427.576.823.9472.43
0.78120.5015.6332.1922.778.514.9277.23

AFP-Treated Lung Cancer Cell line A549 Cells.

TABLE 13
Triplicate results of cell death of AFP-treated
A549 cells measured by MTT assay.
Percentage of live cells calculated as 100% − Mean of triplicates.
Concentration%
(μg/mL)-AFP-treatedLive
A549% of cell deathMeanSDSEMcell
25086.1387.9986.6586.920.960.5613.08
10079.5081.0682.0980.881.300.7519.12
5073.6072.4671.3372.461.140.6627.54
2568.0167.7066.9867.560.530.3132.44
6.2560.8762.1160.7761.250.750.4338.75
3.12549.4851.7650.7250.661.140.6649.34
1.56240.0641.7247.0042.933.622.0957.07
0.78139.2337.7836.8537.961.200.6962.04

GLE-treated Lung Cancer Cell line A549 Cells.

TABLE 14
Triplicate results of cell death of GLE-treated
A549 cells measured by MTT assay.
Percentage of live cells calculated as 100% − Mean of triplicates.
Concentration%
(μg/mL)-GLE-treatedLive
A549% of cell deathMeanSDSEMcell
25088.4291.4990.4490.121.560.909.88
10084.3983.7783.1683.770.610.3516.23
5079.4781.5876.7579.272.421.4020.73
2573.6072.5471.4072.511.100.6327.49
6.2562.8963.6859.9162.161.991.1537.84
3.12550.1854.4751.8452.162.171.2547.84
1.56246.9344.3043.3344.851.861.0755.15
0.78139.5639.3940.9639.970.870.5060.03

LSC-treated lung cancer cell lines A549 cells.

TABLE 15
Triplicate results of cell death of LSC-treated
A549 cells measured by MTT assay.
Percentage of live cells calculated as 100% − Mean of triplicates.
Concentration
(μg/mL)% Live
LSC treated A549% of cell deathMeanSDSEMcell
25077.5478.8578.2078.200.650.3821.80
10077.1476.0476.5976.590.550.3223.41
5066.4268.5266.8267.251.120.6532.75
2559.8067.2264.1663.733.732.1536.27
6.2550.5348.8248.0749.141.260.7350.86
3.12541.1443.6042.7242.491.240.7257.51
1.56239.4739.7440.6139.940.600.3460.06
0.78138.5531.8336.7935.723.482.0164.28

OSC-treated Lung Cancer Cell line A549 Cells.

TABLE 16
Triplicate results of cell death of OSC-treated
A549 cells measured by MTT assay.
Percentage of live cells calculated as 100% − Mean of triplicates.
Concentration
(μg/mL)% Live
OSC-treated A549% of cell deathMeanSDSEMcell
25070.8465.5771.4969.303.251.8730.70
10048.8150.9157.2852.334.412.5547.67
5046.5949.6053.3349.843.381.9550.16
2538.7740.8136.5838.722.111.2261.28
6.2535.7440.7941.0539.193.001.7360.81
3.12534.5533.6837.0235.081.731.0064.92
1.56233.8633.4427.6331.643.482.0168.36
0.78121.3220.0034.8225.388.214.7474.62

L132 cells (“normal” lung epithelial cell line) cytotoxicity results for each of the treatment materials.

DRE-Treated Lung Epithelial Cell Line L132 cells.

TABLE 17
Triplicate results of cell death of DRE-treated
L132 cells measured by MTT assay.
Percentage of live cells calculated as 100% − Mean of triplicates.
Concentration% of %
(μg/mL)cellLive
DRE-treated L132deathMeanSDSEMcell
25086.6686.6186.6686.640.030.0213.36
10076.2977.3976.8476.840.550.3223.16
5065.9268.1767.0167.031.130.6532.97
2555.5458.9557.1957.231.700.9842.77
6.2545.1749.7347.3747.422.281.3252.58
3.12534.8040.5037.5437.612.851.6562.39
1.56224.4231.2827.7227.813.431.9872.19
0.78114.0522.0617.8918.004.012.3182.00

AVJ-Treated Lung Epithelial Cell Line L132 cells.

TABLE 18
Triplicate results of cell death of AVJ-treated
L132 cells measured by MTT assay.
Percentage of live cells calculated as 100% − Mean of triplicates
AFP-treated lung epithelial cell line L132 cells.
Concentration % of %
(μg/mL)cellLive
AVJ-treated L132deathMeanSDSEMcell
25057.0355.9353.6255.531.741.0044.47
10050.9949.7847.0449.272.031.1750.73
5044.9543.6340.4543.012.311.3456.99
2538.9137.4933.8636.752.601.5063.25
6.2532.8831.3427.2830.502.891.6769.50
3.12526.8425.1920.6924.243.181.8475.76
1.56220.8019.0514.1117.983.472.0082.02
0.78114.7612.90 7.5211.733.762.1788.27

AFP-Treated Lung Epithelial Cell Line L132 cells.

TABLE 19
Triplicate results of cell death of AFP-treated
L132 cells measured by MTT assay.
Percentage of live cells calculated as 100% − Mean of triplicates
AFP-treated lung epithelial cell line L132 cells.
Concentration
(μg/mL)% Live
AFP-treated L132% of cell deathMeanSDSEMcell
25056.1555.4357.1956.260.880.5143.74
10049.9548.2447.6448.611.200.6951.39
5043.7441.0538.0940.962.831.6359.04
2537.5433.8628.5433.324.532.6166.68
6.2531.3426.6718.9925.676.243.6074.33
3.12525.1419.489.4418.027.954.5981.98
1.56218.9412.2910.8714.034.312.4985.97
0.78112.73 5.10 6.81 8.214.002.3191.79

GLE-Treated Lung Epithelial Cell Line L132 cells.

TABLE 20
Triplicate results of cell death of GLE-treated
L132 cells measured by MTT assay.
Percentage of live cells calculated as 100% − Mean of triplicates
AFP-treated lung epithelial cell line L132 cells.
Concentration
(μg/mL)% Live
GLE-treated L132% of cell deathMeanSDSEMcell
25084.4283.2083.0883.570.740.4316.43
10080.0579.2978.5979.310.730.4220.69
5072.7571.5974.1072.811.260.7227.19
2580.0581.8679.9980.631.060.6119.37
6.2568.2670.1368.2668.881.080.6231.12
3.12560.6263.0760.6261.441.410.8238.56
1.56248.0748.7748.8348.560.420.2451.44
0.78146.2745.5746.6746.170.560.3253.83

LSC-Treated Lung Epithelial Cell Line L132 cells.

TABLE 21
Triplicate results of cell death of LSC-treated
L132 cells measured by MTT assay.
Percentage of live cells calculated as 100% − Mean of triplicates
AFP-treated lung epithelial cell line L132 cells.
Concentration
(μg/mL)% Live
LSC-treated L132% of cell deathMeanSDSEMcell
25086.4185.8285.7686.000.350.2014.00
10081.2181.2779.9980.820.720.4219.18
5075.9674.7473.5174.741.230.7125.26
2574.7472.7571.4772.991.650.9527.01
6.2570.1368.3268.2668.901.060.6131.10
3.12554.0358.0553.4455.172.511.4544.83
1.56253.9751.9851.9852.641.150.6647.36
0.78146.7945.6244.9245.78 0.940.54 54.22

OSC-Treated Lung Epithelial Cell Line L132 cells.

TABLE 22
Triplicate results of cell death of OSC-treated
L132 cells measured by MTT assay.
Percentage of live cells calculated as 100% − Mean of triplicates
AFP-treated lung epithelial cell line L132 cells.
Concentration %
(μg/mL)Live
OSC-treated L132% of cell deathMeanSDSEMcell
25061.8462.3760.4461.551.000.5738.45
10054.1453.4452.1053.231.040.6046.77
5042.9442.3040.3241.851.370.7958.15
2535.9434.4833.3134.581.320.7665.42
6.2533.9632.6732.0332.890.980.5767.11
3.12527.4826.2026.7226.800.650.3773.20
1.562 9.80 7.29 7.35 8.151.430.8391.85
0.781 7.29 8.98 8.05 8.110.850.4991.89

Calculated values.

TABLE 23
Calculated IC50 doses (ug/mL) and therapeutic ratios
(IC50 for L132 cells/IC50 for A549 cells) for each
treatment material. Values greater than one indicate
that a material would be more selective in killing cancer
cells than normal cells. ASC results imported from
Example 8. These studies indicate that at least
some of the materials may be effective anti-cancer agents.
ASC has outstanding selectivity compared to other materials.
ASCDREAVJAFPGLELSCOSC
A549 12.589.82211.4811.9811.1 13.733.9 
IC50
L132 127.4656.88 62.6682.6577.6369.26715.38
IC50
Ther.10.15.8 5.56.97.0 0.70.5
Ratio

Full text: Click here
Patent 2024
14-3-3 Proteins 43-63 61-26 A549 Cells Action Potentials Adenocarcinoma of Lung Aloe Aloe vera Antineoplastic Agents Biological Assay Biological Factors Biological Processes Bromides Cardiac Arrest Cell Death Cell Extracts Cell Lines Cell Proliferation Cells Cell Survival Cytotoxin diphenyl DNA Replication Epistropheus Epithelial Cells Fibrosis Formazans Genetic Selection Ginkgo biloba Ginkgo biloba extract Homo sapiens Lingonberry Lung Lung Cancer Lung Neoplasms Malignant Neoplasms Mitochondria Mitochondrial Inheritance Neoplasms Neoplastic Stem Cells Oral Cavity PEG SD-01 Penicillins Pharmaceutical Preparations Phosphates Plant Cells Plant Leaves Plant Roots Plants Powder Psychological Inhibition Saline Solution SD 31 SD 62 SEM-76 Squamous Cell Carcinoma Stem, Plant Stem Cells Streptomycin Succinate Dehydrogenase Sulfoxide, Dimethyl Taraxacum Tetrazolium Salts
Not available on PMC !

Example 4

Syphilis is an STI that can cause long-term complications if not treated correctly. Symptoms in adults are divided into stages. These stages are primary, secondary, latent, and late syphilis. In pregnant women, having syphilis can lead to giving birth to a low birth weight baby. It can also lead to delivering the baby too early or stillborn (CDC fact sheet, 2015).

Although T. pallidum cannot be grown in culture, there are many tests for the direct and indirect diagnosis of syphilis. Still, there is no single optimal test. Direct diagnostic methods include the detection of T. pallidum by microscopic examination of fluid or smears from lesions, histological examination of tissues or nucleic acid amplification methods such as polymerase chain reaction (PCR). Indirect diagnosis is based on serological tests for the detection of antibodies (Ratnam S, Can J Infect Dis Med Microbiol 2005). Treatment includes a single dose of intramuscular administration of penicillin (2.4 Million units).

In some embodiments, the disclosed device can be used to detect syphilis infections from menstrual blood or cervicovaginal fluids.

Full text: Click here
Patent 2024
Adult Antibodies BLOOD Childbirth Diagnosis Globus Pallidus Infant Infection Medical Devices Menstruation Microscopy Nucleic Acid Amplification Techniques Penicillins Polymerase Chain Reaction Pregnant Women Syphilis Syphilis, tertiary Tests, Serologic Tissues
Not available on PMC !

Example 2

For embedding fibroblasts into the dermal layer (e.g. gel matrix), the protocol is as follows. First, the fibroblasts are detached using the trypsinization protocol described above. However, the pellet is re-suspended in complete E-medium low calcium (0.6 mM Ca++), supplemented with 0.5% (V/V) FBS (Invitrogen 16140071) and 2% penicillin/streptomycin (invitrogen 15140-122) and then added back to the flasks, where they are allowed to reach 50-60% confluence. Once again, the fibroblasts are detached according to the protocol described above. Once re-suspended, they are embedded into the dermal layer. From Day 0 to Day 1-2, the cells in the dermal layer are fed using complete E-medium low calcium (0.6 mM Ca++), supplemented with 0.5% (V/V) FBS (Invitrogen 16140071) and 100 μm ascorbic acid, RM/TI transglutaminase 50 μg/ml. From Day 1-2 to Day 3-4, the cells in the dermal layer are fed using complete E-medium low calcium (1.2 mM Ca++), supplemented with 0.5% (V/V) FBS (Invitrogen 16140071) and 100 μm ascorbic acid and RM/TI transglutaminase 50 μg/ml. From Day 14-18 on, the cells in the dermal layer are fed using complete cornification medium (1.8 mM Ca++), supplemented with 5% (V/V) FBS (Invitrogen 16140071) and 100 μm ascorbic acid and RM/TI transglutaminase 50 μg/ml.

Full text: Click here
Patent 2024
Ascorbic Acid Calcium, Dietary Fibroblasts Penicillins Streptomycin Transglutaminases

Example 1

Reagents for peptide synthesis were purchased from Chem-Impex (Wood Dale, IL), NovaBiochem (La Jolla, CA), or Anaspec (San Jose, CA). Rink amide resin LS (100-200 mesh, 0.2 mmol/g) was purchased from Advanced ChemTech. Cell culture media, fetal bovine serum, penicillin-streptomycin, 0.25% trypsin-EDTA, and DPBS were purchased from Invitrogen (Carlsbad, CA). Methyl 3,5-dimethylbenzoiate, N-bromosuccinimide, diethyl phosphite, 2,2′-dipyridyl disulfide, and other organic reagents/solvents were purchased from Sigma-Aldrich (St. Louis, MO). Anti-GST-Tb and streptavidin-d2 were purchased from Cisbio (Bedford, MA). The NF-κB reporter (Luc)-HEK293 cell line and One-Step™ luciferase assay system were purchased from BPS Bioscience (San Diego, CA).

[Figure (not displayed)]

Full text: Click here
Patent 2024
Anabolism Biological Assay Bromosuccinimide Cell Culture Techniques Cells Culture Media Disulfides Edetic Acid Fetal Bovine Serum HEK293 Cells Luciferases Penicillins Peptide Biosynthesis Phosphite RELA protein, human Rink amide resin Solvents Streptavidin Streptomycin Trypsin

Top products related to «Penicillins»

Sourced in United States, China, United Kingdom, Germany, Australia, Japan, Canada, Italy, France, Switzerland, New Zealand, Brazil, Belgium, India, Spain, Israel, Austria, Poland, Ireland, Sweden, Macao, Netherlands, Denmark, Cameroon, Singapore, Portugal, Argentina, Holy See (Vatican City State), Morocco, Uruguay, Mexico, Thailand, Sao Tome and Principe, Hungary, Panama, Hong Kong, Norway, United Arab Emirates, Czechia, Russian Federation, Chile, Moldova, Republic of, Gabon, Palestine, State of, Saudi Arabia, Senegal
Fetal Bovine Serum (FBS) is a cell culture supplement derived from the blood of bovine fetuses. FBS provides a source of proteins, growth factors, and other components that support the growth and maintenance of various cell types in in vitro cell culture applications.
Sourced in United States, Germany, United Kingdom, China, Canada, France, Japan, Australia, Switzerland, Israel, Italy, Belgium, Austria, Spain, Gabon, Ireland, New Zealand, Sweden, Netherlands, Denmark, Brazil, Macao, India, Singapore, Poland, Argentina, Cameroon, Uruguay, Morocco, Panama, Colombia, Holy See (Vatican City State), Hungary, Norway, Portugal, Mexico, Thailand, Palestine, State of, Finland, Moldova, Republic of, Jamaica, Czechia
Penicillin/streptomycin is a commonly used antibiotic solution for cell culture applications. It contains a combination of penicillin and streptomycin, which are broad-spectrum antibiotics that inhibit the growth of both Gram-positive and Gram-negative bacteria.
Sourced in United States, United Kingdom, Germany, China, France, Canada, Japan, Australia, Switzerland, Italy, Israel, Belgium, Austria, Spain, Brazil, Netherlands, Gabon, Denmark, Poland, Ireland, New Zealand, Sweden, Argentina, India, Macao, Uruguay, Portugal, Holy See (Vatican City State), Czechia, Singapore, Panama, Thailand, Moldova, Republic of, Finland, Morocco
Penicillin is a type of antibiotic used in laboratory settings. It is a broad-spectrum antimicrobial agent effective against a variety of bacteria. Penicillin functions by disrupting the bacterial cell wall, leading to cell death.
Sourced in United States, United Kingdom, Germany, China, France, Canada, Australia, Japan, Switzerland, Italy, Belgium, Israel, Austria, Spain, Netherlands, Poland, Brazil, Denmark, Argentina, Sweden, New Zealand, Ireland, India, Gabon, Macao, Portugal, Czechia, Singapore, Norway, Thailand, Uruguay, Moldova, Republic of, Finland, Panama
Streptomycin is a broad-spectrum antibiotic used in laboratory settings. It functions as a protein synthesis inhibitor, targeting the 30S subunit of bacterial ribosomes, which plays a crucial role in the translation of genetic information into proteins. Streptomycin is commonly used in microbiological research and applications that require selective inhibition of bacterial growth.
Sourced in United States, China, United Kingdom, Germany, France, Australia, Canada, Japan, Italy, Switzerland, Belgium, Austria, Spain, Israel, New Zealand, Ireland, Denmark, India, Poland, Sweden, Argentina, Netherlands, Brazil, Macao, Singapore, Sao Tome and Principe, Cameroon, Hong Kong, Portugal, Morocco, Hungary, Finland, Puerto Rico, Holy See (Vatican City State), Gabon, Bulgaria, Norway, Jamaica
DMEM (Dulbecco's Modified Eagle's Medium) is a cell culture medium formulated to support the growth and maintenance of a variety of cell types, including mammalian cells. It provides essential nutrients, amino acids, vitamins, and other components necessary for cell proliferation and survival in an in vitro environment.
Sourced in United States, China, Germany, United Kingdom, Japan, France, Canada, Australia, Italy, Switzerland, Belgium, New Zealand, Spain, Israel, Sweden, Denmark, Macao, Brazil, Ireland, India, Austria, Netherlands, Holy See (Vatican City State), Poland, Norway, Cameroon, Hong Kong, Morocco, Singapore, Thailand, Argentina, Taiwan, Province of China, Palestine, State of, Finland, Colombia, United Arab Emirates
RPMI 1640 medium is a commonly used cell culture medium developed at Roswell Park Memorial Institute. It is a balanced salt solution that provides essential nutrients, vitamins, and amino acids to support the growth and maintenance of a variety of cell types in vitro.
Sourced in United States, United Kingdom, Germany, France, Canada, Switzerland, Italy, Australia, Belgium, China, Japan, Austria, Spain, Brazil, Israel, Sweden, Ireland, Netherlands, Gabon, Macao, New Zealand, Holy See (Vatican City State), Portugal, Poland, Argentina, Colombia, India, Denmark, Singapore, Panama, Finland, Cameroon
L-glutamine is an amino acid that is commonly used as a dietary supplement and in cell culture media. It serves as a source of nitrogen and supports cellular growth and metabolism.
Sourced in United States, China, United Kingdom, Germany, France, Canada, Japan, Australia, Italy, Switzerland, Belgium, New Zealand, Austria, Netherlands, Israel, Sweden, Denmark, India, Ireland, Spain, Brazil, Norway, Argentina, Macao, Poland, Holy See (Vatican City State), Mexico, Hong Kong, Portugal, Cameroon
RPMI 1640 is a common cell culture medium used for the in vitro cultivation of a variety of cells, including human and animal cells. It provides a balanced salt solution and a source of essential nutrients and growth factors to support cell growth and proliferation.
Sourced in United States, Germany, United Kingdom, Italy, France, Switzerland, Brazil, China, Poland, Macao, Spain, Canada, Japan, Australia, Austria, Belgium, Israel, Sao Tome and Principe, Netherlands, India, Sweden, Ireland, Argentina, Czechia, Denmark, New Zealand, Hungary, Mexico, Holy See (Vatican City State), Ukraine
Penicillin is a type of antibacterial drug that is widely used in medical and laboratory settings. It is a naturally occurring substance produced by certain fungi, and it is effective against a variety of bacterial infections. Penicillin works by inhibiting the growth and reproduction of bacteria, making it a valuable tool for researchers and medical professionals.
Sourced in United States, Germany, United Kingdom, Italy, France, China, Macao, Poland, Switzerland, Spain, Sao Tome and Principe, Japan, Brazil, Canada, Australia, Belgium, Austria, Netherlands, Israel, India, Sweden, Denmark, Ireland, Czechia, Norway, Gabon, Argentina, Portugal, Hungary, Holy See (Vatican City State), Mexico, Ukraine, Slovakia
Streptomycin is a laboratory product manufactured by Merck Group. It is an antibiotic used in research applications.

More about "Penicillins"

Penicillin, a widely used class of β-lactam antibiotics, are a group of antimicrobial agents derived from the Penicillium fungi.
These versatile medications, known for their ability to inhibit bacterial cell wall synthesis, have proven highly effective in treating a diverse range of bacterial infections, including pneumonia, streptococcal diseases, and syphilis.
The core structural feature of penicillins is the distinctive β-lactam ring, which, along with the attached side chain, determines the specific antimicrobial spectrum and pharmacokinetic properties of each penicillin subtype.
This diverse array of penicillin variants allows healthcare providers to tailor treatment to the unique needs of each patient and the causative pathogen.
While generally well-tolerated, penicillins are not without risk, as allergic reactions and the emergence of antibiotic resistance can occur.
Researchers aiming to advance the field of penicillin research can leverage the innovative AI-driven tools offered by PubCompare.ai to streamline their workflow, locate optimal protocols, and enhance the reproducibility and accuracy of their studies.
Penicillin is often used in cell culture media, such as Fetal Bovine Serum (FBS), Dulbecco's Modified Eagle Medium (DMEM), and RPMI 1640 medium, along with other supplements like streptomycin and L-glutamine, to prevent bacterial contamination and support cell growth.
By harnessing the power of PubCompare.ai's cutting-edge technology, researchers can unlock new insights and drive advancements in the field of penicillin-based therapeutics.