The largest database of trusted experimental protocols

Carbon dioxide

Carbon dioxide is a colorless, odorless gas that is essential for photosynthesis and is produced as a byproduct of cellular respiration and combustion.
It plays a crucial role in the Earth's climate and is a greenhouse gas that contributes to global warming.
Carbon dioxide is also used in various industrial and medical applications, such as as a refrigerant, fire extinguisher, and for the carbonation of beverages.
Optimizing research protocols for carbon doxide studies is critical to ensure reproducibility and accuracy, and PubCompare.ai can help researchers identify the best protocols and products for their needs through data-driven insights and AI-powered comparisons.

Most cited protocols related to «Carbon dioxide»

We check the scree plot to choose ten dimension as the intrinsic dimensions to reconstruct the developmental trajectory for the Paul dataset (cells used in Figure 1 of the original study9 (link)). Five branch points and six terminal lineages (monocytes, neutrophils or eosinophil, basophils, dendritic cells, megakaryocytes, and erythrocytes) are revealed. We ordered the cells using genes Paul et al. used to cluster their data rather than the genes from dpFeature, for the sake of consistency with their clusetering analysis. Similarly, we reconstruct Olsson datasets in four dimensions. The major bifurcation between the granulocyte and monocyte branch (GMP) as well as the intricate branch between GMP and megakaryocyte/erythrocyte (Ery/Meg) are revealed. Top 1, 000 genes from dpFeature based on WT cells are used in both of the WT and full datasets. The distribution (related to confusion matrix) of percentages of cells in each cluster from the original papers over each segment (state in Monocle 2) of the principal graph are calculated and visualized in the heatmap.
We applied BEAM analysis to identify genes significantly bifurcating between Ery/Meg and GMP branch on the Olsson wildtype dataset. We then calculate the instant log ratios (ILRs) of gene expression between Ery/Meg and GMP branch and find genes have mean ILR larger than 0.5. The ILRs are defined as:
ILRt=log(Y1tY2t)
So
ILRt is calculated as the log ratio of fitted value at interpolated pseudotime point
t for the Ery/Meg lineage and that for the GMP lineage. Those genes are used to calculate the lineage score (simply calculated as average expression of those genes in each cell, same as stemness score below) for both of the Olsson and the Paul dataset which is used to color the cells in a tree plot transformed from the high dimensional principal graph (see Supplementary Notes). The same genes are used to create the multi-way heatmap for both of the Paul and Olsson dataset (see plot multiple_branches_heatmap function). Critical functional genes from this procedure are identified. Car1, Car2 (important erythroid functional genes for reversible hydration of carbon dioxide) as well as Elane, Prtn3 (important proteases hydrolyze proteins within specialized neutrophil lysosomes as well as proteins of the extracellular matrix) are randomly chosen as example for creating multi-lineage kinetic curves in both of the Olsson and Paul dataset (see plot_multiple_branches_pseudotime function).
In addition, pseudotime dependent genes for the Ery/Meg and GMP branch are identified in the Olsson wildtype dataset. All genes that always have lower expression from both lineages than the average in the progenitor cells are selected. Those genes are used to calculate the stemness score for both of the Olsson and the Paul dataset which is used to color the cells in the tree plot.
Publication 2017
Basophils Carbon dioxide Dendritic Cells Endopeptidases Eosinophil Erythrocytes Extracellular Matrix Proteins Gene Expression Genes Genetic Engineering Granulocyte Kinetics lysosomal proteins Megakaryocytes Monocytes Neutrophil Stem Cells Trees
We check the scree plot to choose ten dimension as the intrinsic dimensions to reconstruct the developmental trajectory for the Paul dataset (cells used in Figure 1 of the original study9 (link)). Five branch points and six terminal lineages (monocytes, neutrophils or eosinophil, basophils, dendritic cells, megakaryocytes, and erythrocytes) are revealed. We ordered the cells using genes Paul et al. used to cluster their data rather than the genes from dpFeature, for the sake of consistency with their clusetering analysis. Similarly, we reconstruct Olsson datasets in four dimensions. The major bifurcation between the granulocyte and monocyte branch (GMP) as well as the intricate branch between GMP and megakaryocyte/erythrocyte (Ery/Meg) are revealed. Top 1, 000 genes from dpFeature based on WT cells are used in both of the WT and full datasets. The distribution (related to confusion matrix) of percentages of cells in each cluster from the original papers over each segment (state in Monocle 2) of the principal graph are calculated and visualized in the heatmap.
We applied BEAM analysis to identify genes significantly bifurcating between Ery/Meg and GMP branch on the Olsson wildtype dataset. We then calculate the instant log ratios (ILRs) of gene expression between Ery/Meg and GMP branch and find genes have mean ILR larger than 0.5. The ILRs are defined as:
ILRt=log(Y1tY2t)
So
ILRt is calculated as the log ratio of fitted value at interpolated pseudotime point
t for the Ery/Meg lineage and that for the GMP lineage. Those genes are used to calculate the lineage score (simply calculated as average expression of those genes in each cell, same as stemness score below) for both of the Olsson and the Paul dataset which is used to color the cells in a tree plot transformed from the high dimensional principal graph (see Supplementary Notes). The same genes are used to create the multi-way heatmap for both of the Paul and Olsson dataset (see plot multiple_branches_heatmap function). Critical functional genes from this procedure are identified. Car1, Car2 (important erythroid functional genes for reversible hydration of carbon dioxide) as well as Elane, Prtn3 (important proteases hydrolyze proteins within specialized neutrophil lysosomes as well as proteins of the extracellular matrix) are randomly chosen as example for creating multi-lineage kinetic curves in both of the Olsson and Paul dataset (see plot_multiple_branches_pseudotime function).
In addition, pseudotime dependent genes for the Ery/Meg and GMP branch are identified in the Olsson wildtype dataset. All genes that always have lower expression from both lineages than the average in the progenitor cells are selected. Those genes are used to calculate the stemness score for both of the Olsson and the Paul dataset which is used to color the cells in the tree plot.
Publication 2017
Basophils Carbon dioxide Dendritic Cells Endopeptidases Eosinophil Erythrocytes Extracellular Matrix Proteins Gene Expression Genes Genetic Engineering Granulocyte Kinetics lysosomal proteins Megakaryocytes Monocytes Neutrophil Stem Cells Trees
Study participants spent approximately 24-h period in a whole-room indirect calorimeter (28 (link)), and followed a structured protocol for simultaneous measurements of PA and EE. The protocol included a broad range of pursuits ranging from moderate and vigorous to light and sedentary tasks, including eating meals and snacks and self-care activities. During times (30 to 120 minutes) when no activity was specifically scheduled, the participants were asked to engage in their normal daily routine as much as possible without specific suggestions. They also recorded their activities in a diary with a detailed schedule, reporting any episodes of accidental monitor nonwear intervals and other relevant comments. Sleep was defined as the period of time spent lying on a mattress at night between 9:00 pm and 6:00 am without any significant movement as determined by the floor (force platform) in the room calorimeter. The participants were instructed how to record their activities in a provided diary with a detailed schedule and a timeline. They checked off each scheduled activity and reported any episodes of accidental monitor nonwear intervals and other relevant information (e.g. treadmill speed) or comments. During the day, staff was available for assistance and the dairy was discussed with each participant after finishing the study.
Body weight was measured to the nearest 0.01 kg with a digital scale and height was measured using a wall-mounted stadiometer. The minute-to-minute EE was calculated from the rates of oxygen consumption and carbon dioxide production (33 (link)). Nonwear EE was calculated by summing EE measured by the room calorimeter during time intervals detected as nonwear by each algorithm.
The PA was measured by commercially available Actigraph GT1M accelerometer (ActiGraph, Pensacola, FL), calibrated by the manufacturer placed on the anterior axillary line of the hip on the dominant side of the body. Among commercially available accelerometers, the Actigraph used in the present study provides consistent and high quality data, supported by its feasibility, reliability and validity (9 (link)). The monitor reports counts from the summation of the measured accelerations over a specified epoch (1 ). Actigraph data were collected at a 1-second epoch and summed as counts per minute.
Publication 2011
Acceleration Accidents Actigraphy Axilla Body Weight Carbon dioxide EPOCH protocol Human Body Light Movement Oxygen Consumption Sleep Snacks TimeLine
With the development of several different commercial systems, measures of energy expenditure in mice are now much more common than 10–15 years ago, but results are sometimes misinterpreted2 –4 (link). Using direct calorimetry, energy expenditure is assessed by the direct measurement of the body’s heat production in a calorimeter21 (link)–23 (link). Despite high reproducibility and measurement errors of only 1–3%, these calorimeters are expensive, have slow response time22 (link) and do not provide information about the nature of the oxidized substrates. In indirect calorimetry, energy expenditure is calculated based on the amount of oxygen consumed and carbon dioxide produced (Supplementary Note 1). The most common indirect calorimeter types are ventilated, open-circuit systems, in which the animals are placed in gas-tight metabolic cages through which a flow of fresh air is passed. The system collects and mixes the expired air, measures the flow rate and analyzes the gas concentration of the incoming and outgoing air for both O2 and CO2 (ref. 22 (link)). Another indirect method of calorimetry is the doubly labeled water method, an isotope-elimination technique developed in the 1950s (refs. 24 (link)–26 ). This method has been traditionally used to measure the metabolic rate of small free-living animals, which are released in the field between two time points: it is often referred to as field metabolic rate27 (link). In the laboratory, the main advantage of the method is that it allows the measurement of energy demands of an animal embedded in a social environment28 (link). However, the time intervals between blood sampling are often too long to permit measurements of short-term or diurnal changes of the metabolic rate.
Publication 2011
Animals Calorimetry Calorimetry, Indirect Carbon dioxide Energy Metabolism Isotopes Measure, Body Mus Thermogenesis
A taxonomy requires a well-defined, structured hierarchy. Following standard notation, we use the term “category” to refer to any chemical class (at any level), each of which corresponds to a set of chemicals. These categories are arranged in a tree structure (Additional file 1). The main relationship type connecting these different categories is the “is_a” relationship. The rationale behind the choice of a tree structure was to provide a detailed annotation represented via a simple data structure, which could be easily understandable by humans. Moreover, as described in the results section, ClassyFire provides a list of all parents of a compound, which makes it easy to infer all of its ancestors. Inspired by the original Linnaean biological taxonomy [4 (link)], we assigned the terms Kingdom, SuperClass, Class, and SubClass to denote the first, second, third and fourth levels of the chemical taxonomy, respectively. The top level (Kingdom) partitions chemicals into two disjoint categories: organic compounds versus inorganic compounds. Organic compounds are defined as chemical compounds whose structure contains one or more carbon atoms. Inorganic compounds are defined as compounds that are not organic, with the exception of a small number of “special” compounds, including, cyanide/isocyanide and their respective non-hydrocarbyl derivatives, carbon monoxide, carbon dioxide, carbon sulfide, and carbon disulfide. For the complete current list of exceptions, please see Additional file 1. The classification of compounds into these two kingdoms aligns with most modern views of chemistry and is easily performed on the basis of a compound’s molecular formula. The other levels in our classification schema depend on much more detailed definitions and rules that are described below. SuperClasses (which includes 26 organic and 5 inorganic categories) consist of generic categories of compounds with general structural identifiers (e.g. organic acids and derivatives, phenylpropanoids and polyketides, organometallic compounds, homogeneous metal compounds), each of which covers millions of known compounds. The next level below the SuperClass level is the Class level, which now includes 764 nodes. Classes typically consist of more specific chemical categories with more specific and recognizable structural features (pyrimidine nucleosides, flavanols, benzazepines, actinide salts). Chemical Classes usually contain >100,000 known compounds. The level below Classes represents SubClasses, which typically consist of >10,000 known compounds. There are 1729 SubClasses in the current taxonomy. Additionally, there are 2296 additional categories below the SubClass level covering taxonomic levels 5–11.
Altogether this extensive chemical taxonomy contains a total of 4825 chemical categories of organic (4146) and inorganic (678) compounds, in addition to the root category (Chemical entities). As a whole, this chemical taxonomy can be represented as a tree with a maximum depth of 11 levels, and an average depth of five levels per node (Fig. 2). As with any structured taxonomy, the creation of a well-defined hierarchical structure offers the possibility to focus on a sub-domain of the chemical space, or a specific level of classification. A more complete description of this taxonomic hierarchy can be found in the Additional file 1: Table S1. The chemical taxonomy and its hierarchical structure provided using the Open Biological and Biomedical Ontologies (OBO) format [33 (link)], which may help with its integration with respect to semantic technology approaches. The resulting OBO file was generated with OBO-Edit [34 (link)], and can be downloaded from the ClassyFire website.

Illustration of the taxonomy as a tree

Full text: Click here
Publication 2016
Acids Actinoid Series Elements Benzazepines Biopharmaceuticals Carbon Carbon dioxide Carbon disulfide carbon sulfide Cortodoxone Cyanides derivatives fluoromethyl 2,2-difluoro-1-(trifluoromethyl)vinyl ether Generic Drugs Homo Inorganic Chemicals Isocyanides Metals Monoxide, Carbon Organic Chemicals Organometallic Compounds Parent Plant Roots Polyketides Pyrimidine Nucleosides Salts Trees

Most recents protocols related to «Carbon dioxide»

Example 1

In a 2 L stainless steel container, 730 g of aluminum hydroxide powder (commercially available from KANTO CHEMICAL CO., INC., Cica special grade) were added into 1110 mL of 48% sodium hydroxide solution (commercially available from KANTO CHEMICAL CO., INC., Cica special grade), and they were stirred at 124° C. for 1 hour to give a sodium aluminate solution (First Step).

After the sodium aluminate solution was cooled to 80° C., ion exchange water was added into the sodium aluminate solution to achieve a total amount of 1500 mL.

After 96 mL of the sodium aluminate solution were separated into a 1 L stainless steel container, pure water was added into the solution to achieve a total amount of 730 mL (concentration of the sodium aluminate solution: 0.8 mol/L). The solution was stirred with keeping a temperature thereof at 25° C., and the solution was aerated with carbon dioxide in an aeration amount of 0.7 L/min. for 60 minutes to give adjusted aluminum hydroxide slurry (low-crystallinity aluminum compound=pseudo-boehmite) (Second Step).

Separately, 49.5 g of magnesium oxide powder (commercially available from KANTO CHEMICAL CO., INC., special grade) were added to 327 mL of pure water, and they were stirred for 1 hour to give magnesium oxide slurry.

In a 1.5 L stainless steel container, the magnesium oxide slurry and the adjusted aluminum hydroxide slurry were added into 257 mL of pure water, and they were stirred at 55° C. for 90 minutes to cause a first-order reaction. As a result, a reactant containing hydrotalcite nuclear particles was prepared (Third Step).

Then, pure water was added to the reactant to give a solution in a total amount of 1 L. The solution was put into a 2 L autoclave, and a hydrothermal synthesis was performed at 160° C. for 7 hours. As a result, hydrotalcite particles slurry was synthesized (Fourth Step).

To the hydrotalcite particles slurry were added 4.3 g of stearic acid (3 parts by mass with respect to 100 parts by mass of hydrotalcite particles) with keeping a temperature of the hydrotalcite particles slurry at 95° C. to perform a surface treatment on particles (Fifth Step). After the hydrotalcite particles slurry of which particles were surface treated was filtered and washed, a drying treatment was performed at 100° C. to give solid products of hydrotalcite particles. The produced hydrotalcite particles were subjected to an elemental analysis, resulting in that Mg/Al (molar ratio)=2.1.

In accordance with a method of Example 1 described in Japanese Laid-Open Patent Publication No. 2003-048712, hydrotalcite particles were synthesized.

In 150 g/L of NaOH solution in an amount of 3 L were dissolved 90 g of metal aluminum to give a solution. After 399 g of MgO were added to the solution, 174 g of Na2CO3 were added thereto and they were reacted with each other for 6 hours with stirring at 95° C. As a result, hydrotalcite particles slurry was synthesized.

To the hydrotalcite particles slurry were added 30 g of stearic acid (3 parts by mass with respect to 100 parts by mass of hydrotalcite particles) with keeping a temperature of the hydrotalcite particles slurry at 95° C. to perform a surface treatment on particles. After the hydrotalcite particles slurry of which particles were surface treated was cooled, filtered and washed to give solid matters, a drying treatment was performed on the solid matters at 100° C. to give solid products of hydrotalcite particles.

Example 2

In a 2 L stainless steel container, 730 g of aluminum hydroxide powder (commercially available from KANTO CHEMICAL CO., INC., Cica special grade) were added into 1110 mL of 48% sodium hydroxide solution (commercially available from KANTO CHEMICAL CO., INC., Cica special grade), and they were stirred at 124° C. for 1 hour to give a sodium aluminate solution (First Step).

After the sodium aluminate solution was cooled to 80° C., ion exchange water was added into the sodium aluminate solution to achieve a total amount of 1500 mL.

After 96 mL of the sodium aluminate solution were separated into a 1 L stainless steel container, pure water was added into the solution to achieve a total amount of 730 mL (concentration of the sodium aluminate solution: 0.8 mol/L). The solution was stirred with keeping a temperature thereof at 30° C., and the solution was aerated with carbon dioxide in an aeration amount of 0.7 L/min. for 90 minutes to give adjusted aluminum hydroxide slurry (low-crystallinity aluminum compound=pseudo-boehmite) (Second Step).

Separately, 49.5 g of magnesium oxide powder (commercially available from KANTO CHEMICAL CO., INC., special grade) were added to 327 mL of pure water, and they were stirred for 1 hour to give magnesium oxide slurry.

In a 1.5 L stainless steel container, the magnesium oxide slurry and the adjusted aluminum hydroxide slurry were added into 257 mL of pure water, and they were stirred at 55° C. for 90 minutes to cause a first-order reaction. As a result, a reactant containing hydrotalcite nuclear particles was prepared (Third Step).

Then, pure water was added to the reactant to give a solution in a total amount of 1 L. The solution was put into a 2 L autoclave, and a hydrothermal synthesis was performed at 160° C. for 7 hours. As a result, hydrotalcite particles slurry was synthesized (Fourth Step).

To the hydrotalcite particles slurry were added 4.3 g of stearic acid (3 parts by mass with respect to 100 parts by mass of hydrotalcite particles) with keeping a temperature of the hydrotalcite particles slurry at 95° C. to perform a surface treatment on particles (Fifth Step). After the hydrotalcite particles slurry of which particles were surface treated was filtered and washed, a drying treatment was performed at 100° C. to give solid products of hydrotalcite particles.

Solid products of hydrotalcite particles were produced in a same manner as in Comparative Example 1 except that reaction conditions of 95° C. and 6 hours for synthesis of the hydrotalcite particles slurry in Comparative Example 1 were changed to hydrothermal reaction conditions of 170° C. and 6 hours.

Example 3

In a 2 L stainless steel container, 730 g of aluminum hydroxide powder (commercially available from KANTO CHEMICAL CO., INC., Cica special grade) were added into 1110 mL of 48% sodium hydroxide solution (commercially available from KANTO CHEMICAL CO., INC., Cica special grade), and they were stirred at 124° C. for 1 hour to give a sodium aluminate solution (First Step).

After the sodium aluminate solution was cooled to 80° C., ion exchange water was added into the sodium aluminate solution to achieve a total amount of 1500 mL.

After 96 mL of the sodium aluminate solution were separated into a 1 L stainless steel container, pure water was added into the solution to achieve a total amount of 730 mL (concentration of the sodium aluminate solution: 0.8 mol/L). The solution was stirred with keeping a temperature thereof at 60° C., and the solution was aerated with carbon dioxide in an aeration amount of 0.7 L/min. for 60 minutes to give adjusted aluminum hydroxide slurry (low-crystallinity aluminum compound=pseudo-boehmite) (Second Step).

Separately, 49.5 g of magnesium oxide powder (commercially available from KANTO CHEMICAL CO., INC., special grade) were added to 327 mL of pure water, and they were stirred for 1 hour to give magnesium oxide slurry.

In a 1.5 L stainless steel container, the magnesium oxide slurry and the adjusted aluminum hydroxide slurry were added into 257 mL of pure water, and they were stirred at 55° C. for 90 minutes to cause a first-order reaction. As a result, a reactant containing hydrotalcite nuclear particles was prepared (Third Step).

Then, pure water was added to the reactant to give a solution in a total amount of 1 L. The solution was put into a 2 L autoclave, and a hydrothermal synthesis was performed at 160° C. for 7 hours. As a result, hydrotalcite particles slurry was synthesized (Fourth Step).

To the hydrotalcite particles slurry were added 4.3 g of stearic acid (3 parts by mass with respect to 100 parts by mass of hydrotalcite particles) with keeping a temperature of the hydrotalcite particles slurry at 95° C. to perform a surface treatment on particles (Fifth Step). After the hydrotalcite particles slurry of which particles were surface treated was filtered and washed, a drying treatment was performed at 100° C. to give solid products of hydrotalcite particles.

In accordance with a method of Example 1 described in Japanese Laid-Open Patent Publication No. 2013-103854, hydrotalcite particles were synthesized.

Into a 5 L container were added 447.3 g of magnesium hydroxide (d50=4.0 μm) and 299.2 g of aluminum hydroxide (d50=8.0 μm), and water was added thereto to achieve a total amount of 3 L. They were stirred for 10 minutes to prepare slurry. The slurry had physical properties of d50=10 μm and d90=75 μm. Then, the slurry was subjected to wet grinding for 18 minutes (residence time) by using Dinomill MULTILAB (wet grinding apparatus) with controlling a slurry temperature during grinding by using a cooling unit so as not to exceed 40° C. As a result, ground slurry had physical properties of d50=1.0 μm, d90=3.5 μm, and slurry viscosity=5000 cP. Then, sodium hydrogen carbonate was added to 2 L of the ground slurry such that an amount of the sodium hydrogen carbonate was ½ mole with respect to 1 mole of the magnesium hydroxide. Water was added thereto to achieve a total amount of 8 L, and they were stirred for 10 minutes to give slurry. Into an autoclave was put 3 L of the slurry, and a hydrothermal reaction was caused at 170° C. for 2 hours. As a result, hydrotalcite particles slurry was synthesized.

To the hydrotalcite particles slum were added 6.8 g of stearic acid (3 parts by mass with respect to 100 parts by mass of hydrotalcite particles) with keeping a temperature of the hydrotalcite particles slurry at 95° C. to perform a surface treatment on particles. After solids were filtered by filtration, the filtrated cake was washed with 9 L of ion exchange water at 35° C. The filtrated cake was further washed with 100 mL of ion exchange water, and a conductance of water used for washing was measured. As a result, the conductance of this water was 50 μS/sm (25° C.). The water-washed cake was dried at 100° C. for 24 hours and was ground to give solid products of hydrotalcite particles.

Example 5

In a 2 L stainless steel container, 730 g of aluminum hydroxide powder (commercially available from KANTO CHEMICAL CO., INC., Cica special grade) were added into 1110 mL of 48% sodium hydroxide solution (commercially available from KANTO CHEMICAL CO., INC., Cica special grade), and they were stirred at 124° C. for 1 hour to give a sodium aluminate solution (First Step).

After the sodium aluminate solution was cooled to 80° C., ion exchange water was added into the sodium aluminate solution to achieve a total amount of 1500 mL.

After 192 mL of the sodium aluminate solution were separated into a 1 L stainless steel container, pure water was added into the solution to achieve a total amount of 730 mL (concentration of the sodium aluminate solution: 1.6 mol/L). The solution was stirred with keeping a temperature thereof at 30° C., and the solution was aerated with carbon dioxide in an aeration amount of 0.7 L/min. for 90 minutes to give adjusted aluminum hydroxide slurry (low-crystallinity aluminum compound=pseudo-boehmite) (Second Step).

Separately, 49.5 g of magnesium oxide powder (commercially available from KANTO CHEMICAL CO., INC., special grade) were added to 327 mL of pure water, and they were stirred for 1 hour to give magnesium oxide slurry.

In a 1.5 L stainless steel container, the magnesium oxide slurry and the adjusted aluminum hydroxide slurry were added into 257 mL of pure water, and they were stirred at 55° C. for 90 minutes to cause a first-order reaction. As a result, a reactant containing hydrotalcite nuclear particles was prepared (Third Step).

Then, pure water was added to the reactant to give a solution in a total amount of 1 L. The solution was put into a 2 L autoclave, and a hydrothermal synthesis was performed at 160° C. for 7 hours. As a result, hydrotalcite particles slurry was synthesized (Fourth Step).

To the hydrotalcite particles slurry were added 4.3 g of stearic acid (3 parts by mass with respect to 100 parts by mass of hydrotalcite particles) with keeping a temperature of the hydrotalcite particles slurry at 95° C. to perform a surface treatment on particles (Fifth Step). After the hydrotalcite particles slurry of which particles were surface treated was filtered and washed, a drying treatment was performed at 100° C. to give solid products of hydrotalcite particles.

In accordance with a method of Example 1 described in Japanese Laid-Open Patent Publication No. H06-136179, hydrotalcite particles were synthesized.

To 1 L of water were added 39.17 g of sodium hydroxide and 11.16 g of sodium carbonate with stirring, and they were heated to 40° C. Then, to 500 mL of distilled water were added 61.28 g of magnesium chloride (19.7% as MgO), 37.33 g of aluminum chloride (20.5% as Al2O3), and 2.84 g of ammonium chloride (31.5% as NH3) such that a molar ratio of Mg to Al, Mg/Al, was 2.0 and a molar ratio of NH3 to Al, NH3/Al, was 0.35. As a result, an aqueous solution A was prepared. The aqueous solution A was gradually poured into a reaction system of the sodium hydroxide and the sodium carbonate. The reaction system after pouring had pH of 10.2. Moreover, a reaction of the reaction system was caused at 90° C. for about 20 hours with stirring to give hydrotalcite particles slurry.

To the hydrotalcite particles slurry were added 1.1 g of stearic acid, and a surface treatment was performed on particles with stirring to give a reacted suspension. The reacted suspension was subjected to filtration and water washing, and then the reacted suspension was subjected to drying at 70° C. The dried suspension was ground by a compact sample mill to give solid products of hydrotalcite particles.

Full text: Click here
Patent 2024
A-A-1 antibiotic Aluminum Aluminum Chloride aluminum oxide hydroxide Anabolism Bicarbonate, Sodium Carbon dioxide Chloride, Ammonium Filtration hydrotalcite Hydroxide, Aluminum Ion Exchange Japanese Magnesium Chloride Magnesium Hydroxide Molar Oxide, Magnesium Physical Processes Powder Resins, Plant sodium aluminate sodium carbonate Sodium Hydroxide Stainless Steel stearic acid Suby's G solution Viscosity

Example 16

Re(bpy)(CO)3{O—CO—OCH2CH2N(CH2CH2OH)2}

To a DMF solution (2 mL) containing [Re(bpy)(CO) 3 (DMF)]+, triethanolamine (TEOA, 200 μL) was added. The resultant was allowed to stand still for 12 hours to partially replace a DMF ligand with TEOA, and thus, the resultant was changed to an equilibrium mixture of [Re(bpy)(CO)3(DMF)]+ and Re(bpy)(CO)3(TEOA).

[Figure (not displayed)]

Through the resultant solution, CO2 was allowed to pass for 30 minutes. At this point, Re(bpy)(CO)3OCO2H was precipitated and hence was filtered off, and the resultant filtrate was used as a sample solution for an NMR spectrum.

1H NMR in DMF-d7-TEOA (10:1 v/v) (500 MHz): δ (ppm)=9.19 (ddd, 2H, J=0.5, 1.0, 5.5 Hz, bpy-6,6′), 8.82 (d, 2H, J=8.0 Hz, bpy-3,3′), 8.42 (ddd, 2H, J=1.0, 8.0, 8.0 Hz, bpy-4,4′), 7.87 (ddd, 2H, J=1.0, 5.5, 8.0 Hz, bpy-5,5′)

13C NMR in DMF-d7-TEOA (10:1 v/v) (126 MHz) δ (ppm)=198.4, 194.4, 158.4 (C═O), 156.0, 153.8, 140.9, 128.0, 124.4

FT-IR in DMF-TEOA (5:1 v/v) ν(CO)/cm−1: 2020, 1915, 1892

ESI-MS in MeCN m/z=620 [M+H+—PF6]+, 642 [M+Na+—PF-]+

Full text: Click here
Patent 2024
1H NMR Carbon-13 Magnetic Resonance Spectroscopy Carbon-16 Carbon dioxide FT-124 Ligands triethanolamine

Example 13

Re(bpy)(CO)3(OH)

An acetone/water mixed solution (4:3 v/v, 70 mL) containing Re(bpy)(CO)3(OTf) (303 mg, 5.21×10−1 mmol) and potassium hydroxide (1.35 g, 24.1×10 mmol) was heated to reflux overnight. The acetone was slowly distilled off under reduced pressure, and a yellow solid thus separated was filtered off and dried under reduced pressure.

Yield: 120 mg (2.71×10−1 mmol), Yield: 51.5%

Full text: Click here
Patent 2024
Acetone Carbon-13 Carbon dioxide potassium hydroxide Pressure

Example 15

[Re(bpy)(CO)3(DMF)](PF6)

[Re(bpy)(CO)3(MeCN)](PF6) (56.3 mg, 92.0 μmol) was dissolved in DMF-d7, and the resultant was allowed to stand still in a dark place under Ar atmosphere for 12 hours to completely replace a MeCN ligand with DMF.

1H NMR in DMF-d7 (500 MHz): δ (ppm)=9.27 (ddd, 2H, J=0.5, 1.0, 5.5 Hz, bpy-6,6′), 8.95 (d, 2H, J=8.0 Hz, bpy-3,3′), 8.54 (ddd, 2H, J=1.0, 8.0, 8.0 Hz, bpy-4,4′), 7.97 (ddd, 2H, J=1.0, 5.5, 8.0 Hz, bpy-5,5′)

13C NMR in DMF-d, (126 MHz): δ (ppm)=196.9, 193.2, 156.5, 154.9, 142.0, 128.9, 125.2

FT-IR in DMF ν(CO)/cm−1: 2029, 1922, 1913

Full text: Click here
Patent 2024
1H NMR AR-12 compound Atmosphere Carbon-13 Magnetic Resonance Spectroscopy Carbon dioxide IR125 Ligands
Not available on PMC !

Example 10

Re(bpy)(CO)3(OCOH) (Sometimes Abbreviated as Re—OCOH)

An ethanol/water mixed solution (1:1 v/v, 50 mL) containing Re(bpy)(CO)3Br (301 mg, 5.95×10−1 mmol) and an excessive amount of sodium formate (4.05 g, 59.6 mmol) was heated to reflux overnight. The ethanol was slowly distilled off under reduced pressure. Dichloromethane was added thereto, and the resultant was extracted with water three times. After distilling off the solvent of the thus obtained organic layer under reduced pressure, the resultant was recrystallized from acetone/diethyl ether/hexane, and a yellow solid thus obtained was dried under reduced pressure.

Yield: 70.4 mg (1.49×10−1 mmol), Yield: 25.1%

ESI-MS in MeCN m/z=626 [M-PF6+]+

FT-IR in CH2Cl2 ν(CO)/cm−1: 2022, 1918, 1896

1H-NMR in CD3CN (298 MHz): δ (ppm)=9.02 (dd, 2H, J=5.6, 1.6 Hz, bpy-6,6′), 8.40 (dd, 2H, J=8.3, 1.1 Hz, bpy-3,3′), 8.20 (ddd, 2H, J=8.3, 8.3, 1.6 Hz, bpy-4,4′), 7.61 (ddd, 2H, J=8.3, 5.6, 1.1 Hz, bpy-5,5′), 7.81 (s, 1H, HCOO)

Elemental analysis: Calcd. (%) for C14H9N2O5Re: C, 35.67; H, 1.92; N, 5.94.

Found: C, 35.63; H, 1.82; N, 6.01

Full text: Click here
Patent 2024
1H NMR Acetone Carbon-10 Carbon dioxide Ethanol Ethyl Ether formic acid, sodium salt Methylene Chloride n-hexane Pressure Solvents

Top products related to «Carbon dioxide»

Sourced in United States, China, United Kingdom, Germany, Australia, Japan, Canada, Italy, France, Switzerland, New Zealand, Brazil, Belgium, India, Spain, Israel, Austria, Poland, Ireland, Sweden, Macao, Netherlands, Denmark, Cameroon, Singapore, Portugal, Argentina, Holy See (Vatican City State), Morocco, Uruguay, Mexico, Thailand, Sao Tome and Principe, Hungary, Panama, Hong Kong, Norway, United Arab Emirates, Czechia, Russian Federation, Chile, Moldova, Republic of, Gabon, Palestine, State of, Saudi Arabia, Senegal
Fetal Bovine Serum (FBS) is a cell culture supplement derived from the blood of bovine fetuses. FBS provides a source of proteins, growth factors, and other components that support the growth and maintenance of various cell types in in vitro cell culture applications.
Sourced in United States, China, United Kingdom, Germany, France, Australia, Canada, Japan, Italy, Switzerland, Belgium, Austria, Spain, Israel, New Zealand, Ireland, Denmark, India, Poland, Sweden, Argentina, Netherlands, Brazil, Macao, Singapore, Sao Tome and Principe, Cameroon, Hong Kong, Portugal, Morocco, Hungary, Finland, Puerto Rico, Holy See (Vatican City State), Gabon, Bulgaria, Norway, Jamaica
DMEM (Dulbecco's Modified Eagle's Medium) is a cell culture medium formulated to support the growth and maintenance of a variety of cell types, including mammalian cells. It provides essential nutrients, amino acids, vitamins, and other components necessary for cell proliferation and survival in an in vitro environment.
Sourced in United States, Germany, United Kingdom, China, Canada, France, Japan, Australia, Switzerland, Israel, Italy, Belgium, Austria, Spain, Gabon, Ireland, New Zealand, Sweden, Netherlands, Denmark, Brazil, Macao, India, Singapore, Poland, Argentina, Cameroon, Uruguay, Morocco, Panama, Colombia, Holy See (Vatican City State), Hungary, Norway, Portugal, Mexico, Thailand, Palestine, State of, Finland, Moldova, Republic of, Jamaica, Czechia
Penicillin/streptomycin is a commonly used antibiotic solution for cell culture applications. It contains a combination of penicillin and streptomycin, which are broad-spectrum antibiotics that inhibit the growth of both Gram-positive and Gram-negative bacteria.
Sourced in United States, United Kingdom, Germany, China, France, Canada, Japan, Australia, Switzerland, Italy, Israel, Belgium, Austria, Spain, Brazil, Netherlands, Gabon, Denmark, Poland, Ireland, New Zealand, Sweden, Argentina, India, Macao, Uruguay, Portugal, Holy See (Vatican City State), Czechia, Singapore, Panama, Thailand, Moldova, Republic of, Finland, Morocco
Penicillin is a type of antibiotic used in laboratory settings. It is a broad-spectrum antimicrobial agent effective against a variety of bacteria. Penicillin functions by disrupting the bacterial cell wall, leading to cell death.
Sourced in United States, United Kingdom, Germany, China, France, Canada, Australia, Japan, Switzerland, Italy, Belgium, Israel, Austria, Spain, Netherlands, Poland, Brazil, Denmark, Argentina, Sweden, New Zealand, Ireland, India, Gabon, Macao, Portugal, Czechia, Singapore, Norway, Thailand, Uruguay, Moldova, Republic of, Finland, Panama
Streptomycin is a broad-spectrum antibiotic used in laboratory settings. It functions as a protein synthesis inhibitor, targeting the 30S subunit of bacterial ribosomes, which plays a crucial role in the translation of genetic information into proteins. Streptomycin is commonly used in microbiological research and applications that require selective inhibition of bacterial growth.
Sourced in United States, China, Germany, United Kingdom, Japan, France, Canada, Australia, Italy, Switzerland, Belgium, New Zealand, Spain, Israel, Sweden, Denmark, Macao, Brazil, Ireland, India, Austria, Netherlands, Holy See (Vatican City State), Poland, Norway, Cameroon, Hong Kong, Morocco, Singapore, Thailand, Argentina, Taiwan, Province of China, Palestine, State of, Finland, Colombia, United Arab Emirates
RPMI 1640 medium is a commonly used cell culture medium developed at Roswell Park Memorial Institute. It is a balanced salt solution that provides essential nutrients, vitamins, and amino acids to support the growth and maintenance of a variety of cell types in vitro.
Sourced in United States, China, United Kingdom, Germany, France, Canada, Japan, Australia, Italy, Switzerland, Belgium, New Zealand, Austria, Netherlands, Israel, Sweden, Denmark, India, Ireland, Spain, Brazil, Norway, Argentina, Macao, Poland, Holy See (Vatican City State), Mexico, Hong Kong, Portugal, Cameroon
RPMI 1640 is a common cell culture medium used for the in vitro cultivation of a variety of cells, including human and animal cells. It provides a balanced salt solution and a source of essential nutrients and growth factors to support cell growth and proliferation.
Sourced in United States, United Kingdom, Germany, France, Canada, Switzerland, Italy, Australia, Belgium, China, Japan, Austria, Spain, Brazil, Israel, Sweden, Ireland, Netherlands, Gabon, Macao, New Zealand, Holy See (Vatican City State), Portugal, Poland, Argentina, Colombia, India, Denmark, Singapore, Panama, Finland, Cameroon
L-glutamine is an amino acid that is commonly used as a dietary supplement and in cell culture media. It serves as a source of nitrogen and supports cellular growth and metabolism.
Sourced in United States, Germany, United Kingdom, Japan, Italy, China, Macao, Switzerland, France, Canada, Sao Tome and Principe, Spain, Australia, Ireland, Poland, Belgium, Denmark, India, Sweden, Israel, Austria, Brazil, Czechia, Netherlands, Portugal, Norway, Holy See (Vatican City State), New Zealand, Hungary, Senegal, Argentina, Thailand, Singapore, Ukraine, Mexico
FBS, or Fetal Bovine Serum, is a commonly used cell culture supplement. It is derived from the blood of bovine fetuses and provides essential growth factors, hormones, and other nutrients to support the growth and proliferation of a wide range of cell types in vitro.
Sourced in United States, Germany, United Kingdom, Italy, France, China, Macao, Poland, Switzerland, Spain, Sao Tome and Principe, Japan, Brazil, Canada, Australia, Belgium, Austria, Netherlands, Israel, India, Sweden, Denmark, Ireland, Czechia, Norway, Gabon, Argentina, Portugal, Hungary, Holy See (Vatican City State), Mexico, Ukraine, Slovakia
Streptomycin is a laboratory product manufactured by Merck Group. It is an antibiotic used in research applications.

More about "Carbon dioxide"

Carbon dioxide (CO2) is a vital, colorless, and odorless gas that plays a crucial role in numerous biological and environmental processes.
As a byproduct of cellular respiration and combustion, CO2 is essential for photosynthesis, the process by which plants and some microorganisms convert light energy into chemical energy.
This greenhouse gas is a significant contributor to the Earth's climate, and its increasing concentrations have become a major concern due to its role in global warming.
Beyond its environmental significance, CO2 has various industrial and medical applications.
It is utilized as a refrigerant, fire extinguisher, and for the carbonation of beverages.
In the medical field, CO2 is used in certain procedures, such as for the preservation of cells and tissues in cell culture media, like DMEM, RPMI 1640, and those containing L-glutamine, penicillin, and streptomycin.
Optimizing research protocols for CO2 studies is crucial to ensure reproducibility and accuracy.
Researchers can leverage data-driven insights and AI-powered comparisons provided by platforms like PubCompare.ai to identify the best protocols and products for their specific needs.
This empowers them to take their carbon dioxide research to new heights, unlocking the full potential of this versatile and important gas.