The largest database of trusted experimental protocols

Chlorophyll

Chlorophyll is a green pigment found in plants, algae, and cyanobacteria that is essential for photosynthesis.
It absorbs sunlight and converts it into chemical energy, allowing plants to grow and thrive.
Chlorophyll comes in several forms, with chlorophyll a and b being the most common.
Reserarch into chlorophyll and its properties can provide insights into plant biology, enviromental science, and potential medical applications.
Optimizing chlorophyll research protocols can be streamlined using AI-driven platforms like PubCompare.ai, which leverage comparisons across literature, preprints, and patents to identify the best methods and products.

Most cited protocols related to «Chlorophyll»

Discs of 16 mm diameter (2 cm2) were used for the extraction. The exact point where sensor measurements were performed was sampled in order to mitigate for leaf heterogeneity. The sensing surface of SPAD is 2 mm × 3 mm, compared to a 10 mm diameter for CCM (Opti-Sciences, Hudson, NH ) and a 6 mm diameter for Dx4 (FORCE-A, Orsay, France). For chlorophyll estimation, measurements were always performed with the adaxial leaf side facing the light sources. Leaf discs were collected immediately after measurements, frozen in liquid nitrogen and stored at – 80°C until further processing. Discs were powdered in liquid nitrogen and extracted three times with methanol (3 × 1.5 ml) containing CaCO3. Supernatants of the three centrifugations (10 000 g, 5 min) were grouped and topped to 5 ml, then centrifuged again at 4100 g for 5 min. The extinction coefficients for pure methanol of Porra et al. (1989) were used to calculate the Chl concentration in the extracts (in µg cm–2):

where A stands for absorbance in a 1-cm cuvette at the specified wavelength (spectrophotometer HP 8453, Agilent, les Ulis, France).
LMA was estimated for each leaf by sampling a second 16-mm-diameter disc adjacent to the one used for Chl estimation. The disc was dried at 60°C for 48 h and weighed.
Full text: Click here
Publication 2012
Carbonate, Calcium Centrifugation Chlorophyll Extinction, Psychological Freezing Genetic Heterogeneity Light Methanol Nitrogen Plant Leaves SPAD
Exposure to vegetation around each participant’s home address was estimated using a satellite image–based vegetation index. Chlorophyll in plants absorbs visible light (0.4–0.7 μm) for use in photosynthesis, whereas leaves reflect near-infrared light (0.7–1.1 μm). The Normalized Difference Vegetation Index (NDVI) calculates the ratio of the difference between the near-infrared region and red reflectance to the sum of these two measures and ranges from –1.0 to 1.0, with larger values indicating higher levels of vegetative density (Kriegler et al. 1969 ). For this study, we used data from the Moderate-resolution Imaging Spectroradiometer (MODIS) from NASA’s Terra satellite. MODIS provides images every 16 days at a 250-m resolution (Carroll et al. 2004 ).
We used geographic information systems (GIS) software from ArcMap (ESRI, Redlands, CA) to estimate the mean NDVI value inside radii of 250- and 1,250-m buffers around each participant’s home. We chose the 250-m radius as a measure of greenness directly accessible outside each home and the 1,250-m radius as a measure of greenness within a 10- to 15-min walk based on prior work within the Nurses’ Health Study cohorts on neighborhood environments and health behaviors (James et al. 2014 (link)). We created a seasonally time-varying measure based on the NDVI for a representative month in each season (January, April, July, and October) (Figure 1B–D). Two exposure metrics were calculated for each radius: contemporaneous NDVI (the greenness value for the current season), to reflect short-term exposure to greenness, and cumulative average NDVI (updated based on changes in seasonal NDVI as well as on changes in address), to reflect long-term exposure to greenness. For both exposure metrics, exposures were updated as NDVI changed over time as well as when participants moved to new residential addresses (updated based on the receipt of a biennial questionnaire with a new residential address).
Full text: Click here
Publication 2016
Buffers Chlorophyll Infrared Rays Light, Visible Nurses Photosynthesis Plants Radius
Growth was measured in terms of fresh weight. Seedlings were selected randomly from control and treated samples and then their fresh weight was determined. For the estimation of photosynthetic pigments (total chlorophyll, chlorophyll a + chlorophyll b), the method of Lichtenthaler (1987) (link) was adopted. For the assessment of photosynthetic performance, chlorophyll a fluorescence measurements were taken in the dark adapted leaves of control and treated seedlings using hand held leaf fluorometer (FluorPen FP 100, Photos System Instrument, Czech Republic). The estimation of NO was performed according to the method of Zhou et al. (2005) (link) as described in Singh et al. (2015) (link).
Full text: Click here
Publication 2017
ARID1A protein, human Chlorophyll Chlorophyll A chlorophyll b Fluorescence Photosynthesis Pigmentation Plant Leaves Seedlings
First screening was performed using a microplate reader (EnSpire; PerkinElmer) for rosette leaves from A. thaliana. Leaves were fixed with 4% (w/v) PFA for 120 min in PBS under vacuum. Fixed leaves were washed in PBS and incubated with 400 µl screening chemical solutions (Table S1) in 96-well plates. After 7 days of incubation, 200 µl were transferred into new 96-well plates and chlorophyll fluorescence measured at 680 nm emission with 415 nm excitation.
The fluorescence stability of Venus in chemical solutions was measured with a microplate reader. To prepare the recombinant Venus protein, the full-length coding region of Venus was cloned into the pCold I expression vector (Takara). The recombinant Venus protein was expressed in Escherichia coli strain Rosetta-gami2 (DE3) pLysS (Novagen). After induction with 1 mM isopropyl-β-D-thiogalactopyranoside at 15°C overnight, cells were harvested and lysed in 20 mM phosphate buffer containing 500 mM NaCl, 5 mM imidazole, 1 mM 2-mercaptoethanol, and cOmplete Protease Inhibitor Cocktails (Roche). After sonication and centrifugation, the supernatants were collected. Recombinant Venus was incubated in chemical solutions for 24 h and the fluorescence intensity was measured at 515 nm emission with 485 nm excitation. The refractive index of ClearSee was measured by a digital refractometer (AR200; Reichert).
Full text: Click here
Publication 2015
2-Mercaptoethanol Buffers Cells Centrifugation Chlorophyll ClearSee Cloning Vectors Escherichia coli Fingers Fluorescence imidazole Phosphates Protease Inhibitors Recombinant Proteins Sodium Chloride Strains Vacuum
Allotetraploids were resynthesized as previously described1 (link),4 (link), and hybrids were made by crossing C24 with Columbia. Unless noted otherwise, 8−15 plants (grown under 22°C and 16-hour light/day) from each of 2−3 biological replications were pooled for the analysis of DNA, RNA, protein, chlorophyll, starch, and sugar. TOC1:CCA1 and TOC1:cca1-RNAi transgenic plants were produced using pEarlygate303 (CD694) and pCAMBIA (CD3−447) derivatives, respectively. cca1−11 (CS9378) and ccal-11 lhy-21 (CS9380) mutants9 (link),22 (link),29 (link) were obtained from ABRC. Protein blot, EMSA, and ChIP assays were performed as previously described17 (link),18 (link).
Full Methods and any associated references are available in the online version of the paper at www.nature.com/nature.
Publication 2008
Biopharmaceuticals Carbohydrates Chlorophyll derivatives DNA Replication Electrophoretic Mobility Shift Assay Hybrids Immunoprecipitation, Chromatin Light Plants Plants, Transgenic Proteins RNA Interference Starch

Most recents protocols related to «Chlorophyll»

Example 2

A. Seed Treatment with Isolated Microbe

In this example, an isolated microbe from Tables 1-3 will be applied as a seed coating to seeds of corn (Zea mays). Upon applying the isolated microbe as a seed coating, the corn will be planted and cultivated in the standard manner.

A control plot of corn seeds, which did not have the isolated microbe applied as a seed coating, will also be planted.

It is expected that the corn plants grown from the seeds treated with the seed coating will exhibit a quantifiably higher biomass than the control corn plants.

The biomass from the treated plants may be about 1-10% higher, 10-20% higher, 20-30% higher, 30-40% higher, 40-50% higher, 50-60% higher, 60-70% higher, 70-80% higher, 80-90% higher, or more.

The biomass from the treated plants may equate to about a 1 bushel per acre increase over the controls, or a 2 bushel per acre increase, or a 3 bushel per acre increase, or a 4 bushel per acre increase, or a 5 bushel per acre increase, or more.

In some aspects, the biomass increase is statistically significant. In other aspects, the biomass increase is not statistically significant, but is still quantifiable.

B. Seed Treatment with Microbial Consortia

In this example, a microbial consortium, comprising at least two microbes from Tables 1-3 will be applied as a seed coating to seeds of corn (Zea mays). Upon applying the microbial consortium as a seed coating, the corn will be planted and cultivated in the standard manner.

A control plot of corn seeds, which did not have the microbial consortium applied as a seed coating, will also be planted.

It is expected that the corn plants grown from the seeds treated with the seed coating will exhibit a quantifiably higher biomass than the control corn plants.

The biomass from the treated plants may be about 1-10% higher, 10-20% higher, 20-30% higher, 30-40% higher, 40-50% higher, 50-60% higher, 60-70% higher, 70-80% higher, 80-90% higher, or more.

The biomass from the treated plants may equate to about a 1 bushel per acre increase over the controls, or a 2 bushel per acre increase, or a 3 bushel per acre increase, or a 4 bushel per acre increase, or a 5 bushel per acre increase, or more.

In some aspects, the biomass increase is statistically significant. In other aspects, the biomass increase is not statistically significant, but is still quantifiable.

C. Treatment with Agricultural Composition Comprising Isolated Microbe

In this example, an isolated microbe from Tables 1-3 will be applied as an agricultural composition, administered to the corn seed at the time of sowing.

For example, it is anticipated that a farmer will apply the agricultural composition to the corn seeds simultaneously upon planting the seeds into the field. This can be accomplished, for example, by applying the agricultural composition to a hopper/bulk tank on a standard 16 row planter, which contains the corn seeds and which is configured to plant the same into rows. Alternatively, the agricultural composition can be contained in a separate bulk tank on the planter and sprayed into the rows upon planting the corn seed.

A control plot of corn seeds, which are not administered the agricultural composition, will also be planted.

It is expected that the corn plants grown from the seeds treated with the agricultural composition will exhibit a quantifiably higher biomass than the control corn plants.

The biomass from the treated plants may be about 1-10% higher, 10-20% higher, 20-30% higher, 30-40% higher, 40-50% higher, 50-60% higher, 60-70% higher, 70-80% higher, 80-90% higher, or more.

The biomass from the treated plants may equate to about a 1 bushel per acre increase over the controls, or a 2 bushel per acre increase, or a 3 bushel per acre increase, or a 4 bushel per acre increase, or a 5 bushel per acre increase, or more.

In some aspects, the biomass increase is statistically significant. In other aspects, the biomass increase is not statistically significant, but is still quantifiable.

D. Treatment with Agricultural Composition Comprising Microbial Consortia

In this example, a microbial consortium, comprising at least two microbes from Tables 1-3 will be applied as an agricultural composition, administered to the corn seed at the time of sowing.

For example, it is anticipated that a farmer will apply the agricultural composition to the corn seeds simultaneously upon planting the seeds into the field. This can be accomplished, for example, by applying the agricultural composition to a hopper/bulk tank on a standard 16 row planter, which contains the corn seeds and which is configured to plant the same into rows. Alternatively, the agricultural composition can be contained in a separate bulk tank on the planter and sprayed into the rows upon planting the corn seed.

A control plot of corn seeds, which are not administered the agricultural composition, will also be planted.

It is expected that the corn plants grown from the seeds treated with the agricultural composition will exhibit a quantifiably higher biomass than the control corn plants.

The biomass from the treated plants may be about 1-10% higher, 10-20% higher, 20-30% higher, 30-40% higher, 40-50% higher, 50-60% higher, 60-70% higher, 70-80% higher, 80-90% higher, or more.

The biomass from the treated plants may equate to about a 1 bushel per acre increase over the controls, or a 2 bushel per acre increase, or a 3 bushel per acre increase, or a 4 bushel per acre increase, or a 5 bushel per acre increase, or more.

In some aspects, the biomass increase is statistically significant. In other aspects, the biomass increase is not statistically significant, but is still quantifiable.

A. Seed Treatment with Isolated Microbe

In this example, an isolated microbe from Tables 1-3 will be applied as a seed coating to seeds of corn (Zea mays). Upon applying the isolated microbe as a seed coating, the corn will be planted and cultivated in the standard manner.

A control plot of corn seeds, which did not have the isolated microbe applied as a seed coating, will also be planted.

It is expected that the corn plants grown from the seeds treated with the seed coating will exhibit a quantifiable and superior ability to tolerate drought conditions and/or exhibit superior water use efficiency, as compared to the control corn plants.

The drought tolerance and/or water use efficiency can be based on any number of standard tests from the art, e.g leaf water retention, turgor loss point, rate of photosynthesis, leaf color and other phenotypic indications of drought stress, yield performance, and various root morphological and growth patterns.

B. Seed Treatment with Microbial Consortia

In this example, a microbial consortium, comprising at least two microbes from Tables 1-3 will be applied as a seed coating to seeds of corn (Zea mays). Upon applying the microbial consortium as a seed coating, the corn will be planted and cultivated in the standard manner.

A control plot of corn seeds, which did not have the microbial consortium applied as a seed coating, will also be planted.

It is expected that the corn plants grown from the seeds treated with the seed coating will exhibit a quantifiable and superior ability to tolerate drought conditions and/or exhibit superior water use efficiency, as compared to the control corn plants.

The drought tolerance and/or water use efficiency can be based on any number of standard tests from the art, e.g leaf water retention, turgor loss point, rate of photosynthesis, leaf color and other phenotypic indications of drought stress, yield performance, and various root morphological and growth patterns.

C. Treatment with Agricultural Composition Comprising Isolated Microbe

In this example, an isolated microbe from Tables 1-3 will be applied as an agricultural composition, administered to the corn seed at the time of sowing.

For example, it is anticipated that a farmer will apply the agricultural composition to the corn seeds simultaneously upon planting the seeds into the field. This can be accomplished, for example, by applying the agricultural composition to a hopper/bulk tank on a standard 16 row planter, which contains the corn seeds and which is configured to plant the same into rows. Alternatively, the agricultural composition can be contained in a separate bulk tank on the planter and sprayed into the rows upon planting the corn seed.

A control plot of corn seeds, which are not administered the agricultural composition, will also be planted.

It is expected that the corn plants grown from the seeds treated with the with the agricultural composition will exhibit a quantifiable and superior ability to tolerate drought conditions and/or exhibit superior water use efficiency, as compared to the control corn plants.

The drought tolerance and/or water use efficiency can be based on any number of standard tests from the art, e.g leaf water retention, turgor loss point, rate of photosynthesis, leaf color and other phenotypic indications of drought stress, yield performance, and various root morphological and growth patterns.

D. Treatment with Agricultural Composition Comprising Microbial Consortia

In this example, a microbial consortium, comprising at least two microbes from Tables 1-3 will be applied as an agricultural composition, administered to the corn seed at the time of sowing.

For example, it is anticipated that a farmer will apply the agricultural composition to the corn seeds simultaneously upon planting the seeds into the field. This can be accomplished, for example, by applying the agricultural composition to a hopper/bulk tank on a standard 16 row planter, which contains the corn seeds and which is configured to plant the same into rows. Alternatively, the agricultural composition can be contained in a separate bulk tank on the planter and sprayed into the rows upon planting the corn seed.

A control plot of corn seeds, which are not administered the agricultural composition, will also be planted.

It is expected that the corn plants grown from the seeds treated with the with the agricultural composition will exhibit a quantifiable and superior ability to tolerate drought conditions and/or exhibit superior water use efficiency, as compared to the control corn plants.

The drought tolerance and/or water use efficiency can be based on any number of standard tests from the art, e.g leaf water retention, turgor loss point, rate of photosynthesis, leaf color and other phenotypic indications of drought stress, yield performance, and various root morphological and growth patterns.

A. Seed Treatment with Isolated Microbe

In this example, an isolated microbe from Tables 1-3 will be applied as a seed coating to seeds of corn (Zea mays). Upon applying the isolated microbe as a seed coating, the corn will be planted and cultivated in the standard manner.

A control plot of corn seeds, which did not have the isolated microbe applied as a seed coating, will also be planted.

It is expected that the corn plants grown from the seeds treated with the seed coating will exhibit a quantifiable and superior ability to utilize nitrogen, as compared to the control corn plants.

The nitrogen use efficiency can be quantified by recording a measurable change in any of the main nitrogen metabolic pool sizes in the assimilation pathways (e.g., a measurable change in one or more of the following: nitrate, nitrite, ammonia, glutamic acid, aspartic acid, glutamine, asparagine, lysine, leucine, threonine, methionine, glycine, tryptophan, tyrosine, total protein content of a plant part, total nitrogen content of a plant part, and/or chlorophyll content), or where the treated plant is shown to provide the same or elevated biomass or harvestable yield at lower nitrogen fertilization levels compared to the control plant, or where the treated plant is shown to provide elevated biomass or harvestable yields at the same nitrogen fertilization levels compared to a control plant.

B. Seed Treatment with Microbial Consortia

In this example, a microbial consortium, comprising at least two microbes from Tables 1-3 will be applied as a seed coating to seeds of corn (Zea mays). Upon applying the microbial consortium as a seed coating, the corn will be planted and cultivated in the standard manner.

A control plot of corn seeds, which did not have the microbial consortium applied as a seed coating, will also be planted.

It is expected that the corn plants grown from the seeds treated with the seed coating will exhibit a quantifiable and superior ability to utilize nitrogen, as compared to the control corn plants.

The nitrogen use efficiency can be quantified by recording a measurable change in any of the main nitrogen metabolic pool sizes in the assimilation pathways (e.g., a measurable change in one or more of the following: nitrate, nitrite, ammonia, glutamic acid, aspartic acid, glutamine, asparagine, lysine, leucine, threonine, methionine, glycine, tryptophan, tyrosine, total protein content of a plant part, total nitrogen content of a plant part, and/or chlorophyll content), or where the treated plant is shown to provide the same or elevated biomass or harvestable yield at lower nitrogen fertilization levels compared to the control plant, or where the treated plant is shown to provide elevated biomass or harvestable yields at the same nitrogen fertilization levels compared to a control plant.

C. Treatment with Agricultural Composition Comprising Isolated Microbe

In this example, an isolated microbe from Tables 1-3 will be applied as an agricultural composition, administered to the corn seed at the time of sowing.

For example, it is anticipated that a farmer will apply the agricultural composition to the corn seeds simultaneously upon planting the seeds into the field. This can be accomplished, for example, by applying the agricultural composition to a hopper/bulk tank on a standard 16 row planter, which contains the corn seeds and which is configured to plant the same into rows. Alternatively, the agricultural composition can be contained in a separate bulk tank on the planter and sprayed into the rows upon planting the corn seed.

A control plot of corn seeds, which are not administered the agricultural composition, will also be planted.

It is expected that the corn plants grown from the seeds treated with the agricultural composition will exhibit a quantifiable and superior ability to utilize nitrogen, as compared to the control corn plants.

The nitrogen use efficiency can be quantified by recording a measurable change in any of the main nitrogen metabolic pool sizes in the assimilation pathways (e.g., a measurable change in one or more of the following: nitrate, nitrite, ammonia, glutamic acid, aspartic acid, glutamine, asparagine, lysine, leucine, threonine, methionine, glycine, tryptophan, tyrosine, total protein content of a plant part, total nitrogen content of a plant part, and/or chlorophyll content), or where the treated plant is shown to provide the same or elevated biomass or harvestable yield at lower nitrogen fertilization levels compared to the control plant, or where the treated plant is shown to provide elevated biomass or harvestable yields at the same nitrogen fertilization levels compared to a control plant.

D. Treatment with Agricultural Composition Comprising Microbial Consortia

In this example, a microbial consortium, comprising at least two microbes from Tables 1-3 will be applied as an agricultural composition, administered to the corn seed at the time of sowing.

For example, it is anticipated that a farmer will apply the agricultural composition to the corn seeds simultaneously upon planting the seeds into the field. This can be accomplished, for example, by applying the agricultural composition to a hopper/bulk tank on a standard 16 row planter, which contains the corn seeds and which is configured to plant the same into rows. Alternatively, the agricultural composition can be contained in a separate bulk tank on the planter and sprayed into the rows upon planting the corn seed.

A control plot of corn seeds, which are not administered the agricultural composition, will also be planted.

It is expected that the corn plants grown from the seeds treated with the agricultural composition will exhibit a quantifiable and superior ability to utilize nitrogen, as compared to the control corn plants.

The nitrogen use efficiency can be quantified by recording a measurable change in any of the main nitrogen metabolic pool sizes in the assimilation pathways (e.g., a measurable change in one or more of the following: nitrate, nitrite, ammonia, glutamic acid, aspartic acid, glutamine, asparagine, lysine, leucine, threonine, methionine, glycine, tryptophan, tyrosine, total protein content of a plant part, total nitrogen content of a plant part, and/or chlorophyll content), or where the treated plant is shown to provide the same or elevated biomass or harvestable yield at lower nitrogen fertilization levels compared to the control plant, or where the treated plant is shown to provide elevated biomass or harvestable yields at the same nitrogen fertilization levels compared to a control plant.

The inoculants were prepared from isolates grown as spread plates on R2A incubated at 25° C. for 48 to 72 hours. Colonies were harvested by blending with sterile distilled water (SDW) which was then transferred into sterile containers. Serial dilutions of the harvested cells were plated and incubated at 25° C. for 24 hours to estimate the number of colony forming units (CFU) in each suspension. Dilutions were prepared using individual isolates or blends of isolates (consortia) to deliver 1×105 cfu/microbe/seed and seeds inoculated by either imbibition in the liquid suspension or by overtreatment with 5% vegetable gum and oil.

Seeds corresponding to the plants of table 15 were planted within 24 to 48 hours of treatment in agricultural soil, potting media or inert growing media. Plants were grown in small pots (28 mL to 200 mL) in either a controlled environment or in a greenhouse. Chamber photoperiod was set to 16 hours for all experiments on all species. Air temperature was typically maintained between 22-24° C.

Unless otherwise stated, all plants were watered with tap water 2 to 3 times weekly. Growth conditions were varied according to the trait of interest and included manipulation of applied fertilizer, watering regime and salt stress as follows:

    • Low N—seeds planted in soil potting media or inert growing media with no applied N fertilizer
    • Moderate N—seeds planted in soil or growing media supplemented with commercial N fertilizer to equivalent of 135 kg/ha applied N
    • Insol P—seeds planted in potting media or inert growth substrate and watered with quarter strength Pikovskaya's liquid medium containing tri-calcium phosphate as the only form phosphate fertilizer.
    • Cold Stress—seeds planted in soil, potting media or inert growing media and incubated at 10° C. for one week before being transferred to the plant growth room.
    • Salt stress—seeds planted in soil, potting media or inert growing media and watered with a solution containing between 100 to 200 mg/L NaCl.

Untreated (no applied microbe) controls were prepared for each experiment. Plants were randomized on trays throughout the growth environment. Between 10 and 30 replicate plants were prepared for each treatment in each experiment. Phenotypes were measured during early vegetative growth, typically before the V3 developmental stage and between 3 and 6 weeks after sowing. Foliage was cut and weighed. Roots were washed, blotted dry and weighed. Results indicate performance of treatments against the untreated control.

TABLE 15
StrainShootRoot
Microbe sp.IDCropAssayIOC (%)IOC (%)
Bosea thiooxidans123EfficacyEfficacy
overall100%100%
Bosea thiooxidans54522WheatEarly vigor - insol P30-40 
Bosea thiooxidans54522RyegrassEarly vigor50-60 50-60 
Bosea thiooxidans54522RyegrassEarly vigor - moderate P0-100-10
Duganella violaceinigra111EfficacyEfficacy
overall100%100%
Duganella violaceinigra66361TomatoEarly vigor0-100-10
Duganella violaceinigra66361TomatoEarly vigor30-40 40-50 
Duganella violaceinigra66361TomatoEarly vigor20-30 20-30 
Herbaspirillum huttiense222Efficacy
overall100%
Herbaspirillum huttiense54487WheatEarly vigor - insol P30-40 
Herbaspirillum huttiense60507MaizeEarly vigor - salt stress0-100-10
Janthinobacterium sp.222Efficacy
Overall100%
Janthinobacterium sp.54456WheatEarly vigor - insol P30-40 
Janthinobacterium sp.54456WheatEarly vigor - insol P0-10
Janthinobacterium sp.63491RyegrassEarly vigor - drought0-100-10
stress
Massilia niastensis112EfficacyEfficacy
overall80%80%
Massilia niastensis55184WheatEarly vigor - salt stress0-1020-30 
Massilia niastensis55184WinterEarly vigor - cold stress0-1010-20 
wheat
Massilia niastensis55184WinterEarly vigor - cold stress20-30 20-30 
wheat
Massilia niastensis55184WinterEarly vigor - cold stress10-20 10-20 
wheat
Massilia niastensis55184WinterEarly vigor - cold stress<0<0
wheat
Novosphingobium rosa211EfficacyEfficacy
overall100%100%
Novosphingobium rosa65589MaizeEarly vigor - cold stress0-100-10
Novosphingobium rosa65619MaizeEarly vigor - cold stress0-100-10
Paenibacillus amylolyticus111EfficacyEfficacy
overall100%100%
Paenibacillus amylolyticus66316TomatoEarly vigor0-100-10
Paenibacillus amylolyticus66316TomatoEarly vigor10-20 10-20 
Paenibacillus amylolyticus66316TomatoEarly vigor0-100-10
Pantoea agglomerans323EfficacyEfficacy
33%50%
Pantoea agglomerans54499WheatEarly vigor - insol P40-50 
Pantoea agglomerans57547MaizeEarly vigor - low N<00-10
Pantoea vagans55529MaizeEarly vigor<0<0
(formerly P. agglomerans)
Polaromonas ginsengisoli111EfficacyEfficacy
66%100%
Polaromonas ginsengisoli66373TomatoEarly vigor0-100-10
Polaromonas ginsengisoli66373TomatoEarly vigor20-30 30-40 
Polaromonas ginsengisoli66373TomatoEarly vigor<010-20 
Pseudomonas fluorescens122Efficacy
100%
Pseudomonas fluorescens54480WheatEarly vigor - insol P>100 
Pseudomonas fluorescens56530MaizeEarly vigor - moderate N0-10
Rahnella aquatilis334EfficacyEfficacy
80%63%
Rahnella aquatilis56532MaizeEarly vigor - moderate N10-20 
Rahnella aquatilis56532MaizeEarly vigor - moderate N0-100-10
Rahnella aquatilis56532WheatEarly vigor - cold stress0-1010-20 
Rahnella aquatilis56532WheatEarly vigor - cold stress<00-10
Rahnella aquatilis56532WheatEarly vigor - cold stress10-20 <0
Rahnella aquatilis57157RyegrassEarly vigor<0
Rahnella aquatilis57157MaizeEarly vigor - low N0-100-10
Rahnella aquatilis57157MaizeEarly vigor - low N0-10<0
Rahnella aquatilis58013MaizeEarly vigor0-1010-20 
Rahnella aquatilis58013MaizeEarly vigor - low N0-10<0
Rhodococcus erythropolis313Efficacy
66%
Rhodococcus erythropolis54093MaizeEarly vigor - low N40-50 
Rhodococcus erythropolis54299MaizeEarly vigor - insol P>100 
Rhodococcus erythropolis54299MaizeEarly vigor<0<0
Stenotrophomonas chelatiphaga611EfficacyEfficacy
60%60%
Stenotrophomonas chelatiphaga54952MaizeEarly vigor0-100-10
Stenotrophomonas chelatiphaga47207MaizeEarly vigor<0 0
Stenotrophomonas chelatiphaga64212MaizeEarly vigor0-1010-20 
Stenotrophomonas chelatiphaga64208MaizeEarly vigor0-100-10
Stenotrophomonas chelatiphaga58264MaizeEarly vigor<0<0
Stenotrophomonas maltophilia612EfficacyEfficacy
43%66%
Stenotrophomonas maltophilia54073MaizeEarly vigor - low N50-60 
Stenotrophomonas maltophilia54073MaizeEarly vigor<00-10
Stenotrophomonas maltophilia56181MaizeEarly vigor0-10<0
Stenotrophomonas maltophilia54999MaizeEarly vigor0-100-10
Stenotrophomonas maltophilia54850MaizeEarly vigor 00-10
Stenotrophomonas maltophilia54841MaizeEarly vigor<00-10
Stenotrophomonas maltophilia46856MaizeEarly vigor<0<0
Stenotrophomonas rhizophila811EfficacyEfficacy
12.5%37.5%
Stenotrophomonas rhizophila50839MaizeEarly vigor<0<0
Stenotrophomonas rhizophila48183MaizeEarly vigor<0<0
Stenotrophomonas rhizophila45125MaizeEarly vigor<0<0
Stenotrophomonas rhizophila46120MaizeEarly vigor<00-10
Stenotrophomonas rhizophila46012MaizeEarly vigor<0<0
Stenotrophomonas rhizophila51718MaizeEarly vigor0-100-10
Stenotrophomonas rhizophila66478MaizeEarly vigor<0<0
Stenotrophomonas rhizophila65303MaizeEarly vigor<00-10
Stenotrophomonas terrae221EfficacyEfficacy
50%50%
Stenotrophomonas terrae68741MaizeEarly vigor<0<0
Stenotrophomonas terrae68599MaizeEarly vigor<00-10
Stenotrophomonas terrae68599Capsicum *Early vigor20-30 20-30 
Stenotrophomonas terrae68741Capsicum *Early vigor10-20 20-30 

The data presented in table 15 describes the efficacy with which a microbial species or strain can change a phenotype of interest relative to a control run in the same experiment. Phenotypes measured were shoot fresh weight and root fresh weight for plants growing either in the absence of presence of a stress (assay). For each microbe species, an overall efficacy score indicates the percentage of times a strain of that species increased a both shoot and root fresh weight in independent evaluations. For each species, the specifics of each independent assay is given, providing a strain ID (strain) and the crop species the assay was performed on (crop). For each independent assay the percentage increase in shoot and root fresh weight over the controls is given.

Full text: Click here
Patent 2024
Ammonia Asparagine Aspartic Acid Biological Assay Bosea thiooxidans Calcium Phosphates Capsicum Cells Chlorophyll Cold Shock Stress Cold Temperature Crop, Avian Dietary Fiber DNA Replication Droughts Drought Tolerance Embryophyta Environment, Controlled Farmers Fertilization Glutamic Acid Glutamine Glycine Growth Disorders Herbaspirillum Herbaspirillum huttiense Leucine Lolium Lycopersicon esculentum Lysine Maize Massilia niastensis Methionine Microbial Consortia Nitrates Nitrites Nitrogen Novosphingobium rosa Paenibacillus Paenibacillus amylolyticus Pantoea agglomerans Pantoea vagans Phenotype Phosphates Photosynthesis Plant Development Plant Embryos Plant Leaves Plant Proteins Plant Roots Plants Polaromonas ginsengisoli Pseudoduganella violaceinigra Pseudomonas Pseudomonas fluorescens Rahnella Rahnella aquatilis Retention (Psychology) Rhodococcus erythropolis Rosa Salt Stress Sodium Chloride Sodium Chloride, Dietary Stenotrophomonas chelatiphaga Stenotrophomonas maltophilia Stenotrophomonas rhizophila Stenotrophomonas terrae Sterility, Reproductive Strains Technique, Dilution Threonine Triticum aestivum Tryptophan Tyrosine Vegetables Zea mays

Example 1

Variety 18GG0453L has shown uniformity and stability for all traits, as described in the following variety description information. The variety has been increased with continued observation for uniformity.

Table 1 provides data on morphological, agronomic, and quality traits for 18GG0453L. When preparing the detailed phenotypic information, plants of the new 18GG0453L variety were observed while being grown using conventional agronomic practices.

TABLE 1
Variety Descriptions based on Morphological,
Agronomic and Quality Trait
CHARACTERSTATE (Score)
Yield (bu/ac)32.94
SEED
Erucic acid content (%)0.01
Glucosinolate content11.37
Seed coat colorBlack (1)
SEEDLING
cotyledon widthWide (7)
seedling growth habitMedium to Upright (6)
Stem anthocyanin intensityAbsent (1)
LEAF
leaf lobesStrong Lobing (7)
number of leaf lobes4
leaf margin indentationMedium (5)
leaf margin shapeSharp (3)
leaf widthMedium (5)
leaf lengthMedium to Long (6)
petiole lengthMedium to Long (6)
PLANT GROWTH AND FLOWER
Time to flowering50.8
(number of days from planting
to 50% of plants showing one
or more open flowers)
Plant height at maturity (cm)125.8
Flower bud locationTouching to Slight Overlap (6)
Petal colorMedium Yellow (3)
Anther fertilityShedding Pollen (9)
Petal spacingTouching to Slight Overlap (6)
PODS AND MATURITY
Pod type
Pod lengthLong (7)
Pod widthMedium (5)
Pod angleHorizontal to Semi-Erect (3)
Pod beak lengthLong (7)
Pedicle lengthLong (7)
Lodging resistanceFair to Good
Time to maturity (no. days97.6
from planting to physiological
maturity)
HERBICIDE TOLERANCE
GlufonsinateTolerant
GlyphosateSusceptible
ImidazolinoneSusceptible
QUALITY CHARACTERISTICS
Oil content % (whole dry seed48.89
basis)
Protein content (percentage,47.24
whole oil-free dry seed basis)
Total saturated fats content6.35
Glucosinolates (μm total11.37
glucosinolates/gram whole
seed, 8.5% moisture basis)
Seed Chlorophyll2% higher than the WCC/RRC checks
Shatter Score (1 = poor;5.5
9 = best)
Acid Detergent Fibre (%)19.24
Total Saturated Fat (%)6.35
Oleic Acid - 18:1 (%)63.1
Linolenic Acid - 18:3 (%)8.89
Sclerotinia tolerance (% of40.16
susceptible check)
Blackleg (% of Westar)29.76

Full text: Click here
Patent 2024
Acids Anthocyanins Beak Character Chlorophyll Cotyledon Detergents erucic acid Fertility Fibrosis Glucosinolates glyphosate Herbicides Immune Tolerance Linolenic Acid Oleic Acid Phenotype physiology Plant Leaves Plants Pollen Proteins Saturated Fatty Acid Sclerotinia Stem, Plant Tracheophyta
Not available on PMC !

Example 2

Chlorophyll contents were determined by measuring leaf absorbance in the red and infrared regions using a SPAD-502 Plus device (Minolta Camera Co., Osaka, Japan). Chlorophyll was measured twice in the same day at different positions in all fully expanded (length>15 cm) leaves (leaves 6-26) from six randomly-selected plants from each line at five growth stages: before flowering (6.5-week-old plants and 2.5 weeks before topping), at topping, 1 and 2.5 WPT and at harvest (30 days post topping) before flowering. The total chlorophyll content was calculated as an average of all measured leaf chlorophyll values per plant to minimize the influence of leaf position.

Full text: Click here
Patent 2024
Chlorophyll Medical Devices Plant Leaves Plants SPAD
Seeds of ETH3 and control were collected at the fruit mature stage of ‘Huashuo’. The soluble sugar content was determined using anthrone colorimetry (Liu et al., 2015 (link)). The contents of sucrose and reducing sugars were evaluated using the 3,5-dinitrosalicylic acid method (Yang et al., 2017 (link)). Endogenous ethylene content was evaluated by the ACC content (Hu et al., 2021 (link)). The grinded samples of 0.5 g were homogenized in phosphate-buffered saline, and then centrifuged at for 20 min (4°C, 12000 rpm). These supernatants were used to measure the ACC contents. The ACC contents of the seed and shell were measured according to the Plant 1-aminocyclopropane carboxylic acid ACC kit (Shanghai Jingkang Bioengineering, Co., Ltd., Shanghai, China) instructions (Hu et al., 2021 (link)). The OD450 value was determined using a microplate reader (BioTek, Winooski, Vermont, USA).
Ten leaves from one tree were randomly selected to measure the chlorophyll content for each biological replicate. Leaves of ethephon treatment and control were cut into filaments. The filaments of 0.2 g were immersed in an acetone–ethanol mixture (2:1, v/v) for 24 h (4°C, darkness). The samples were shaken several times during the experiment. The absorbance indexes at 663 and 645 nm of the solution were assessed by a spectrophotometer (UV-1100, Mapada, China). The chlorophyll a and chlorophyll b contents were calculated, referring to the method of Zhang et al. (Zhang et al., 2021 (link)).
Full text: Click here
Publication 2023
1-aminocyclopropane-1-carboxylic acid Acetone Acids anthrone Biopharmaceuticals Carbohydrates Chlorophyll Chlorophyll A chlorophyll b Colorimetry Cytoskeletal Filaments Darkness DNA Replication Ethanol ethephon Ethylenes Fruit Phosphates Plants Saline Solution Sucrose Sugars Trees
The contents of chlorophyll, carotenoid, and anthocyanin of the QHP, ZSY, and L2025 leaves were determined based on a previously described method (Tian et al., 2021b (link)). Fresh leaves were used to measure total chlorophyll content based on the method described by Wu et al. (2020) (link). Leaf tissue (0.1 g) was ground into powder and extracted in 5 mL of 95% ethanol at 50°C for 2 h. The mixture was vortexed and centrifuged at 5,000 rpm for 5 min. The absorbance of the supernatant was measured at 470, 649, and 665 nm using an ultraviolet–visible spectrophotometer (Wu et al., 2020 (link); Zhuang et al., 2021b (link)). Fresh leaves were used to determine the carotenoid content in accordance with the method used by (Gao et al., 2021 (link)). Approximately 100 mg of fresh leaf tissue were cut into pieces with scissors, and extracted in 10 mL of 1% (v/v) HCl–ethanol at 60°C for 30 min. The mixture was vortexed and centrifuged at 13,000 × g for 5 min. The absorbance of the supernatant was measured at 530, 620, and 650 nm using an ultraviolet-visible spectrophotometer (Gao et al., 2021 (link)).
Full text: Click here
Publication 2023
Anthocyanins Carotenoids Chlorophyll Ethanol Plant Leaves Powder Tissues

Top products related to «Chlorophyll»

Sourced in Japan, United States, United Kingdom, Germany
The SPAD-502 is a portable, hand-held spectrophotometer designed to measure the Soil Plant Analysis Development (SPAD) index, which is a relative measure of leaf chlorophyll content. It provides quick and non-destructive measurements of leaf greenness or chlorophyll concentration in plants.
Sourced in United States
The LI-6400 is a portable photosynthesis system designed for measuring gas exchange in plants. It is capable of measuring net carbon dioxide and water vapor exchange, as well as environmental conditions such as temperature, humidity, and light levels.
Sourced in Japan, United States, Germany
The SPAD-502 Plus is a portable device used to measure the chlorophyll content of plant leaves. It utilizes optical sensors to analyze the light absorption characteristics of the leaf, providing a numerical value that corresponds to the chlorophyll concentration.
Sourced in Japan, United States, United Kingdom
The SPAD-502 chlorophyll meter is a portable device designed to measure the relative chlorophyll content in plant leaves. It operates by emitting light at specific wavelengths and detecting the transmitted light, providing a numerical value that corresponds to the chlorophyll concentration in the measured leaf area.
Sourced in United States, Germany, United Kingdom
The LI-6400XT is a portable photosynthesis system designed for measuring gas exchange in plants. It is capable of measuring net photosynthesis, transpiration, stomatal conductance, and other physiological parameters. The system consists of a control unit and a leaf chamber that encloses a portion of a plant leaf.
Sourced in United States, Germany, United Kingdom, China, Canada, Japan, Italy, France, Belgium, Switzerland, Singapore, Uruguay, Australia, Spain, Poland, India, Austria, Denmark, Netherlands, Jersey, Finland, Sweden
The FACSCalibur is a flow cytometry system designed for multi-parameter analysis of cells and other particles. It features a blue (488 nm) and a red (635 nm) laser for excitation of fluorescent dyes. The instrument is capable of detecting forward scatter, side scatter, and up to four fluorescent parameters simultaneously.
Sourced in Germany
The PAM-2500 is a laboratory equipment product designed for analytical purposes. It serves as a versatile tool for researchers and scientists in various fields. The core function of the PAM-2500 is to perform precise measurements and analyses, though the specific intended use may vary depending on the application.
Sourced in United Kingdom
The Handy PEA is a portable, lightweight, and user-friendly chlorophyll fluorescence measurement system designed for assessing the photosynthetic performance of plant samples. It provides a rapid and non-destructive way to evaluate the efficiency of photosystem II in plants.
Sourced in United States, Germany, United Kingdom, China, Canada, Japan, Belgium, France, Spain, Italy, Australia, Finland, Poland, Switzerland, Cameroon, Uruguay, Denmark, Jersey, Moldova, Republic of, Singapore, India, Brazil
The FACSCalibur flow cytometer is a compact and versatile instrument designed for multiparameter analysis of cells and particles. It employs laser-based technology to rapidly measure and analyze the physical and fluorescent characteristics of cells or other particles as they flow in a fluid stream. The FACSCalibur can detect and quantify a wide range of cellular properties, making it a valuable tool for various applications in biology, immunology, and clinical research.
Sourced in United States, Germany, United Kingdom, Belgium, China, Australia, France, Japan, Italy, Spain, Switzerland, Canada, Uruguay, Netherlands, Czechia, Jersey, Brazil, Denmark, Singapore, Austria, India, Panama
The FACSCanto II is a flow cytometer instrument designed for multi-parameter analysis of single cells. It features a solid-state diode laser and up to four fluorescence detectors for simultaneous measurement of multiple cellular parameters.

More about "Chlorophyll"

Chlorophyll is a crucial green pigment found in plants, algae, and cyanobacteria, playing a vital role in photosynthesis.
This essential plant compound absorbs sunlight and converts it into chemical energy, allowing plants to grow and thrive.
Chlorophyll comes in several forms, with chlorophyll a and b being the most common.
Research into chlorophyll and its properties can provide valuable insights into plant biology, environmental science, and potential medical applications.
To optimize chlorophyll research protocols, researchers can leverage AI-driven platforms like PubCompare.ai, which facilitate comparisons across literature, preprints, and patents.
This can help identify the best methods and products for chlorophyll-related studies.
Streamlining research with PubCompare.ai's intuitive tools and data-driven insights can be particularly useful.
Chlorophyll content in plants can be measured using various specialized instruments, such as the SPAD-502, LI-6400, SPAD-502 Plus, and SPAD-502 chlorophyll meter.
These devices provide a non-destructive way to assess chlorophyll levels, which is crucial for monitoring plant health and growth.
Similarly, flow cytometry techniques, like the FACSCalibur and FACSCanto II, can be used to analyze chlorophyll content and other pigments in algae and cyanobacteria.
Other instruments, such as the LI-6400XT, PAM-2500, and Handy PEA, can be used to assess various aspects of photosynthesis, which is directly linked to chlorophyll function.
These tools can help researchers gain a deeper understanding of the complex mechanisms underlying chlorophyll-driven processes in plants, algae, and cyanobacteria.
By leveraging the insights gained from the MeSH term description and the Metadescription, as well as incorporating relevant instruments and technologies, researchers can streamline their chlorophyll-related studies and unlock new discoveries in plant biology, environmental science, and potential medical applications.
The use of PubCompare.ai's AI-driven platform can further enhance the efficiency and effectiveness of these research efforts.