The largest database of trusted experimental protocols

Hyaluronic acid

Hyaluronic acid, also known as hyaluronan, is a natural polysaccharide found in the extracellular matrix of various tissues, including the skin, joints, and eyes.
It plays a crucial role in maintaining tissue hydration, lubricication, and structural integrity.
Hyaluronic acid has a wide range of biomedical applications, including wound healing, osteoarthritis treatment, and cosmetic procedures.
Researchers can leverage AI-driven tools like PubCompare.ai to optimize their hyaluronic acid studies, identify the best protocols and products, and enhance reproducibilty and accuracy.
This powerful platform helps locate relevant protocols from literature, pre-prints, and patents, and provides AI-driven comparisons to support decision-making.
With PubCompare.ai, scientists can streamline their hyaluronic acid research and drive meaningful insights.

Most cited protocols related to «Hyaluronic acid»

The general biological processes represented by the 18 chosen biomarkers (counting each analyte in each fluid as one biomarker) are listed in table 1 and include catabolic and anabolic processes of cartilage and bone. Several biomarkers were quantified in both serum and urine. Biomarkers analysed in serum alone were cartilage oligomeric matrix protein (COMP), hyaluronan (HA), C-propeptide of type II collagen, N-terminal propeptide of collagen IIA (PIIANP), chondroitin sulfate 846 epitope, the C-terminal crosslinked telopeptide of type I collagen (CTXI) and matrix metalloproteinase 3. Biomarkers analysed in serum and urine were Col2-3/4 C-terminal cleavage product of types I and II collagen (C1, 2C), Col2-3/4 C-terminal cleavage product of human type II collagen (C2C competitive assay in serum, C2C-HUSA sandwich assay in urine), nitrated epitope of the α-helical region of type II collagen (Coll2-1 NO2) and the crosslinked N-telopeptide of type I collagen (NTXI). Biomarkers analysed in urine alone were the C-terminal crosslinked telopeptide type II collagen (CTXII), and alpha and beta isomerised versions of the CTXI (CTXIα and CTXIβ).
All biomarker assays were performed by LabCorp Clinical Trials, a Clinical Laboratory Improvement Amendments (CLIA) and College of American Pathologists (CAP) certified division within LabCorp, with the exception of urine Col2-1 NO2, which was measured by Artialis, a Good Laboratory Practice-certified facility. All assays were run blinded to the clinical information. The biochemical markers measured in this study, the kit manufacturers and catalogue numbers and reported lower limits of quantification are listed in table 1. All biomarker data are freely available on the OAI website (https://oai.epi-ucsf.org/datarelease/).
Publication 2016
Androgens, Synthetic Biological Assay Biological Markers Biological Processes Bones Cartilage Cartilage Oligomeric Matrix Protein chondrocalcin Clinical Laboratory Services Collagen Collagen Type I Collagen Type II Cytokinesis Epitopes Helix (Snails) Homo sapiens Hyaluronic acid ICTP peptide Matrix Metalloproteinase 3 Pathologists Serum Sulfates, Chondroitin Urine
After sealing the PDMS replica onto a clean glass slide, ECM (type I collagen (BD Bioscience), fibronectin (Sigma), laminin (Sigma), type IV collagen (Sigma) or hyaluronic acid (Sigma)) prepared at 20 µg/ml in phosphate buffered saline (PBS), were introduced into the migration chamber by capillary effect, and incubated thereafter for 1 h at 37°C. Microchannels were washed with PBS prior to addition of 50 µL of cell suspension (5×106 cells/ml). Cells were then incubated for 5 min at 37°C to allow initial cell seeding. The cell suspension from the cell inlet port was then removed and replaced by serum free media (100 µL). The topmost inlet port of the chemokine gradient generator was filled with 100 µL of media containing prescribed concentrations of FBS while the other 2 inlet ports were filled with 100 µL of serum free media. In select experiments, latrunculin A (0.2 µM or 2 µM, sigma) or paclitaxel, commercially known as Taxol (0.2 µM or 2 µM), was added into the assay media. The migration chamber was then moved to a stage-top live cell incubator (Okolab, Italy) with a controlled cell culture environment (CO2/air mixture, temperature, and relative humidity), mounted on a motorized stage of an inverted Eclipse Ti microscope (Nikon). Migration experiments were visualized with a DS-Fi1 camera head and a 10× objective. NIS-Elements was set to capture images every 10 min for the duration of each live cell experiment. Cell migration speed was analyzed using the NIS-Elements add-on Tracking module.
Full text: Click here
Publication 2012
Biological Assay Capillaries Cell Culture Techniques Cells Chemokine Collagen Type I Collagen Type IV Culture Media, Serum-Free Environment, Controlled Fibronectins Germ Cells Head Humidity Hyaluronic acid Laminin latrunculin A Microscopy Migration, Cell Paclitaxel Phosphates Saline Solution Taxol
High- (H-HA; MW 1400 ± kDa, Mw/Mn = 1.5, Intrinsic viscosity =21.5 dl/g) and low-molecular weight hyaluronic acid (L-HA: Mw = 90 ± 5 kDa, Mw/Mn = 1.7 ± 0.07 Intrinsic viscosity =2.4 dl/g) were kindly provided by Altergon s.r.l., Italy. Altergon HA is a fermentative HA from Streptococcus equi ssp. equi, at pharmaceutical grade (e.g. purity >95 %, water content < 10 %, EU/mg < 0.05). This ensured that the products are controlled according to the pharmacopeia. Briefly in collaboration with Altergon, LHA 90 kDa was obtained through heterogeneous hydrolytic reaction in acidic conditions. The hydrodynamic characterization was performed using the SEC-TDA (Size Exclusion Chromatography-Triple Detector Array) equipment by Viscotek (Lab Service Analytica, Italy).
The H-HA/L-HA complex (1:1 weight ratio) was produced in our laboratory following the procedure described in patent application WO2011EP65633 [27 ], which was modified to obtain solutions (32 g/l) suitable for use in cell cultures (i.e., use of a physiological buffer solution, PBS). For all samples, pH and osmolality were measured in order to perform experiments in physiological conditions (i.e., pH 7.0–7.4; osmolality 300 mOsm). Endotoxin concentration (EU/mg) was evaluated with the Limulus test, and solutions were used only when the titer as <1 EU/mg. All solutions were sterilized in an autoclave at 1 bar for 12 min at 120 °C.
Bovine testicular hyaluronidase, BTH (EC 3.2.1.35), essentially salt free lyophilized powder with a specific activity of 1160U/mg was purchased from Sigma-Aldrich (Milan, Italy) (cat. N. H3884, lot. N. 057K7014).
HaCaT cells (Istituto Zooprofilattico, Brescia, Italy), a spontaneously transformed non-tumorigenic human keratinocyte cell line and human dermal fibroblast (HDF), a generous gift of Prof Caraglia, were cultured in Dulbecco’s Modified Eagle Medium (DMEM) supplemented with 10 % (v/v) heat inactivated fetal bovine serum (FBS), 100 U/mL penicillin and 100 μg/ml streptomycin. All materials were purchased from Flow Laboratories (Milan, Italy). The cells were grown on tissue culture plates (Corning Incorporated, New York, USA), using an incubator with a humidified atmosphere (95 % air/5%CO2 v/v) at 37 °C. Collagen was purchased from Sigma, Aldrich (Milan, Italy).
Full text: Click here
Publication 2015
Acids Atmosphere Bos taurus Buffers Cell Culture Techniques Cell Lines Cells Collagen Culture Media Eagle Endotoxins Fermentation Fetal Bovine Serum Fibroblasts Gel Chromatography Genetic Heterogeneity HaCaT Cells Hyaluronic acid Hyaluronidase Hydrodynamics Hydrolysis Keratinocyte Limulus Test Neoplastic Cell Transformation Penicillins Pharmaceutical Preparations physiology Powder Skin Sodium Chloride Streptococcus equi Streptomycin Testis Tissues Viscosity
The fabrication of the polydimethylsiloxane (PDMS) microwell arrays was performed as described previously [13] (link). In this instance we used soft lithography to form arrays of 360×360×180 µm microwells or 800×800×800 µm on PDMS discs, which were then mounted into the wells of a 48-well tissue culture plate. Briefly, a silica wafer was used to form a PDMS mold, from which an inverse polystyrene mold was created. The PDMS microwell surface was created in sheets using the latter mold and the sheet was punched out into discs (Figure 1A). Punches of differing sizes can be used to create inserts for any sized tissue culture plastic vessel. Using this technique thousands of microwells can be produced en masse (600 microaggregates/cm2 or 150 microaggregates/cm2 for the smaller and larger microwells, respectively). The PDMS surface was either coated with 5% pluronic/phosphate buffered saline (PBS) solution or multilayered with chitosan (CHI) and hyaluronic acid (HA), both of which prevent cell adhesion to the PDMS surface. As described previously [13] (link) multi-layering begins with an electropositive poly-lysine layer to aid further layer adhesion and five layers of CHI and HA are sequentially incubated for 15 minute intervals. We have previously shown that the upper HA layer blocks cell adhesion on PDMS microwells and that this promotes cell aggregation [14] (link). After coating the inserts were sterilized in 70% ethanol and washed overnight with PBS ready for use.
Full text: Click here
Publication 2014
Blood Vessel Cell Adhesion Cell Aggregation Chitosan Ethanol Fungus, Filamentous Hyaluronic acid Lysine Phosphates Pluronics Poly A polydimethylsiloxane Polystyrenes Saline Solution Silicon Dioxide Tissues
Bacterial cultures were grown to mid-log phase in THB. 5 ml of OD600=0.4 culture was spun down and resuspended in 500 μl H2O. Serial dilutions of bacterial suspension were plated to confirm equivalent cfu. 400 μl of the bacterial suspension was placed in a 2 ml screw cap tube with 1 ml chloroform. Tubes were shaken for 5 min in a mini-beadbeater-8 (Biospec Products), then spun at ~13,000 x g for 10 min. Hyaluronic acid in aqueous phase was determined using a Hyaluronic Acid Test Kit (Corgenix) per manufacturer’s instructions.
Publication 2010
Bacteria Chloroform Hyaluronic acid Technique, Dilution

Most recents protocols related to «Hyaluronic acid»

Example 3

HA was transferred to plastic jars. A 3% (w/w) NaOH solution was mixed with BODE in a shaker with an HA concentration of 33% (w/w) of the final mixture. The jars were transferred to an incubator or a water bath to perform the cross-linking step at room temperature (RT) for 16 h, 24 h and 40 h, respectively, or for 16 h at 29° c.

The resulting gels were allowed to swell to 20 mg/g HA in a buffer solution containing sodium phosphate, HCl and NaCl, at a pH about 7.5. The gels were filled in syringes and then autoclaved.

Results:

Cross-linking conditionsGelC (%)G′ (Pa)
RT-16 h 961537
29° C.-16 h 971384
RT-24 h961838
RT-40 h951845

The cross-linking reaction yields a gel with useful properties, e.g. gel strength, both at RT and 29° C. for reaction times of 16-40 h.

Full text: Click here
Patent 2024
Bath Buffers Hyaluronic acid Sodium Chloride sodium phosphate Syringes
Not available on PMC !

Example 1

The amniotic fluid first undergoes a two-step dialysis process. First, the amniotic fluid is passed through a 3 kiloDalton (kDa) filter to remove low molecular weight urea and uric acid, in addition to reducing the water content. Second, the amniotic fluid is again passed through a 3 kDa membrane in the presence of a dialysate solution (normal saline), to flush the remainder of the urea and uric acid, while maintaining the volume of the fluid. Cryopreservative is added such that the final product contains equal volumes dialyzed fluid and cryopreservative; therefore, the finished product is approximately 1.5 times more concentrated than the starting fluid. The product is then aliquoted into vials (using aseptic technique) and frozen.

It is contemplated that this removal will not have an impact on the components of the AF thought to confer benefit, such as the hyaluronic acid and other proteins in the fluid.

Full text: Click here
Patent 2024
Amniotic Fluid Asepsis Dialysis Dialysis Solutions Flushing Freezing Hyaluronic acid Normal Saline Proteins Therapeutics Tissue, Membrane Urea Uric Acid

Example 6

HA was transferred to plastic jar. A 1.5% (w/w) NaOH-solution was mixed with BODE in a shaker with an HA concentration of 11% (w/w) of the final mixture. The jar was transferred to an incubator to perform the cross-linking step for 24 h at RT.

The resulting gel was allowed to swell to 20 mg/g HA in a buffer solution containing sodium phosphate, HCl and NaCl, at a pH about 7.5. The gel was filled in syringes and then autoclaved.

An aliquot of the gel was precipitated and washed in EtOH and then dried in a vacuum chamber. The gelpowder was rehydrated in a buffer solution to 20 mg/g HA. The amount of free BODE derivatives in the solution (i.e. not coupled to the gel) was determined using LC-MS prior to and after the precipitation step.

Results:

Gel precipitated and washedFree derivatives (nmol/ml)
No3764
YesNot detected

This shows that an additional precipitation and washing in ethanol is highly effective to reduce undesirable soluble BODE derivatives which are not covalently coupled to the gel product.

Full text: Click here
Patent 2024
Buffers derivatives Ethanol Hyaluronic acid Sodium Chloride sodium phosphate Syringes Vacuum
Not available on PMC !

Example 5

HA was transferred to plastic jars. A 2.5% (w/w) NaOH solution was mixed with BODE in a shaker with an HA concentration of 18% (w/w) of the final mixture. The jars were transferred to an incubator or a water bath to perform the cross-linking step for 24 h, 48 h or 72 h, respectively, at RT.

The resulting gels were allowed to swell to 20 mg/g HA in a buffer solution containing sodium phosphate, HCl and NaCl, at a pH about 7.5. The gels were filled in syringes and then autoclaved.

Results:

Cross-linking time (h)G′ (Pa)
2475
4819
721

The cross-linking reaction yields a gel with particularly useful properties, e.g. gel strength, for reaction times of less than 48 h, such as 24 h.

Full text: Click here
Patent 2024
Bath Buffers Hyaluronic acid Sodium Chloride sodium phosphate Syringes

Example 14

Variables tested include: concentration of HA, concentration of zinc oxide, concentration of titanium dioxide, addition of vitamin C, and serum preparation method.

FIGS. 94A-94C are tables summarizing embodiments of cosmetic serums of the present disclosure with varying additives and concentrations of components suitable for protection against ultraviolet radiation (UV). Table 33 provides an embodiment of a hydrating serum of the present disclosure with vitamin C.

TABLE 33
Embodiment of Hydrating serum of
the present disclosure with vitamin C
% Silk Solution  1.0% w/v
(60 minute boil, 25 kDA)
Hyaluronic Acid 0.75% w/v
(sodium hyaluronate)
Lemongrass Oil20 uL/15 mL
silk solution
Sodium Ascorbyl Phosphate  6 g
Lactic Acid1.2 mL

A serum of the present disclosure can be made with from about 0.25% to about 10% sodium hyaluronate (increasing % results in more viscous serum). 0.5% to about 10% silk solutions can be used to prepare a serum of the present disclosure. A serum of the present disclosure can be clear and have a yellow tinted color. A serum of the present disclosure can have a pH=6. A serum of the present disclosure can have a lubricious texture that is rubbed in easily without residue.

Concentration of HA:

Hyaluronic acid (Sodium Hyaluronate) was tested as an ingredient in the UV silk serum due to its hygroscopic properties and widely accepted use in cosmetic products to promote hydration of skin. 1%, 2.5% and 5% HA solutions were tested. With increasing HA %, the serum became more viscous and gel like. 1% HA was not feasible for the UV serum due to the fact that the UV additives (zinc oxide, titanium dioxide) are not water soluble and need to be dispersed. 1% HA was not viscous enough for dispersion and the UV additives precipitated out. 2.5% gave the best consistency based on preferred feel, texture and viscosity and was able to disperse the UV additives. 5% was a very thick, viscous serum.

Concentration of Mineral Filters: Zinc Oxide and Titanium Dioxide:

Zinc oxide and titanium dioxide were explored as UV additives that are considered safe. These additives mechanically protect from UV radiation by forming a physical reflective barrier on the skin. Both are not soluble in water and must be dispersed for the current aqueous solution. Zinc oxide concentration varied from 2.5%, 3.75%, 5%, 5.625%, 10%, 12% and 15%. Titanium dioxide concentrations varied from 1.25%, 1.875%, 3%, 5% and 10%. Increasing the concentration of UV additives resulted in minor increases of white residue and how well dispersed the additives were, however if mixed well enough the effects were negligible. Zinc oxide and titanium dioxide were mixed together into serums in order to achieve broad spectrum protection. Zinc oxide is a broad spectrum UV additive capable of protecting against long and short UV A and UV B rays. However titanium dioxide is better at UV B protection and often added with zinc oxides for best broad spectrum protection. Combinations included 3.75%/1.25% ZnO/TiO2, 5.625%/1.875% ZnO/TiO2, 12%/3% ZnO/TiO2, 15%/5% ZnO/TiO2. The 3.75%/1.25% ZnO/TiO2 resulted in spf 5 and the 5.625%/1.875% ZnO/TiO2 produced spf 8.

Vitamin C:

Sodium ascorbyl phosphate was used as a vitamin C source. Formulations were created with the vitamin C concentration equal to that in the silk gel (0.67%). Formulations were also created with 20% sodium ascorbyl phosphate which is soluble in water.

Serum Preparation:

The vitamin C (sodium ascorbyl phosphate) must first be dissolved in water. Sodium hyaluronate is then added to the water, mixed vigorously and left to fully dissolve. The result is a viscous liquid (depending on HA %). The viscosity of the HA solution allows even dispersion of the zinc oxide and titanium dioxide and therefore HA must be mixed before addition of UV additives. The zinc oxide and titanium dioxide are then added to the solution and mixed vigorously with the use of an electric blender. Silk solution is then added and mixed to complete the serum formulation.

Chemical Filters:

A UV serum of the present disclosure can include one, or a combination of two or more, of these active chemical filter ingredients: oxybenzone, avobenzone, octisalate, octocrylene, homosalate and octinoxate. A UV serum of the present disclosure can also include a combination of zinc oxide with chemical filters.

In an embodiment, a UV serum of the present disclosure can be applied approximately 15 minutes before sun exposure to all skin exposed to sun, and can be reapplied at least every 2 hours. In an embodiment, a UV serum of the present disclosure includes water, zinc oxide, sodium hyaluronate, titanium dioxide, silk, and vitamin C or a vitamin C derivative such as sodium ascorbyl phosphate. In an embodiment, a UV serum of the present disclosure protects skin and seals in moisture with the power of silk protein. In an embodiment, a UV serum of the present disclosure improves skin tone, promotes collagen production and diminishes the appearance of wrinkles and fine lines with the antioxidant abilities of vitamin C. In an embodiment, a UV serum of the present disclosure delivers moisture for immediate and long-term hydration throughout the day with concentrated hyaluronic acid. In an embodiment, a UV serum of the present disclosure helps prevent sunburn with the combined action of zinc oxide and titanium dioxide. In an embodiment, a UV serum of the present disclosure is designed to protect, hydrate, and diminish fine lines while shielding skin from harsh UVA and UVB rays. In an embodiment, the silk protein in a UV serum of the present disclosure stabilizes and protects skin while sealing in moisture, without the use of harsh chemical preservatives or synthetic additives. In an embodiment, the vitamin C/derivative in a UV serum of the present disclosure acts as a powerful antioxidant that supports skin rejuvenation. In an embodiment, the sodium hyaluronate in a UV serum of the present disclosure nourishes the skin and delivers moisture for long-lasting hydration. In an embodiment, the zinc oxide and titanium dioxide in a UV serum of the present disclosure shields skin from harmful UVA and UVB rays. The silk protein stabilization matrix in a UV serum of the present disclosure protects the active ingredients from the air, to deliver their full benefits without the use of harsh chemicals or preservatives. The silk matrix also traps moisture within the skin furthering the hydrating effect of the sodium hyaluronate.

Full text: Click here
Patent 2024
Acids Antioxidants Ascorbic Acid avobenzone Collagen Electricity Feelings Figs Furuncles homosalate Hyaluronic acid Minerals octinoxate octisalate octocrylene oxybenzone Pharmaceutical Preservatives Proteins Radiation Rejuvenation SERPINA3 protein, human Serum Serum Proteins Silk Skin Skin Pigmentation sodium ascorbyl phosphate Sodium Hyaluronate Strains Sunburn titanium dioxide Viscosity Vitamin A Vitamins west indian lemongrass oil Zinc Oxide

Top products related to «Hyaluronic acid»

Sourced in United States, Germany, China, Poland, United Kingdom, India
Hyaluronic acid is a natural polysaccharide found in various tissues in the human body. It is a key component of the extracellular matrix and plays a crucial role in maintaining the structural integrity and hydration of these tissues. Hyaluronic acid is commonly used in a variety of lab equipment and research applications.
Sourced in United States, China, United Kingdom, Germany, Australia, Japan, Canada, Italy, France, Switzerland, New Zealand, Brazil, Belgium, India, Spain, Israel, Austria, Poland, Ireland, Sweden, Macao, Netherlands, Denmark, Cameroon, Singapore, Portugal, Argentina, Holy See (Vatican City State), Morocco, Uruguay, Mexico, Thailand, Sao Tome and Principe, Hungary, Panama, Hong Kong, Norway, United Arab Emirates, Czechia, Russian Federation, Chile, Moldova, Republic of, Gabon, Palestine, State of, Saudi Arabia, Senegal
Fetal Bovine Serum (FBS) is a cell culture supplement derived from the blood of bovine fetuses. FBS provides a source of proteins, growth factors, and other components that support the growth and maintenance of various cell types in in vitro cell culture applications.
Sourced in United States
Hyaluronic acid is a naturally occurring polysaccharide that is a key component of the extracellular matrix in various tissues. It plays a crucial role in maintaining the structural integrity and hydration of these tissues. Hyaluronic acid is a versatile biomaterial with a wide range of applications in the medical and pharmaceutical industries.
Sourced in United States, Germany, United Kingdom, China, Italy, Sao Tome and Principe, France, Macao, India, Canada, Switzerland, Japan, Australia, Spain, Poland, Belgium, Brazil, Czechia, Portugal, Austria, Denmark, Israel, Sweden, Ireland, Hungary, Mexico, Netherlands, Singapore, Indonesia, Slovakia, Cameroon, Norway, Thailand, Chile, Finland, Malaysia, Latvia, New Zealand, Hong Kong, Pakistan, Uruguay, Bangladesh
DMSO is a versatile organic solvent commonly used in laboratory settings. It has a high boiling point, low viscosity, and the ability to dissolve a wide range of polar and non-polar compounds. DMSO's core function is as a solvent, allowing for the effective dissolution and handling of various chemical substances during research and experimentation.
Sourced in United States, Germany, Switzerland, United Kingdom, Japan, China, Italy, France, Macao, Israel, Australia, Sao Tome and Principe, Canada, Spain, Netherlands, Czechia
Hyaluronidase is an enzyme used in laboratory settings. It functions by breaking down hyaluronic acid, a component of the extracellular matrix.
Sourced in United States, Germany, United Kingdom, China, Canada, France, Japan, Australia, Switzerland, Israel, Italy, Belgium, Austria, Spain, Gabon, Ireland, New Zealand, Sweden, Netherlands, Denmark, Brazil, Macao, India, Singapore, Poland, Argentina, Cameroon, Uruguay, Morocco, Panama, Colombia, Holy See (Vatican City State), Hungary, Norway, Portugal, Mexico, Thailand, Palestine, State of, Finland, Moldova, Republic of, Jamaica, Czechia
Penicillin/streptomycin is a commonly used antibiotic solution for cell culture applications. It contains a combination of penicillin and streptomycin, which are broad-spectrum antibiotics that inhibit the growth of both Gram-positive and Gram-negative bacteria.
Sourced in United States, Germany, United Kingdom, China, Italy, Japan, France, Sao Tome and Principe, Canada, Macao, Spain, Switzerland, Australia, India, Israel, Belgium, Poland, Sweden, Denmark, Ireland, Hungary, Netherlands, Czechia, Brazil, Austria, Singapore, Portugal, Panama, Chile, Senegal, Morocco, Slovenia, New Zealand, Finland, Thailand, Uruguay, Argentina, Saudi Arabia, Romania, Greece, Mexico
Bovine serum albumin (BSA) is a common laboratory reagent derived from bovine blood plasma. It is a protein that serves as a stabilizer and blocking agent in various biochemical and immunological applications. BSA is widely used to maintain the activity and solubility of enzymes, proteins, and other biomolecules in experimental settings.
Sourced in United States
The Hyaluronan Quantikine ELISA Kit is a quantitative sandwich enzyme immunoassay designed to measure hyaluronan levels in cell culture supernates, serum, plasma, and other biological fluids. The kit utilizes the quantitative sandwich enzyme immunoassay technique to determine the amount of hyaluronan present in the sample.
Sourced in United States, Germany, United Kingdom, India, Italy, China, Poland, France, Spain, Sao Tome and Principe, Canada, Macao, Brazil, Singapore, Ireland, Iceland, Australia, Japan, Switzerland, Israel, Malaysia, Portugal, Mexico, Denmark, Egypt, Czechia, Belgium
Chitosan is a natural biopolymer derived from the exoskeletons of crustaceans, such as shrimp and crabs. It is a versatile material with various applications in the field of laboratory equipment. Chitosan exhibits unique properties, including biocompatibility, biodegradability, and antimicrobial activity. It can be utilized in the development of a wide range of lab equipment, such as filters, membranes, and sorbents, due to its ability to interact with various substances and its potential for customization.
Sourced in United States, Germany, Belgium, Italy, China, Japan, United Kingdom, France
Methacrylic anhydride is a colorless, pungent-smelling liquid used as a chemical intermediate in the production of various compounds. It is a reactive compound that can be used in the synthesis of other chemicals and materials.

More about "Hyaluronic acid"

Hyaluronic acid, also known as hyaluronan or HA, is a naturally occurring glycosaminoglycan found in the extracellular matrix of various tissues, including the skin, joints, and eyes.
This versatile polysaccharide plays a crucial role in maintaining tissue hydration, lubrication, and structural integrity.
Hyaluronic acid has a wide range of biomedical applications, from wound healing and osteoarthritis treatment to cosmetic procedures.
Researchers can leverage powerful AI-driven tools like PubCompare.ai to optimize their HA studies, identify the best protocols and products, and enhance reproducibility and accuracy.
PubCompare.ai is a leading platform that helps scientists locate relevant protocols from literature, pre-prints, and patents, and provides AI-driven comparisons to support decision-making.
This tool can streamline hyaluronic acid research and drive meaningful insights, allowing researchers to explore HA in combination with other key biomaterials like FBS, DMSO, hyaluronidase, Penicillin/streptomycin, bovine serum albumin, and chitosan.
By using PubCompare.ai, researchers can access a wealth of information on HA, including the Hyaluronan Quantikine ELISA Kit, and leverage advanced AI capabilities to optimize their studies, identify the most effective protocols, and enhance the reproducibility and accuracy of their hyaluronic acid research.
With these powerful tools, scientists can unlock new possibilities and drive breakthroughs in the field of hyaluronic acid and related biomaterials.