The largest database of trusted experimental protocols

Nickel

Nickel is a silvery-white, hard, malleable, and ductile transition metal.
It is an essential trace element in many organisms, playing a role in various physiological processes.
Nickel compounds have a wide range of industrial applications, from stainless steel production to electroplating and catalysis.
Nickel exposure can lead to skin irritation, respiratory issues, and increased risk of certain cancers.
Researchers studying nickel must optimize their research protocols to ensure reproducibility and accuracy.
PubCompare.ai can help locate the best nickel research protocols from literature, preprints, and patents using AI-driven comparisons, unlocking the power of AI-powered protocol optimization for nickel research needs.

Most cited protocols related to «Nickel»

The inhibitor JQ1 was synthesized in both racemic and enantiomerically pure format using the synthetic route outlined in Scheme S1 and Scheme S2 and its structure was fully characterized. Human bromodomains were expressed in bacteria as His-tagged proteins and were purified by nickel-affinity and gel-filtration chromatography. Proteins integrity was assessed by SDS-PAGE and Electro-spray Mass Spectrometry on an Agilent 1100 Series LC/MSD TOF. All crystallizations were carried out at 4 °C using the sitting drop vapour-diffusion method. X-ray diffraction data were collected at the Swiss Light source beamline X10SA, or using a Rigaku FR-E generator. Structures were determined by molecular replacement. Isothermal titration calorimetry experiments were performed at 15 °C on a VP-ITC titration microcalorimeter (MicroCal). Thermal melting experiments were carried out on a Mx3005p RT- PCR machine (Stratagene) using SYPRO Orange as a fluorescence probe. Dose-ranging small-molecule studies of proliferation were performed in white, 384-well plates (Corning) in DMEM media containing 10 % FBS. Compounds were delivered with a PerkinElmer JANUS pin-transfer robot and Envision multilabel plate-reader, using a commercial assay (Cell TiterGlo). Murine xenografts were established by injecting NMC cells in 30 % Matrigel (BD Biosciences) into the flank of 6 week-old female NCr nude mice (Charles River Laboratories). Tumor measurements were assessed by caliper measurements, and volume calculated using the formula Vol = 0.5 × L × W2 (link). All mice were humanely euthanized, and tumors were fixed in 10 % formalin for histopathological examination. Quantitative immunohistochemistry was performed using the Aperio Digital Pathology Environment (Aperio Technologies, Vista, CA) at the DF/HCC Core Laboratory at the Brigham and Women’s Hospital.
Publication 2010
Bacteria Biological Assay Calorimetry Cells Crystallization Diffusion Females Fluorescent Probes Formalin Gel Chromatography Heterografts Homo sapiens Immunohistochemistry Mass Spectrometry matrigel Mice, Nude Mus Neoplasms Nickel Proteins Reverse Transcriptase Polymerase Chain Reaction Rivers SDS-PAGE Titrimetry TNFSF14 protein, human Woman X-Ray Diffraction
The American Type Culture Collection (ATCC) provided the genomic DNA used to clone Acel_2062 (ATCC Number: ATCC 43068). Protein production and crystallization of the Acel_2062 protein was carried out by standard JCSG protocols
[8 (link)]. Clones were generated using the Polymerase Incomplete Primer Extension (PIPE) cloning method
[9 (link)]. The gene encoding Acel_2062 (GenBank: YP_873820[GenBank:YP_873820]; UniProtKB: A0LWM4[UniProtKB:A0LWM4]) was synthesized with codons optimized for Escherichia coli expression (Codon Devices, Cambridge, MA) and cloned into plasmid pSpeedET, which encodes an expression and purification tag followed by a tobacco etch virus (TEV) protease cleavage site (MGSDKIHHHHHHENLYFQ/G) at the amino terminus of the full-length protein. Escherichia coli GeneHogs (Invitrogen) competent cells were transformed and dispensed on selective LB-agar plates. The cloning junctions were confirmed by DNA sequencing. Expression was performed in a selenomethionine-containing medium at 37°C. Selenomethionine was incorporated via inhibition of methionine biosynthesis
[10 (link)], which does not require a methionine auxotrophic strain. At the end of fermentation, lysozyme was added to the culture to a final concentration of 250 μg/ml, and the cells were harvested and frozen. After one freeze/thaw cycle the cells were homogenized in lysis buffer [50 mM HEPES, 50 mM NaCl, 10 mM imidazole, 1 mM Tris(2-carboxyethyl)phosphine-HCl (TCEP), pH 8.0] and passed through a Microfluidizer (Microfluidics). The lysate was clarified by centrifugation at 32,500 x g for 30 minutes and loaded onto a nickel-chelating resin (GE Healthcare) pre-equilibrated with lysis buffer, the resin was washed with wash buffer [50 mM HEPES, 300 mM NaCl, 40 mM imidazole, 10% (v/v) glycerol, 1 mM TCEP, pH 8.0], and the protein was eluted with elution buffer [20 mM HEPES, 300 mM imidazole, 10% (v/v) glycerol, 1 mM TCEP, pH 8.0]. The eluate was buffer exchanged with TEV buffer [20 mM HEPES, 200 mM NaCl, 40 mM imidazole, 1 mM TCEP, pH 8.0] using a PD-10 column (GE Healthcare), and incubated with 1 mg of TEV protease per 15 mg of eluted protein for 2 hours at 20°–25°C followed by overnight at 4°C. The protease-treated eluate was passed over nickel-chelating resin (GE Healthcare) pre-equilibrated with HEPES crystallization buffer [20 mM HEPES, 200 mM NaCl, 40 mM imidazole, 1 mM TCEP, pH 8.0] and the resin was washed with the same buffer. The flow-through and wash fractions were combined and concentrated to 15.6 mg/ml by centrifugal ultrafiltration (Millipore) for crystallization trials.
Full text: Click here
Publication 2014
Agar Anabolism Buffers Cells Centrifugation Codon Crystallization Cytokinesis Escherichia coli Fermentation Freezing G-substrate Genes Genome Glycerin GTP-Binding Proteins HEPES imidazole Medical Devices Methionine Muramidase Nickel Oligonucleotide Primers Peptide Hydrolases phosphine Plasmids Proteins Psychological Inhibition Resins, Plant Selenomethionine Sodium Chloride Strains TEV protease Tobacco etch virus tris(2-carboxyethyl)phosphine Tromethamine Ultrafiltration
The M3 muscarinic receptor-T4 lysozyme fusion protein was expressed in Sf9 insect cells and purified by nickel affinity chromatography followed by FLAG antibody affinity chromatography and then size exclusion chromatography. It was crystallized using the lipidic cubic phase technique, and diffraction data were collected at the GM/CA-CAT beamline at the Advanced Photon Source at Argonne National Lab. The structure was solved by molecular replacement using merged data from 76 crystals. All-atom classical molecular dynamics simulations with explicitly represented lipids and water were performed using the CHARMM force field29 (link) on Anton30 . Ligand-binding simulations included no artificial forces. Dissociation studies included a time-varying biasing term that gradually forces the ligand away from its crystallographic position, but not along any prespecified pathway or direction. Full details are provided in the online methods.
Publication 2012
Antibody Affinity Chromatography Chromatography, Affinity Crystallography Cuboid Bone Gel Chromatography Immunoglobulins Insecta Ligands Lipids Muramidase Muscarinic Acetylcholine Receptor Nickel Sf9 Cells
Expression and purification of SARS-CoV-2 ectodomains were conducted as previously described26 (link). Briefly, constructs encoded the SARS-CoV-2 S ectodomain (residues 16-1206 of the early SARS-CoV-2 GenBank MN985325.1 sequence isolate with 2P35 (link) or 6P36 (link) stabilizing mutations, a mutated furin cleavage site between S1 and S2, a C-terminal TEV site, foldon trimerization motif, octa-His tag, and AviTag) were used to express soluble SARS-CoV-2 S ectodomains. Constructs encoding the SARS-CoV-2 RBD from GenBank MN985325.1 (residues 331-524 with C-terminal octa-His tag and AviTag) and mutant RBDs were made as described26 (link), SARS-CoV-2 2P S, 6P S, and RBD proteins were purified from the supernatants of transiently-transfected Expi293F cells (Gibco) by nickel affinity and size-exclusion chromatography26 (link). Peak fractions were identified by SDS-PAGE, and fractions corresponding to S trimers or monomeric RBDs were pooled and stored at 4°C. Fabs and IgGs were expressed, purified, and stored as described45 ,46 .
Publication 2020
Cells Cytokinesis FURIN protein, human Mutation Nickel Proteins RNA Recognition Motif SARS-CoV-2 SDS-PAGE

Protocol full text hidden due to copyright restrictions

Open the protocol to access the free full text link

Publication 2013
Amino Acid Sequence Breakthrough Infections Carrier Proteins Cells Communicable Diseases Gene Products, env his6 tag HIV-1 HIV Envelope Protein gp120 HIV Envelope Protein gp160 Murine Leukemia Virus Nickel Placebos Proteins Proteolysis Recombinant Proteins secretion Strains Transfection vaccin Vaccines

Most recents protocols related to «Nickel»

Example 3

Recombinant Protein Purification

FIG. 5 shows the steps of one of the purifications carried out on the chimera. In the case of GRNLY, this process was shown in an earlier paper [Ibáñez, R., University of Zaragoza. 2015]. It can be seen in FIG. 5A that the P. Pastoris supernatant obtained after induction (lane 1) contains rather diluted proteins. After concentrating same with Pellicom, protein bands are not seen in the permeate (lane 3), but proteins that are much more concentrated than in the supernatant are seen in the concentrate (lane 2). After dialysis (lane 4), the band profile remains similar to the concentrate. Furthermore, protein bands are not seen in the buffer in which the dialysis bag (lane 5) was introduced. Upon addition of the nickel resin, the chimera binds to said resin as it has a histidine tag. After adding the resin (lane 6), the intensity of a band corresponding to a protein of about 40 kDa decreases with respect to the concentrate and dialysate. This band may correspond to the chimera. The fact that this band does not altogether disappear may indicate that the nickel resin was saturated. In the washes performed on the resin, particularly in the first wash (lane 7), it can be seen how the residues of other proteins are removed. Finally, after the elution of the nickel column, a major protein with a molecular weight of about 40 kDa corresponding to the molecular weight of the chimera (lane 11) is clearly observed. As shown in FIG. 5B, it was confirmed by means of immunoblot that this band of about 40 kDa corresponds to the chimera (lane 11). It is also confirmed that the resin was saturated because a band appears in the post-resin dialysis phase (lane 6).

FIG. 6 shows different elution fractions and the pooling of all of them with the exception of elution fraction 1. FIG. 6A shows several bands in the different elution fractions and in the total eluate. The band with the highest intensity has a molecular weight corresponding to the chimera. Furthermore, other bands having intermediate molecular weights are observed, which means that the chimera undergoes partial proteolysis. The band with the second highest intensity has a molecular weight of about 10 kDa, which corresponds to 9-kDa GRNLY, as its molecular weight increases since it is bound to a histidine tag. In FIG. 6B, it was confirmed by means of immunoblot that these bands of about 40 and 10 kDa correspond to the chimeric recombinant protein and to recombinant GRNLY, respectively.

Once the chimera is generated, its functionality must be assured, that is, on one hand the scFv still recognizes the CEA antigen, and on the other hand GRNLY is still cytotoxic.

Full text: Click here
Patent 2024
Antigens Buffers Chimera Chimeric Proteins, Recombinant Dialysis Dialysis Solutions GNLY protein, human Histidine Immunoblotting Nickel One-Step dentin bonding system Proteins Proteolysis Recombinant Proteins Resins, Plant Staphylococcal Protein A Vision

Example 3

    • (1) Prepared a nickel oxalate dihydrate NiC2O4·2H2O solution A with a concentration of 3 mol/L. Specifically, NiC2O4·2H2O was added to 50 mL of deionized water and stirred for 30 minutes to form a uniformly mixed solution A;
    • (2) Put the solution A into a polytetrafluoroethylene lined autoclave, the volume filling ratio was maintained at 50%;
    • (3) Took a 50 mL beaker, and completely immersed the foamed copper with a length of 7 cm and a width of 1 cm into acetone, 3 mol/L HCl solution, deionized water, and absolute ethanol in sequence, and carried out ultrasonic treatment separately for 30 minutes. Put the processed foamed copper into a polytetrafluoroethylene reactor containing the solution A; put the sealed reactor into a homogeneous hydrothermal reactor, the temperature parameter was set to 180° C., and the reaction time was 18 hours;
    • (4) After the reaction was completed and cooled to room temperature, the foamed copper after the reaction was taken out and washed with absolute ethanol and deionized water for 3 times;
    • (5) Prepared a solution B of tungsten hexachloride WCl6 with a concentration of 4 mol/L. Specifically, added WCl6 to 60 mL of deionized water and stirred it for 30 minutes to form a uniformly mixed solution B;
    • (6) Immersed the NiOOH/Cu2O-grown foamed copper in a polytetrafluoroethylene lined autoclave containing the solution B and sealed it, and the volume filling ratio was maintained at 60%. Put the sealed autoclave into a homogeneous hydrothermal reactor, the temperature parameter was set to 140° C., and the reaction time was 30 hours;
    • (7) After the reaction was completed, cooled to room temperature, took out the foamed copper after the reaction, and washed with absolute ethanol and deionized water 3 times. Put it into a 60° C. vacuum oven or a freeze-drying oven to dry for 6 hours to obtain a NiOOH/Cu2O/WO3/CF self-supporting electrocatalytic material. The total loading of NiOOH/Cu2O/WO3 was 3 mg/cm2. The molar ratio of WO3, Cu2O, and NiOOH was 1:0.6:0.05.

Full text: Click here
Patent 2024
Acetone Copper Ethanol Molar Nickel Oxalates Polytetrafluoroethylene Tungsten Ultrasonics Vacuum

Example 4

3D design software and 3D drawing software were used to construct a 3D cylinder model with a diameter of 40 mm and a height of 15 mm, which was converted into an STL file and imported into SLM building software. The model was auto-sliced by the software and imported into an SLM printing system. After heating the substrate to 150° C., the René 104 nickel-based superalloy powder was added to a powder supply tank and then laid. Argon was introduced into the working chamber until the oxygen content was less than 0.1%. Then the printing procedure was carried out, and the steps of laying the powder and scanning the powder by laser were repeated until the printing was completed to obtain a cylinder.

The René 104 nickel-based superalloy powder has a particle size of 15-53 μm, a D10 of 17.5 μm, a D50 of 29.3 μm, and a D90 of 46.9 μm.

The process parameters for SLM are as follows: a laser power of 250 W, a spot diameter of 0.12 mm, a scanning speed of 500 mm/s, a scanning pitch of 0.12 mm, and a thickness of the laid powder layer being 0.03 mm.

The scanning strategy for SLM is a stripe scanning strategy. In the stripe scanning strategy, a layer-by-layer scanning method from bottom to top is adopted, the laser scanning direction is rotated by 67° between adjacent layers, the stripe width is 5 mm, and the overlap between stripes is 0.10 mm. (no contour+solid scanning method is adopted)

The stress relief annealing parameters are as follows: a temperature of 420° C. held for 90 min, and cooling within the furnace.

The SPS parameters are as follows: a graphite mold with a diameter of 40 mm, a heating rate of 60° C./min, a cooling rate of 60° C./min, a sintering pressure of 45 MPa, and a sintering temperature of 1020° C. held for 15 min.

Before and after post-treatments of the fabricated parts, the densities are 98.34% and 99.02%, respectively, and the mechanical properties at room temperature are 987 MPa and 1065 MPa.

Full text: Click here
Patent 2024
Argon ARID1A protein, human Fungus, Filamentous Graphite Nickel Oxygen Powder Pressure

Example 7

A piece of rolled commercial nickel foam (2.5×4 cm2, 200 μm in thickness, MTI Corporation, CA, USA) was soaked in sulfuric acid (H2SO4, 1M) for 20 min to remove the native nickel oxide layer. Then, a thin layer of Cu film was electroplated at −1.8V (vs. Ag/AgCl) for 800 coulombs from an electrolyte made of copper sulfate (CuSO4, 2M) and boric acid (H3BO3, 1M) with copper foil serving as the counter electrode (MTI Corporation, CA, USA). Next, the Cu—Ni composite foams were annealed at a temperature of 1000° C. in a gas flow of hydrogen (H2, 5 sccm) and nitrogen (N2, 50 sccm) at 420 mTorr for 5 min. Finally, the annealed composite was electrochemically etched at +0.6 V (vs. Ag/AgCl) in the same electrolyte for 350 coulombs, resulting in large arrays of micropores uniformly distributed on the interconnected microstruts of the foam.

Full text: Click here
Patent 2024
Anabolism boric acid Copper Electrolytes Hydrogen Nickel nickel monoxide Nitrogen Sulfate, Copper Sulfuric Acids

Example 2

A planar conducting substrate, such as Ni and Cu foils, or a 3-D Ni foam was immersed in 1M H2SO4 to remove the oxide layer and then transferred to Ni—Cu electrolyte (0.1 M nickel chloride, 0.5 M nickel sulfamate, 0.0025 M copper chloride and 0.323 M boric acid). After electrodeposition at a current of −350 mA for 150 coulombs, the sample was turned upside down, and the surface pointing to the reference electrode was also reversed. Then another deposition is continued. Totally four such depositions were carried out on each sample. Next, the obtained Ni—Cu dendrites on porous nickel foam were enforced by annealing in nitrogen (50 SCCM) and hydrogen (5 SCCM) gas atmosphere at the temperature of 1000° C. for 5 min.

Full text: Click here
Patent 2024
Atmosphere boric acid Chlorides Copper Dendrites Electrolytes Electroplating Hydrogen Lanugo Nickel nickel chloride Nitrogen Oxides sulfamate

Top products related to «Nickel»

Sourced in United States, Germany, United Kingdom
HIS-Select Nickel Affinity Gel is a lab equipment product used for the purification of histidine-tagged recombinant proteins. It utilizes a nickel-chelating resin to selectively bind and capture the histidine-tagged proteins. The gel can be used in a variety of chromatographic techniques for efficient protein purification.
Sourced in Germany, United States
Nickel(II) nitrate hexahydrate is a crystalline compound with the chemical formula Ni(NO3)2·6H2O. It is a common source of nickel ions in various laboratory and industrial applications. The compound is soluble in water and has a green color.
Sourced in Germany, United States, India, United Kingdom, Italy, China, Spain, France, Australia, Canada, Poland, Switzerland, Singapore, Belgium, Sao Tome and Principe, Ireland, Sweden, Brazil, Israel, Mexico, Macao, Chile, Japan, Hungary, Malaysia, Denmark, Portugal, Indonesia, Netherlands, Czechia, Finland, Austria, Romania, Pakistan, Cameroon, Egypt, Greece, Bulgaria, Norway, Colombia, New Zealand, Lithuania
Sodium hydroxide is a chemical compound with the formula NaOH. It is a white, odorless, crystalline solid that is highly soluble in water and is a strong base. It is commonly used in various laboratory applications as a reagent.
Sourced in Germany, United States, Japan, United Kingdom, China, France, India, Greece, Switzerland, Italy
The D8 Advance is a versatile X-ray diffractometer (XRD) designed for phase identification, quantitative analysis, and structural characterization of a wide range of materials. It features advanced optics and a high-performance detector to provide accurate and reliable results.
Sourced in Germany, United States, United Kingdom, Italy, India, France, China, Australia, Spain, Canada, Switzerland, Japan, Brazil, Poland, Sao Tome and Principe, Singapore, Chile, Malaysia, Belgium, Macao, Mexico, Ireland, Sweden, Indonesia, Pakistan, Romania, Czechia, Denmark, Hungary, Egypt, Israel, Portugal, Taiwan, Province of China, Austria, Thailand
Ethanol is a clear, colorless liquid chemical compound commonly used in laboratory settings. It is a key component in various scientific applications, serving as a solvent, disinfectant, and fuel source. Ethanol has a molecular formula of C2H6O and a range of industrial and research uses.
Sourced in Germany, United States, United Kingdom, Netherlands, China, Switzerland, Italy, Canada, Spain, India
Ni-NTA agarose is a solid-phase affinity chromatography resin designed for the purification of recombinant proteins containing a histidine-tag. It consists of nickel-nitrilotriacetic acid (Ni-NTA) coupled to agarose beads, which selectively bind to the histidine-tagged proteins.
Sourced in United States, Germany, Spain, United Kingdom, France, India, Italy, Switzerland, Sweden
Imidazole is a heterocyclic organic compound with the chemical formula C3H4N2. It is a five-membered aromatic ring containing two nitrogen atoms. Imidazole serves as a core functional group in various chemical and biological applications.
Sourced in United States, United Kingdom, Canada, Germany, France, Japan, Switzerland
The Vectastain Elite ABC kit is a specialized laboratory equipment used for the detection and visualization of target proteins or antigens in biological samples. It utilizes an avidin-biotin complex (ABC) system to amplify the signal, enabling researchers to achieve high sensitivity and consistent results in their immunohistochemical or immunocytochemical analyses.
Sourced in Germany, United States, United Kingdom, India, Italy, France, Spain, Australia, China, Poland, Switzerland, Canada, Ireland, Japan, Singapore, Sao Tome and Principe, Malaysia, Brazil, Hungary, Chile, Belgium, Denmark, Macao, Mexico, Sweden, Indonesia, Romania, Czechia, Egypt, Austria, Portugal, Netherlands, Greece, Panama, Kenya, Finland, Israel, Hong Kong, New Zealand, Norway
Hydrochloric acid is a commonly used laboratory reagent. It is a clear, colorless, and highly corrosive liquid with a pungent odor. Hydrochloric acid is an aqueous solution of hydrogen chloride gas.
Sourced in United States, Sweden, United Kingdom, Germany, Japan
The Superdex 200 column is a size-exclusion chromatography media used for the separation and purification of proteins, peptides, and other biomolecules. It is designed to provide efficient separation and high resolution across a wide range of molecular weights. The column is suitable for a variety of applications, including protein analysis, desalting, and buffer exchange.

More about "Nickel"

Nickel is a vital metallic element that plays a crucial role in a wide range of industrial applications and physiological processes.
As a silvery-white, hard, malleable, and ductile transition metal, nickel is essential for many organisms, including humans.
Researchers studying nickel must optimize their research protocols to ensure reproducibility and accuracy, and PubCompare.ai can help locate the best nickel research protocols from literature, preprints, and patents using AI-driven comparisons.
Nickel compounds have a diverse range of industrial uses, from stainless steel production to electroplating and catalysis.
The HIS-Select Nickel Affinity Gel, Nickel(II) nitrate hexahydrate, and Ni-NTA agarose are some of the key materials used in nickel-related research and applications.
Sodium hydroxide, Ethanol, Imidazole, and Hydrochloric acid are also commonly used in nickel-related experiments and protocols.
Nickel exposure, however, can lead to skin irritation, respiratory issues, and increased risk of certain cancers.
Researchers must be mindful of these potential hazards and optimize their protocols accordingly.
The D8 Advance and Vectastain Elite ABC kit are examples of tools that can be used to study the effects of nickel and nickel-related compounds.
By leveraging the power of AI-driven protocol optimization, researchers can unlock new insights and enhance the reproducibility and accuracy of their nickel studies.
PubCompare.ai's AI-powered comparisons can help researchers identify the best protocols from a vast database of literature, preprints, and patents, ensuring that their nickel research is conducted with the utmost efficiency and precision.