The largest database of trusted experimental protocols

Phorbol-12-myristate

Phorbol-12-myristate is a potent tumor-promoting agent and a key activator of protein kinase C.
It is derived from the plant Croton tiglium and has been extensively studied for its effects on cellular signaling, inflammation, and cancer development.
This compound has become an important tool for researchers investigating the mechanisms underlying cell growth, differentiation, and carcinogenesis.
Understanding the properties and applications of phorbol-12-myristate is crucial for developing effective treatments and therapies targeting these pathways.

Most cited protocols related to «Phorbol-12-myristate»

Human peripheral blood mononuclear cells (PBMC) were isolated by Ficoll Paque (GE healthcare) density centrifugation from whole blood donated by healthy volunteers. The South Sheffield Research Ethics Committee approved the studies, and subjects gave written, informed consent. Monocytes were enriched from freshly isolated PBMC using MACS Monocyte Isolation Kit II and MACS LS Columns (Miltenyi Biotec), yielding an average 98% purity. To differentiatiate PBMC into monocyte-derived macrophages (MDM) 2×106 PBMC/mL were plated in RPMI 1640 media (Lonza) with 2 mmol/L L-glutamine (Gibco BRL) containing 10% human AB serum (First Link (UK) LTD) in 24-well plates (Costar). After 24 h, non-adherent cells were removed, and adherent cells were cultured in RPMI with 10% heat-treated fetal bovine serum (FBS; Bioclear) in 5% CO2 at 37°C to give a final concentration of approximately 2×105 MDM/ml at 14d [17] (link). The THP1 cell line was obtained from ATCC, and maintained at 2×105 cells/ml in RPMI 1640 medium supplemented with 10% FCS and 2 mmol/L L-glutamine. THP1 cells (2×105/ml) were differentiated using 100 nM Vitamin D3 (VD3, Sigma-Aldrich) or 200 nM phorbol 12-myristate 13-acetate (PMA, Sigma-Aldrich) for 3d. Differentiation of PMA treated cells was enhanced after the initial 3d stimulus by removing the PMA-containing media then incubating the cells in fresh RPMI 1640 (10% FCS, 1% L-glutamine) for a further 5d (PMAr).
Full text: Click here
Publication 2010
Human monocytic THP-1 cells were maintained in culture in Roswell Park Memorial Institute medium (RPMI 1640, Invitrogen) culture medium containing 10 % of heat inactivated fetal bovine serum (Invitrogen) and supplemented with 10 mM Hepes (Gibco, #15630-056), 1 mM pyruvate (Gibco, #11360-039), 2.5 g/l D-glucose (Merck) and 50 pM ß-mercaptoethanol (Gibco; 31350–010). THP-1 monocytes are differentiated into macrophages by 24 h incubation with 150 nM phorbol 12-myristate 13-acetate (PMA, Sigma, P8139) followed by 24 h incubation in RPMI medium. Macrophages were polarized in M1 macrophages by incubation with 20 ng/ml of IFN-γ (R&D system, #285-IF) and 10 pg/ml of LPS (Sigma, #8630). Macrophage M2 polarization was obtained by incubation with 20 ng/ml of interleukin 4 (R&D Systems, #204-IL) and 20 ng/ml of interleukin 13 (R&D Systems, #213-ILB). HepG2 and A549 cells were respectively cultivated in Dulbecco’s modified Eagle's minimal essential medium (DMEM medium 1 g glucose/l) (Gibco) and Minimum Essential Medium Eagle medium (MEM) (Gibco), both containing 10 % fetal bovine serum. In the co-culture experiments, THP-1 monocytes were differentiated in 6 Transwell inserts (membrane pore size of 0.4 μm, Corning, #3450). Macrophages and HepG2 cells were co-cultured in CO2 independent medium supplemented with 0.5 mM L-glutamine (Sigma, # G3126) and 3.75 g/l of D-glucose (Sigma, #50-99-7) for 16 h before being incubated with or without 50 μM etoposide (Sigma, #E1383) for 24 h. Macrophages and A549 cells were co-cultured in CO2 independent medium supplemented with 0.5 mM L-glutamine and 2.5 g/l of D-glucose for 24 h before being incubated with or without 50 μM etoposide for 16 h. In the monoculture experiments, 0.8 x 106 THP-1 monocytes were differentiated and polarized in 6 well plates. Next, they were incubated in CO2 independent medium supplemented with 0.5 mM L-glutamine (Sigma, # G3126) and 3.75 g/l of D-glucose (Sigma, #50-99-7) for 16 h before being incubated with or without 50 μM etoposide (Sigma, #E1383) for 24 h.
Full text: Click here
Publication 2015
ENMs and reagents. The CPPs obtained ZnO from Meliorum Technologies Inc. (Rochester, NY). TiO2-P25 (81% anatase and 19% rutile) was purchased from Evonik (Parsippany, NJ); TiO2-A was provided by P. Biswas (Washington University, St. Louis, MO); and the CPPs prepared the TiO2-NBs as previously described (Hamilton et al. 2009 (link)). The CPPs obtained the O-MWCNT stock in powder form from Cheap Tubes Inc. (Brattleboro, VT); obtained the P-MWCNT by treating O-MWCNT with dilute acids, chelating agents, and mild conditions to minimize oxidized or damaged tubes; and created F-MWCNT through further acid treatment of P-MWCNT, which introduced carboxyl groups on 5.27% of the carbon backbone (on a per weight basis) (Chen and Mitra 2008 ; Wang et al. 2011 (link)).
The CPPs purchased low-endotoxin bovine serum albumin (BSA) from Gemini Bio-Products (West Sacramento, CA); dipalmitoylphosphatidylcholine, phorbol 12-myristate, 13-acetate (PMA), and lipopolysaccharide (LPS from Escherichia coli 0127:B8) from Sigma-Aldrich (St. Louis, MO); and 1,25-dihydroxy-vitamin D3 from EMD Millipore (Billerica, MA). The CPPs purchased the cytotoxicity assays CellTiter 96 (MTS assay) and CytoTox 96 [LDH (lactate dehydrogenase) assay] from Promega (Madison, WI).
Preparation of ENMs in cell culture media. The CPPs prepared ENM stock solutions (5 mg/mL) from dry powder using endotoxin-free sterile water and then prepared all ENM suspensions in cell culture media using the stock solutions as needed. Briefly, the CPPs vortexed and then sonicated ENM stock solutions (with the exception of TiO2-NB, which was stirred to prevent mechanical shear) using a water bath sonicator or cup horn sonicator (depending on laboratory availability) immediately before diluting the solutions into complete cell culture media.
Cell culture and co-incubation with EMN. The CPPs grew all cells at 37°C in a 5% CO2 atmosphere. RLE-6TN cells, a rat alveolar type II epithelial cell line, from American Type Culture Collection (ATCC; Manassas, VA) were cultured in Ham’s F12 medium (ATCC) supplemented with l-glutamine, bovine pituitary extract (BPE), insulin, insulin growth factor (IGF)-1, transferrin, and epithelial growth factor (EGF), supplemented with 10% fetal bovine serum (FBS). THP-1 cells, a human acute monocytic leukemia cell line (ATCC) were cultured in HEPES-buffered RPMI 1640 supplemented with l-glutamine (Mediatech, Corning, NY), 0.05 mM β-mercaptoethanol, and 10% FBS (PAA Laboratories, Dartmouth, MA). BEAS-2B cells (ATCC) were cultured in bronchial epithelial growth medium (BEGM) obtained from Lonza Inc. (Walkersville, MD) supplemented with BPE, insulin, hydrocortisone, human EGF, epinephrine, triiodothyronine, transferrin, gentamicin/amphotericin-B, and retinoic acid. For the THP-1 differentiation performed in the first series of experiments (phase I), the CPPs pretreated cells with 1.62 µM (1 µg/mL) PMA for 18 hr. However, the CPPs identified excessive cell clumping and cell death during the phase I studies. Therefore, the CPPs alternatively pretreated THP-1 cells with vitamin D3 at 150 nM overnight and then 5 nM PMA in order to obtain the differentiated macrophage-like cells used during the second series of experiments (phase II). For the IL-1β release, co-culturing THP-1 cells with 10 ng/mL LPS was necessary to initiate transcription of pro-IL-1β. The CPPs initiated aggressive phagocytic activity by adding PMA just before particle exposure.
Before ENM exposure, the CPPs cultured aliquots of 1.5 × 104 cells (for THP-1 cells, 105 cells were seeded into each well of a 96-well plate) in 0.2 mL of the cell culture media in 96-well plates (Costar, Corning, NY) at 37°C for 24 hr. The CPPs freshly prepared all of the ENM suspensions at final concentrations of 10, 25, 50, and 100 µg/mL in the cell culture media. After exposure of the cells to the ENMs for 24 hr at 37°C, the CPPs collected supernatants to measure LDH and IL-1β production then used the remaining cells to test cellular viability by MTS assay.
Physicochemical characterization of ENMs. The CPPs identified the primary particle size and morphology of the ENMs by using a transmission electron microscope (TEM; model 100CX) and a scanning electron microscope (SEM; model JSM-7600F) (both from JEOL Ltd., Tokyo, Japan). In addition, the CPPs characterized the particle hydrodynamic size in H2O and cell culture media using dynamic light scattering (DLS) (Ji et al. 2010 (link)). The CPPs characterized particle crystallinity and structure using X-ray diffraction measurements and measured particle surface area by Brunauer–Emmett–Teller (BET) surface area analysis. The CPPs performed zeta-potential measurements of the ENM suspensions using a ZetaSizer Nano-ZS instrument (Malvern Instruments, Worcestershire WR, UK). Finally, the CPPs determined the elemental composition of the particles as well as ZnO dissolution rate using inductively coupled plasma mass spectrometry (ICP-MS) (model SCIEX Elan DRCII; PerkinElmer, Norwalk, CT).
Endotoxin analysis of ENMs. CPPs measured the endotoxin content of ENM stock suspensions, as well as dispersions in PBS and tissue culture media, using the colorimetric Limulus amebocyte lysate assay (Lonza Inc.). The LPS content of all ENM suspensions was < 0.3 EU/mL.
Determination of cell viability. The CPPs determined cellular viability using MTS (CellTiter 96) and LDH (CytoTox 96; both from Promega) according to the manufacturer’s protocols. To avoid the interference created by ENMs while measuring formazan absorbance at 490 nm, the CPPs introduced a centrifugation (2000 × g for 10 min) procedure in phase II experiments to collect particles in the wells after incubation with the MTS reagents. CPPs then followed this centrifugation step with a brief mixing and transfer of the supernatant to a new 96-well plate before measuring the formazan absorbance at 490 nm. The CPPs eliminated interference of any residual LDH in FBS by heat-inactivation (70°C water bath for 5 min).
ELISA for IL-1β quantification. The CPPs determined IL-1β production in the THP-1 culture supernatant using a human IL-1β ELISA kit (R&D Systems Human IL-1β DuoSet™; R&D Systems, Minneapolis, MN) following the manufacturer’s instructions.
Statistical analysis. The CPPs used the two-way analysis of variance followed by Tukey or Bonferroni correction for multiple comparisons of means for statistical analysis of responses across ENMs and cell lines. In order to define interlaboratory comparisons across two harmonization rounds, the CPPs conducted a meta-analysis of LDH, MTS, and IL-1β assays across eight different laboratories for three cell lines (BEAS-2B, RLE-6TN, and THP-1) exposed to several ENMs (TiO2-P25, TiO2-A, TiO2-NBs, ZnO, O-MWCNT, P-MWCNT, and F-MWCNT). The CPPs combined information within assays and cell lines using a robust two-stage hierarchical model of toxicity. For all quantities of interest, the CPPs obtained Monte Carlo inference by implementing a custom Gibbs sampler in the R computing environment (R Foundation for Statistical Computing, Vienna, Austria). To normalize data, the CPPs subtracted background negative control values (MTS, LDH, and IL-1β) and provided adjustments for positive control values in the case of LDH assays. Details about the statistical model used for analysis are provided in Supplemental Material, p. 8 (http://dx.doi.org/10.1289/ehp.1306561).
Full text: Click here
Publication 2013
The THP-1 cell line was sub-cloned and one clone (#5) was selected for its ability to differentiate relatively homogeneously in response to phorbol 12-myristate-13-acetate (PMA) (Sigma). THP-1.5 was used for all subsequent experiments. THP-1.5 cells were cultured in RPMI, 10% FBS, Penicillin/Streptomycin, 10 mM HEPES, 1 mM Sodium Pyruvate, 50 uM 2-Mercaptoethanol. THP-1.5 were treated with 30 ng/ml PMA over a time-course of 96 h. Total cell lysates were harvested in TRIzol reagent at 1, 2, 4, 6, 12, 24, 48, 72, 96 hours, including an undifferentiated control. Undifferentiated cells were harvested in TRIzol reagent at the beginning of the LPS time-course. One biological replicate was prepared for each time point. Total RNA was purifed from TRIzol lysates according to manufacturer's instructions. Gene-specific primer pairs were designed using Primer3 software [21 (link)], with an optimal primer size of 20 bases, amplification size of 140 bp, and annealing temperature of 60°C. Primer sequences were designed for 2,396 candidate genes including four potential controls: GAPDH, beta actin (ACTB), beta-2-microglobulin (B2M), phosphoglycerate kinase 1 (PGK1). The RNA samples were reverse transcribed to produce cDNA and then subjected to quantitative PCR using SYBR Green (Molecular Probes) using the ABI Prism 7900 HT system (Applied Biosystems, Foster City, CA, USA) with a 384-well amplification plate; genes for each sample were assayed in triplicate. Reactions were carried out in 20 μL volumes in 384-well plates; each reaction contained: 0.5 U of HotStar Taq DNA polymerase (Qiagen) and the manufacturer's 1× amplification buffer adjusted to a final concentration of 1 mM MgCl2, 160 μM dNTPs, 1/38000 SYBR Green I (Molecular Probes), 7% DMSO, 0.4% ROX Reference Dye (Invitrogen), 300 nM of each primer (forward and reverse), and 2 μL of 40-fold diluted first-strand cDNA synthesis reaction mixture (12.5 ng total RNA equivalent). Polymerase activation at 95°C for 15 min was followed by 40 cycles of 15 s at 94°C, 30 s at 60°C, and 30 s at 72°C. The dissociation curve analysis, which evaluates each PCR product to be amplified from single cDNA, was carried out in accordance with the manufacturer's protocol. Expression levels were reported as Ct values.
The large number of genes assayed and the replicates measures required that samples be distributed across multiple amplification plates, with an average of twelve plates per sample. Because it was envisioned that GAPDH would serve as a single-gene normalization control, this gene was included on each plate. All primer pairs were replicated in triplicates.
Raw qPCR expression measures were quantified using Applied Biosystems SDS software and reported as Ct values. The Ct value represents the number of cycles or rounds of amplification required for the fluorescence of a gene or primer pair to surpass an arbitrary threshold. The magnitude of the Ct value is inversely proportional to the expression level so that a gene expressed at a high level will have a low Ct value and vice versa.
Replicate Ct values were combined by averaging, with additional quality control constraints imposed by a standard filtering method developed by the RIKEN group for the preprocessing of their qPCR data. Briefly this method entails:
1. Sort the triplicate Ct values in ascending order: Ct1, Ct2, Ct3. Calculate differences between consecutive Ct values: difference1 = Ct2 - Ct1 and difference2 = Ct3 - Ct2.
2. Four regions are defined (where Region4 overrides the other regions):
Region1: difference ≤ 0.2
Region2: 0.2 < difference ≤ 1.0
Region3: 1.0 < difference
Region4: one of the Ct values in the difference calculation is 40
If difference1 and difference2 fall in the same region, then the three replicate Ct values are averaged to give a final representative measure. If difference1 and difference2 are in different regions, then the two replicate Ct values that are in the small number region are averaged instead.
This particular filtering method is specific to the data set we used here and does not represent a part of the normalization procedure itself; Alternate methods of filtering can be applied if appropriate prior to normalization. Moreover while the presentation in this manuscript has used Ct values as an example, any measure of transcript abundance, including those corrected for primer efficiency can be used as input to our data-driven methods.
Full text: Click here
Publication 2009
THP-1 cells were obtained from ATCC (American Type Culture Collection: TIB-202) and grown in suspension in RPMI +Glutamax supplemented with 10% (v/v) FBS in a humidified 37°C, 5% CO2 incubator. All cell culture reagents were from Life Technologies, unless otherwise stated. Low passage (passage 15 or less) cells were plated in either 8-chamber Ibidi dishes (Ibidi) or 24-well tissue culture treated plates (Costar) in the presence of phorbol 12-myristiate-12 acetate (PMA, Sigma-Aldrich). For cells plated 5 days prior to infection, PMA was removed after 2 days of treatment. Primary human monocytes were isolated using negative selection (Dynabeads Untouched Human Monocyte Isolation Kit, Life Technologies) from apharesed whole blood from healthy donors and plated in 8-well Ibidi dishes 7 days prior to infection in RPMI supplemented with 5% (v/v) Male AB human serum (Sigma), 2 mM L-glutamine (Cellgro), 1 mM NaPyruvate (Cellgro), 1X MEM NEAA, 1 mM Hepes and 100 ng/mL macrophage colony-stimulating factor (MCSF) (Peprotech). Media was refreshed on day 3 and day 5. Salmonella enterica serovar Typhimurium SL1344 wild type [29 (link)] and constitutively expressing mCherry [30 (link),31 (link)] have been previously described.
Full text: Click here
Publication 2018
Acetate Cell Culture Techniques Cells Donor, Blood Glutamine HEPES Homo sapiens Hyperostosis, Diffuse Idiopathic Skeletal Infection isolation Macrophage Colony-Stimulating Factor Males Monocytes phorbol Salmonella typhimurium Serum THP-1 Cells Tissues

Most recents protocols related to «Phorbol-12-myristate»

Phorbol-12-Myristate-13-Acetate (PMA) (Supplementary Figure 1A), Azidothymidine (AZT) (also known as Zidovudine (ZDV)) (Supplementary Figure 1B), along with all other chemicals were sourced from Sigma (St. Louis, MO).
Publication 2024
To generate THP-1 derived macrophages (TDM), THP-1 cells (in 0.4 μm transwell insert for 6-well plate) were treated with 10 ng/ml phorbol 12-myristate 13-acetate (PMA) for 24 hours. Then, the cells were cultured with 25 ng/ml IL-4 or LPS for another 48 hours to generate THP-1-derived macrophages. Meanwhile, THP-1 cells were treated with 10 ng/ml phorbol 12-myristate 13-acetate (PMA) for 24 hours before further treatment (B. thetaiotaomicron, heat killed B. thetaiotaomicron, B. thetaiotaomicron culture medium or acetic acid).
Full text: Click here
Publication 2024
Reactivation of Kasumi-3 cells and CD14+ monocytes with phorbol 12-myristate 13-acetate (PMA, Merck) was achieved at a concentration of 20 ng/mL (O’Connor and Murphy, 2012 (link); Poole et al, 2021 (link)).
Full text: Click here
Publication 2024
100 μl of 1 μg/mL Phorbol 12-myristate 13-acetate (PMA) and 1 μg/mL Nitro Blue Tetrazolium (NBT) was added per 96 well. Generation of a blue precipitate reports the presence of reactive oxygen species.
Full text: Click here
Publication 2024
Anti-CD3 antibody (5 µg/mL) or combined with 50 ng/mL PMA (phorbol 12-myristate 13-acetate), 1 µg/mL ionomycin and 2 µM monensin were used to stimulate and activate the cultured splenocytes from the mice.
Publication 2024

Top products related to «Phorbol-12-myristate»

Sourced in United States, Germany, United Kingdom, Macao, France, Italy, China, Canada, Switzerland, Sao Tome and Principe, Australia, Japan, Belgium, Denmark, Netherlands, Israel, Chile, Spain
Ionomycin is a laboratory reagent used in cell biology research. It functions as a calcium ionophore, facilitating the transport of calcium ions across cell membranes. Ionomycin is commonly used to study calcium-dependent signaling pathways and cellular processes.
Sourced in United States, Germany, United Kingdom, China, Italy, Spain, Sao Tome and Principe, Netherlands, Belgium, Canada, Denmark, Ireland, Japan, France, Macao, Australia
Phorbol 12-myristate 13-acetate (PMA) is a chemical compound that acts as a potent protein kinase C activator. It is commonly used as a research tool in cell biology and biochemistry laboratories.
Sourced in United States, Germany, United Kingdom, Italy, Japan, France, India, Denmark, Macao, Brazil, Australia, China, Sao Tome and Principe, Belgium
Phorbol 12-myristate 13-acetate is a laboratory compound used as a chemical tool in research. It functions as a potent activator of protein kinase C, a family of enzymes involved in various cellular processes.
Sourced in United States, Germany, United Kingdom, France, Italy, China, Canada, Switzerland, Sao Tome and Principe, Macao, Poland, Japan, Australia, Belgium, Hungary, Netherlands, India, Denmark, Chile
The PMA is a versatile laboratory equipment designed for precision measurement and analysis. It functions as a sensitive pressure transducer, accurately measuring and monitoring pressure levels in various applications. The PMA provides reliable and consistent data for research and testing purposes.
Sourced in United States, China, United Kingdom, Germany, Australia, Japan, Canada, Italy, France, Switzerland, New Zealand, Brazil, Belgium, India, Spain, Israel, Austria, Poland, Ireland, Sweden, Macao, Netherlands, Denmark, Cameroon, Singapore, Portugal, Argentina, Holy See (Vatican City State), Morocco, Uruguay, Mexico, Thailand, Sao Tome and Principe, Hungary, Panama, Hong Kong, Norway, United Arab Emirates, Czechia, Russian Federation, Chile, Moldova, Republic of, Gabon, Palestine, State of, Saudi Arabia, Senegal
Fetal Bovine Serum (FBS) is a cell culture supplement derived from the blood of bovine fetuses. FBS provides a source of proteins, growth factors, and other components that support the growth and maintenance of various cell types in in vitro cell culture applications.
Sourced in United States, China, Germany, United Kingdom, Japan, France, Canada, Australia, Italy, Switzerland, Belgium, New Zealand, Spain, Israel, Sweden, Denmark, Macao, Brazil, Ireland, India, Austria, Netherlands, Holy See (Vatican City State), Poland, Norway, Cameroon, Hong Kong, Morocco, Singapore, Thailand, Argentina, Taiwan, Province of China, Palestine, State of, Finland, Colombia, United Arab Emirates
RPMI 1640 medium is a commonly used cell culture medium developed at Roswell Park Memorial Institute. It is a balanced salt solution that provides essential nutrients, vitamins, and amino acids to support the growth and maintenance of a variety of cell types in vitro.
Sourced in United States, United Kingdom, Germany, Macao, France, Cameroon, China, Belgium, Canada, Japan, Switzerland, Uruguay
GolgiStop is a cell culture reagent that inhibits protein transport from the endoplasmic reticulum to the Golgi apparatus, thereby preventing the secretion of newly synthesized proteins. It is a useful tool for investigating protein trafficking and localization in cells.
Sourced in United States, Germany, United Kingdom, Macao, Canada, Switzerland, France, Japan, Sao Tome and Principe, Israel, Italy, Chile
Brefeldin A is a fungal metabolite that inhibits the function of Golgi apparatus in eukaryotic cells. It acts by blocking the exchange of materials between the endoplasmic reticulum and Golgi compartments, leading to the collapse of the Golgi structure.
Sourced in United States, China, United Kingdom, Germany, France, Canada, Japan, Australia, Italy, Switzerland, Belgium, New Zealand, Austria, Netherlands, Israel, Sweden, Denmark, India, Ireland, Spain, Brazil, Norway, Argentina, Macao, Poland, Holy See (Vatican City State), Mexico, Hong Kong, Portugal, Cameroon
RPMI 1640 is a common cell culture medium used for the in vitro cultivation of a variety of cells, including human and animal cells. It provides a balanced salt solution and a source of essential nutrients and growth factors to support cell growth and proliferation.
Sourced in United States, United Kingdom, Germany, France, Macao, Switzerland, Canada, Belgium, Australia, China, Denmark
GolgiPlug is a laboratory product designed to inhibit protein transport from the Golgi apparatus to the cell surface. It functions by blocking the secretory pathway, preventing the release of proteins from the Golgi complex. GolgiPlug is intended for use in cell biology research applications.

More about "Phorbol-12-myristate"

Phorbol-12-myristate (P12M) is a potent tumor-promoting agent and a key activator of protein kinase C.
Derived from the plant Croton tiglium, P12M has been extensively studied for its effects on cellular signaling, inflammation, and cancer development.
This compound has become an important tool for researchers investigating the mechanisms underlying cell growth, differentiation, and carcinogenesis.
Ionomycin, a calcium ionophore, is often used in conjunction with P12M to induce cellular activation and stimulate various signaling pathways.
Phorbol 12-myristate 13-acetate (PMA), also known as phorbol 12-myristate 13-acetate, is a synthetic analogue of P12M and is commonly used as a cell stimulant and protein kinase C activator.
When conducting research on P12M, it is important to use high-quality cell culture materials, such as fetal bovine serum (FBS) and RPMI 1640 medium, to ensure optimal cell growth and responsiveness.
Additionally, the use of GolgiStop (containing Brefeldin A) can be helpful in studying protein secretion and intracellular signaling events triggered by P12M.
Understanding the properties and applications of P12M is crucial for developing effective treatments and therapies targeting the pathways involved in cell growth, differentiation, and carcinogenesis.
Researchers can leverage PubCompare.ai's AI-driven platform to optimize their P12M research by locating the best protocols from literature, pre-prints, and patents, as well as accessing the most up-to-date and reliable information for their studies.