The largest database of trusted experimental protocols

Replicon

Replicon: An AI-Driven Platform for Effortless Research Protocol Discovery and Comparison.
Replicon, developed by PubCompare.ai, empowers users to seamlessly locate and compare research protocols across literature, pre-prints, and patents.
Leveraging advanced AI analysis, Replicon helps identify the optimal protocols and products to meet your research needs.
Streamline your workflow and maximize your work's impact with this innovative solution.
Discover the power of AI-driven research protocol management with Replicon from PubCompare.ai.

Most cited protocols related to «Replicon»

Gene and isoform expression levels were calculated as detailed in Supplementary Methods section 2 by running Cuffdiff 2 (http://cufflinks.cbcb.umd.edu/) on the alignments from TopHat and the UCSC coding genes. Briefly, library sizes were normalized using the method proposed by Anders and Huber17 (link), with slight modifications described in Supplementary Methods section 2.1. Cross-replicate variability in gene-level fragment counts (overdispersion) was estimated by fitting a generalized linear model through the count variance as a function of the mean. Isoform abundances were calculated using the linear model described previously3 (link),30 (link), with sequence bias correction enabled and correcting for multiply mapping reads with the “-u” option of Cuffdiff 2. Fragment assignment uncertainty was calculated as described in Supplementary Methods section 2.4, resulting in a variance-covariance matrix ψ for each gene that captures the variability in assigning fragments to that gene's isoforms. This matrix is used in combination with the overdispersion model to parameterize a beta negative binomial distribution for the fragments generated by each isoform, as described in Supplementary Methods section 2.5. These distributions are used by Cuffdiff 2 to simulate sequencing of each isoform and subsequent assignment of fragments to the isoforms. From these simulations, Cuffdiff 2 derives variance-covariance matrices on assigned fragment counts, which allow it to calculate gene-level variance estimates as described in Supplementary Methods section 2.6. Testing for differential expression and shifts in relative isoform output are described in Supplementary Methods section 2.7.
Publication 2012
DNA Library Genes Genetic Diversity Protein Isoforms Replicon
By default, Mash uses 32-bit hashes for k-mers where |Σ|k ≤ 232 and 64-bit hashes for |Σ|k ≤ 264. Thus, to minimize the resulting size of the all-RefSeq sketches, k = 16 was chosen along with a sketch size s = 400. While not ideal for large genomes (due to the small k) or highly divergent genomes (due to the small sketch), these parameters are well suited for determining species-level relationships between the microbial genomes that currently constitute the majority of RefSeq. For similar genomes (e.g. ANI >95 %), sketches of a few hundred hashes are sufficient for basic clustering. As ANI drops further, the Jaccard index rapidly becomes very small and larger sketches are required for accurate estimates. Confidence bounds for the Jaccard estimate can be computed using the inverse cumulative distribution function for the hypergeometric or binomial distributions (Additional file 1: Figure S1). For example, with a sketch size of 400, two genomes with a true Jaccard index of 0.1 (x = 40) are very likely to have a Jaccard estimate between 0.075 and 0.125 (P >0.9, binomial density for 30 ≤ x ≤ 50). For k = 16, this corresponds to a Mash distance between 0.12 and 0.09.
RefSeq Complete release 70 was downloaded from NCBI FTP (ftp://ftp.ncbi.nlm.nih.gov). Using FASTA and Genbank records, replicons and contigs were grouped by organism using a combination of two-letter accession prefix, taxonomy ID, BioProject, BioSample, assembly ID, plasmid ID, and organism name fields to ensure distinct genomes were not combined. In rare cases this strategy resulted in over-separation due to database mislabeling. Plasmids and organelles were grouped with their corresponding nuclear genomes when available; otherwise they were kept as separate entries. Sequences assigned to each resulting “organism” group were combined into multi-FASTA files and chunked for easy parallelization. Each chunk was sketched with:
mash sketch -s 400 -k 16 -f -o chunk *.fasta
This required 26.1 CPU h on a heterogeneous cluster of AMD processors. (Note: option -f is not required in Mash v1.1.) The resulting, chunked sketch files were combined with the Mash paste function to create a single “refseq.msh” file containing all sketches. Each chunked sketch file was then compared against the combined sketch file, again in parallel, using:
mash dist -t refseq.msh chunk.msh
This required 6.9 CPU h to create pairwise distance tables for all chunks. The resulting chunk tables were concatenated and formatted to create a PHYLIP formatted distance table.
For the ANI comparison, a subset of 500 Escherichia genomes was selected to present a range of distances yet bound the runtime of the comparatively expensive ANI computation. ANI was computed using the MUMmer v3.23 “dnadiff” program and extracting the 1-to-1 “AvgIdentity” field from the resulting report files [49 (link)]. The corresponding Mash distances were taken from the all-vs-all distance table as described above.
For the primate phylogeny, the FASTA files were sketched separately, in parallel, taking an average time of 8.9 min each and a maximum time of 11 min (Intel Xeon E5-4620 2.2 GHz processor and solid-state drive). The sketches were combined with Mash paste and the combined sketch given to dist. These operations took insignificant amounts of time, and table output from dist was given to PHYLIP v3.695 [50 ] neighbor to produce the phylogeny. Accessions for all genomes used are given in Additional file 1: Table S1. The UCSC tree was downloaded from [51 ].
Full text: Click here
Publication 2016
actinomycin D1 Escherichia Genetic Heterogeneity Genome Genome, Microbial GPER protein, human Marijuana Abuse Organelles Paste Plasmids Primates Replicon Trees
MLST databases for Staphylococcus aureus, Streptococcus pneumoniae, Salmonella enterica, Escherichia coli, Enterococcus faecium, Listeria monocytogenes and Enterobacter cloaceae were downloaded from pubmlst.org using the getmlst.py script included with SRST2 (June 2014).
Antimicrobial resistance gene detection was performed using the ARG-Annot database of acquired resistance genes [18 (link)]. Allele sequences (DNA) were downloaded in fasta format [43 ] (May, 2014). Sequences were clustered into gene groups with ≥80% identity using CD-hit [44 (link)] and the headers formatted for use with SRST2 using the scripts provided (cdhit_to_csv.py, csv_to_gene_db.py). A copy of the formatted sequence database used in this study is included in the SRST2 github repository [35 ].
Representative sequences for 18 plasmid replicons were extracted from GenBank using the accessions and primer sequences specified by Carattoli et al. [45 (link)]. A copy of the formatted sequence database used in this study is included in the SRST2 github repository [35 ].
Full text: Click here
Publication 2014
Alleles Enterobacter Enterococcus faecium Escherichia coli Genes Listeria monocytogenes Microbicides Oligonucleotide Primers Plasmids Replicon Salmonella enterica Staphylococcus aureus Streptococcus pneumoniae
The HiSeq and MiSeq metagenomes were built using 20 sets of bacterial whole-genome shotgun reads. These reads were found either as part of the GAGE-B project [21 (link)] or in the NCBI Sequence Read Archive. Each metagenome contains sequences from ten genomes (Additional file 1: Table S1). For both the 10,000 and 10 million read samples of each of these metagenomes, 10% of their sequences were selected from each of the ten component genome data sets (i.e., each genome had equal sequence abundance). All sequences were trimmed to remove low quality bases and adapter sequences.
The composition of these two metagenomes poses certain challenges to our classifiers. For example, Pelosinus fermentans, found in our HiSeq metagenome, cannot be correctly identified at the genus level by Kraken (or any of the other previously described classifiers), because there are no Pelosinus genomes in the RefSeq complete genomes database; however, there are seven such genomes in Kraken-GB’s database, including six strains of P. fermentans. Similarly, in our MiSeq metagenome, Proteus vulgaris is often classified incorrectly at the genus level because the only Proteus genome in Kraken’s database is a single Proteus mirabilis genome. Five more Proteus genomes are present in Kraken-GB’s database, allowing Kraken-GB to classify reads better from that genus. In addition, the MiSeq metagenome contains five genomes from the Enterobacteriaceae family (Citrobacter, Enterobacter, Klebsiella, Proteus and Salmonella). The high sequence similarity between the genera in this family can make distinguishing between genera difficult for any classifier.
The simBA-5 metagenome was created by simulating reads from the set of complete bacterial and archaeal genomes in RefSeq. Replicons from those genomes were used if they were associated with a taxon that had an entry associated with the genus rank, resulting in a set of replicons from 607 genera. We then used the Mason read simulator [22 ] with its Illumina model to produce 10 million 100-bp reads from these genomes. First we created simulated genomes for each species, using a SNP rate of 0.1% and an indel rate of 0.1% (both default parameters), from which we generated the reads. For the simulated reads, we multiplied the default mismatch and indel rates by five, resulting in an average mismatch rate of 2% (ranging from 1% at the beginning of reads to 6% at the ends) and an indel rate of 1% (0.5% insertion probability and 0.5% deletion probability). For the simBA-5 metagenome, the 10,000 read set was generated from a random sample of the 10 million read set.
Full text: Click here
Publication 2014
Bacteria Citrobacter Deletion Mutation Enterobacter Enterobacteriaceae Genome Genome, Archaeal Genome, Bacterial Genome Components INDEL Mutation Klebsiella Metagenome Pelosinus fermentans Proteus Proteus mirabilis Proteus vulgaris Replicon Salmonella Strains
SUPPA2 uses transcript quantification to compute inclusion values (PSI) of alternative splicing events across multiple samples. Given the calculated PSI values per sample, SUPPA2 considers two distributions: one for the ΔPSI values between biological replicates and one for the ΔPSI values between conditions. For the first distribution, for each event SUPPA2 calculates the ΔPSI value between each pair of biological replicates together with the average abundance of the transcripts describing the event across the same replicates: Erep=1RcrRclog10aTPMa,r
where r = 1,..,|Rc| runs over the replicates in each condition c = 1,2, and a indicates the two or more transcripts describing the event, and TPMa,r indicates the abundance of transcript a in replicate r in transcripts per million (TPM) units. For the distribution between conditions, the ΔPSI values are calculated as the difference of the means in the two conditions, together with the average abundance of transcripts describing the event across both conditions for each event: Econd=12c=1,21RcrRclog10aTPMa,r,c
where TPMa,r,c indicates the abundance of transcript a in replicate r in condition c in TPM units. Given the observed ΔPSI and Econd values for an event between conditions, its significance is calculated from the comparison with the ΔPSI distribution between replicates for events with Erep values in the neighborhood of the observed Econd. This neighborhood is defined by first selecting the closest value E*rep from all points i from the between-replicate distribution: Erep=miniEi,repEcond
using binary search and selecting a fixed number of events (1000 by default) around the E*rep value in the interval or ordered values. The selected events define an empirical cumulative density function (ECDF) over |ΔPSI| from which a p value is calculated: p=1ECDFΔPSI/2
Here we implicitly assume that the background distribution is symmetric. SUPPA2 includes an option to correct for multiple testing using the Benjamini-Hochberg method across all events from the same gene, as they cannot be considered to be entirely independent of each other, for which the false discovery rate (FDR) cut-off can be given as input.
Full text: Click here
Publication 2018
Biopharmaceuticals DNA Replication Genes Replicon

Most recents protocols related to «Replicon»

Example 1

a. Materials and Methods

i. Vector Construction

1. Virus-Like Particle

As most broadly neutralizing HPV antibodies are derived from the highly conserved N-terminal region of L2, amino acids 14-122 of HPV16 L2 were used to create HBc VLPs. L2 with flanking linker regions was inserted into the tip of the a-helical spike of an HBc gene copy which was fused to another copy of HBc lacking the L2 insert. This arrangement allows the formation of HBc dimers that contain only a single copy of L2, increasing VLP stability (Peyret et al. 2015). This heterodimer is referred to as HBche-L2. A dicot plant-optimized HPV16 L2 coding sequence was designed based upon the sequence of GenBank Accession No. CAC51368.1 and synthesized in vitro using synthetic oligonucleotides by the method described (Stemmer et al., 1995). The plant-optimized L2 nucleotide sequence encoding residues 1-473 is posted at GenBank Accession No. KC330735. PCR end-tailoring was used to insert Xbal and SpeI sites flanking the L2 aa 14-122 using primers L2-14-Xba-F (SEQ ID NO. 1: CGTCTAGAGTCCGCAACCCAACTTTACAAG) and L2-122-Spe-R (SEQ ID NO. 2: G GGACTAGTTGGGGCACCAGCATC). The SpeI site was fused to a sequence encoding a 6His tag, and the resulting fusion was cloned into a geminiviral replicon vector (Diamos, 2016) to produce pBYe3R2K2Mc-L2(14-122)6H.

The HBche heterodimer VLP system was adapted from Peyret et al (2015). Using the plant optimized HBc gene (Huang et al., 2009), inventors constructed a DNA sequence encoding a dimer comprising HBc aa 1-149, a linker (G2S)5G (SEQ ID NO. 39), HBc aa 1-77, a linker GT(G4S)2 (SEQ ID NO. 40), HPV-16 L2 aa 14-122, a linker (GGS)2GSSGGSGG (SEQ ID NO. 41), and HBc aa 78-176. The dimer sequence was generated using multiple PCR steps including overlap extensions and insertion of BamHI and SpeI restriction sites flanking the L2 aa 14-122, using primers L2-14-Bam-F (SEQ ID NO. 3: CAGGATCCGCAACC CAACTTTACAAGAC) and L2-122-Spe-R (SEQ ID NO. 2). The HBche-L2 coding sequence was inserted into a geminiviral replicon binary vector pBYR2eK2M (FIG. 3), which includes the following elements: CaMV 35S promoter with duplicated enhancer (Huang et al., 2009), 5′ UTR of N. benthamiana psaK2 gene (Diamos et al., 2016), intron-containing 3′ UTR and terminator of tobacco extensin (Rosenthal et al, 2018), CaMV 35S 3′ terminator (Rosenthal et al, 2018), and Rb7 matrix attachment region (Diamos et al., 2016).

2. Recombinant Immune Complex

The recombinant immune complex (RIC) vector was adapted from Kim et al., (2015). The HPV-16 L2 (aa 14-122) segment was inserted into the BamHI and SpeI sites of the gene encoding humanized mAb 6D8 heavy chain, resulting in 6D8 epitope-tagged L2. The heavy chain fusion was inserted into an expression cassette linked to a 6D8 kappa chain expression cassette, all inserted into a geminiviral replicon binary vector (FIG. 3, RIC vector). Both cassettes contain CaMV 35S promoter with duplicated enhancer (Huang et al., 2009), 5′ UTR of N. benthamiana psaK2 gene (Diamos et al., 2016), intron-containing 3′ UTR and terminator of tobacco extensin (Rosenthal et al, 2018), and Rb7 matrix attachment region (Diamos et al., 2016).

ii. Agroinfiltration of Nicotiana benthamiana Leaves

Binary vectors were separately introduced into Agrobacterium tumefaciens EHA105 by electroporation. The resulting strains were verified by restriction digestion or PCR, grown overnight at 30° C., and used to infiltrate leaves of 5- to 6-week-old N. benthamiana maintained at 23-25° C. Briefly, the bacteria were pelleted by centrifugation for 5 minutes at 5,000 g and then resuspended in infiltration buffer (10 mM 2-(N-morpholino)ethanesulfonic acid (MES), pH 5.5 and 10 mM MgSO4) to OD600=0.2, unless otherwise described. The resulting bacterial suspensions were injected by using a syringe without needle into leaves through a small puncture (Huang et al. 2004). Plant tissue was harvested after 5 DPI, or as stated for each experiment. Leaves producing GFP were photographed under UV illumination generated by a B-100AP lamp (UVP, Upland, CA).

iii. Protein Extraction

Total protein extract was obtained by homogenizing agroinfiltrated leaf samples with 1:5 (w:v) ice cold extraction buffer (25 mM sodium phosphate, pH 7.4, 100 mM NaCl, 1 mM EDTA, 0.1% Triton X-100, 10 mg/mL sodium ascorbate, 0.3 mg/mL PMSF) using a Bullet Blender machine (Next Advance, Averill Park, NY) following the manufacturer's instruction. To enhance solubility, homogenized tissue was rotated at room temperature or 4° C. for 30 minutes. The crude plant extract was clarified by centrifugation at 13,000 g for 10 minutes at 4° C. Necrotic leaf tissue has reduced water weight, which can lead to inaccurate measurements based on leaf mass. Therefore, extracts were normalized based on total protein content by Bradford protein assay kit (Bio-Rad) with bovine serum albumin as standard.

iv. SDS-PAGE and Western Blot

Clarified plant protein extract was mixed with sample buffer (50 mM Tris-HCl, pH 6.8, 2% SDS, 10% glycerol, 0.02% bromophenol blue) and separated on 4-15% polyacrylamide gels (Bio-Rad). For reducing conditions, 0.5M DTT was added, and the samples were boiled for 10 minutes prior to loading. Polyacrylamide gels were either transferred to a PVDF membrane or stained with Coomassie stain (Bio-Rad) following the manufacturer's instructions. For L2 detection, the protein transferred membranes were blocked with 5% dry milk in PBST (PBS with 0.05% tween-20) overnight at 4° C. and probed with polyclonal rabbit anti-L2 diluted 1:5000 in 1% PBSTM, followed by goat anti-rabbit horseradish peroxidase conjugate (Sigma). Bound antibody was detected with ECL reagent (Amersham).

v. Immunization of Mice and Sample Collection

All animals were handled in accordance to the Animal Welfare Act and Arizona State University IACUC. Female BALB/C mice, 6-8 weeks old, were immunized subcutaneously with purified plant-expressed L2 (14-122), HBche-L2 VLP, L2 RIC, or PBS mixed 1:1 with Imject® Alum (Thermo Scientific, Rockford, IL). In all treatment groups, the total weight of antigen was set to deliver an equivalent 5 μg of L2. Doses were given on days 0, 21, and 42. Serum collection was done as described (Santi et al. 2008) by submandibular bleed on days 0, 21, 42, and 63.

vi. Antibody Measurements

Mouse antibody titers were measured by ELISA. Bacterially-expressed L2 (amino acids 11-128) was bound to 96-well high-binding polystyrene plates (Corning), and the plates were blocked with 5% nonfat dry milk in PBST. After washing the wells with PBST (PBS with 0.05% Tween 20), the diluted mouse sera were added and incubated. Mouse antibodies were detected by incubation with polyclonal goat anti-mouse IgG-horseradish peroxidase conjugate (Sigma). The plate was developed with TMB substrate (Pierce) and the absorbance was read at 450 nm. Endpoint titers were taken as the reciprocal of the lowest dilution which produced an OD450 reading twice the background. IgG1 and IgG2a antibodies were measured with goat-anti mouse IgG1 or IgG2a horseradish peroxidase conjugate.

vii. Electron Microscopy

Purified samples of HBche or HBche-L2 were initially incubated on 75/300 mesh grids coated with formvar. Following incubation, samples were briefly washed twice with deionized water then negatively stained with 2% aqueous uranyl acetate. Transmission electron microscopy was performed with a Phillips CM-12 microscope, and images were acquired with a Gatan model 791 CCD camera.

viii. Statistical Analysis

The significance of vaccine treatments and virus neutralization was measured by non-parametric Mann-Whitney test using GraphPad prism software. Two stars (**) indicates p values <0.05. Three stars (***) indicates p values <0.001.

b. Design and Expression of HBc VLPs and RIC Displaying HPV16 L2

BeYDV plant expression vectors (FIG. 3) expressing either the target VLP HBche-L2, or L2 and HBche alone as controls, were agroinfiltrated into the leaves of N. benthamiana and analyzed for VLP production. After 4-5 days post infiltration (DPI), leaves displayed only minor signs of tissue necrosis, indicating that the VLP was well-tolerated by the plants (FIG. 4A). Leaf extracts analyzed by reducing SDS-PAGE showed an abundant band near the predicted size of 51 kDa for HBche-L2, just above the large subunit of rubisco (RbcL). HBche was detected around the predicted size of 38 kDa (FIG. 4B). Western blot probed with anti-L2 polyclonal serum detected a band for HBche-L2 at ˜51 kDa (FIG. 4B). These results indicate that this plant system is capable of producing high levels of L2-containing HBc VLP.

To express L2-containing MC, amino acids 14-122 of HPV16 L2 were fused with linker to the C-terminus of the 6D8 antibody heavy chain and tagged with the 6D8 epitope (Kim et al. 2015). A BeYDV vector (FIG. 3) expressing both the L2-fused 6D8 heavy chain and the light chain was agroinfiltrated into leaves of N. benthamiana and analyzed for RIC production. To create more homogenous human-type glycosylation, which has been shown to improve antibody Fc receptor binding in vivo, transgenic plants silenced for xylosyltransferase and fucosyltransferase were employed (Castilho and Steinkellner 2012). By western blot, high molecular weight bands >150 kDa suggestive of RIC formation were observed (FIG. 4C). Expression of soluble L2 RIC was lower than HBche-L2 due to relatively poor solubility of the RIC (FIG. 4C).

After rigorous genetic optimization, the N. benthamiana system is capable of producing very high levels of recombinant protein, up to 30-50% of the total soluble plant protein, in 4-5 days (Diamos et al. 2016). Using this system, we produced and purified milligram quantities of fully assembled and potently immunogenic HBc VLPs displaying HPV L2 through a simple one-step purification process (FIGS. 4A-4C and 6).

c. Purification and Characterization of HBche-L2 and L2 RIC

To assess the assembly of HBc-L2 VLP, clarified plant extracts containing either HBche-L2 or HBche were analyzed by sucrose gradient sedimentation. HBche-L2 sedimented largely with HBche, which is known to form VLP, though a small increase in density was observed with HBche-L2, perhaps due to the incorporation of L2 into the virus particle (FIG. 5A). To demonstrate particle formation, sucrose fractions were examined by electron microscopy. Both HBche and HBche-L2 formed ˜30 nm particles, although the appearance of HBche-L2 VLP suggested slightly larger, fuller particles (FIGS. 5C and 5D). As most plant proteins do not sediment with VLP, pooling peak sucrose fractions resulted in >95% pure HBche-L2 (FIG. 5B), yielding sufficient antigen (>3 mg) for vaccination from a single plant leaf.

L2 RIC was purified from plant tissue by protein G affinity chromatography. By SDS-PAGE, an appropriately sized band was visible >150 kDa that was highly pure (FIG. 5B). Western blot confirmed the presence of L2 in this band, indicating proper RIC formation (FIG. 5B). L2 RIC bound to human complement C1q receptor with substantially higher affinity compared to free human IgG standard, suggesting proper immune complex formation (FIG. 5E).

d. Mouse Immunization with HBche-L2 and L2 RIC

Groups of Balb/c mice (n=8) were immunized, using alum as adjuvant, with three doses each of 5 μg L2 delivered as either L2 alone, HBche-L2 VLP, L2 RIC, or a combination of half VLP and half RIC. VLP and RIC, alone or combined, greatly enhanced antibody titers compared to L2 alone by more than an order of magnitude at all time points tested (FIG. 6). After one or two doses, the combined VLP/RIC treatment group outperformed both the VLP or RIC groups, reaching mean endpoint titers of >200,000, which represent a 700-fold increase over immunization with L2 alone (FIG. 6). After the third dose, both the VLP and combined VLP/RIC groups reached endpoint titers >1,300,000, a 2-fold increase over the RIC alone group. To determine the antibody subtypes produced by each treatment group, sera were assayed for L2-binding IgG1 and IgG2a. All four groups produced predominately IgG1 (FIG. 7, note dilutions). However, RIC and especially VLP-containing groups had an elevated ratio of IgG2a:IgG1 (>3-fold) compared to L2 alone (FIG. 7).

In vitro neutralization of HPV16 pseudovirions showed that the VLP and RIC groups greatly enhanced neutralization compared to L2 alone (FIG. 5, p<0.001). Additionally, VLP and RIC combined further enhanced neutralization activity ($5-fold, p<0.05) compared to either antigen alone, supporting the strong synergistic effect of delivering L2 by both platforms simultaneously.

In this study, by displaying amino acids 11-128 on the surface of plant-produced HBc VLPs, L2 antibody titers as high as those seen with L1 vaccines were generated (FIG. 6). Mice immunized with L2 alone had highly variable antibody titers, with titers spanning two orders of magnitude. By contrast, the other groups had much more homogenous antibody responses, especially the VLP-containing groups, which had no animals below an endpoint titer of 1:1,000,000 (FIG. 6). These results underscore the potential of HBc VLP and RIC to provide consistently potent immune responses against L2. Moreover, significant synergy of VLP and RIC systems was observed when the systems were delivered together, after one or two doses (FIG. 6). Since equivalent amounts of L2 were delivered with each dose, the enhanced antibody titer did not result from higher L2 doses. Rather, these data suggest that higher L2-specific antibody production may be due to augmented stimulation of L2-specific B cells by T-helper cells that were primed by RIC-induced antigen presenting cells. Although treatment with VLP and RIC alone reached similar endpoint titers as the combined VLP/RIC group after 3 doses, virus neutralization was substantially higher (>5-fold) in the combined group (FIG. 8). Together, these data indicate unique synergy exists when VLP and RIC are delivered together. Inventors have observed similarly significant synergistic enhancement of immunogenicity for a variety of other antigens.

Mice immunized with L2 alone had highly variable antibody titers, with titers spanning two orders of magnitude. By contrast, the VLP and VLP/RIC groups had much more homogenous antibody responses, with no animals below an endpoint titer of 1:1,000,000 (FIG. 6). These results underscore the potential of HBc VLP and RIC to provide consistently potent immune responses against L2.

Fc gamma receptors are present on immune cells and strongly impact antibody effector functions such as antibody-dependent cell-mediated cytotoxicity and complement-dependent cytotoxicity (Jefferis 2009). In mice, these interactions are controlled in part by IgG subtypes. IgG1 is associated with a Th2 response and has limited effector functions. By contrast, IgG2a is associated with a Th1 response and more strongly binds complement components (Neuberger and Raj ewsky 1981) and Fc receptors (Radaev 2002), enhancing effector functions and opsonophagocytosis by macrophages (Takai et al. 1994). Immunization with L2 alone was found to produce low levels of IgG2a, however immunization with RIC and VLP produced significant increases in IgG2a titers. VLP-containing groups in particular showed a 3-fold increase in the ratio of IgG2a to IgG1 antibodies (FIG. 7). Importantly, production of IgG2a is associated with successful clearance of a plethora of viral pathogens (Coutelier et al. 1988; Gerhard et al. 1997; Wilson et al. 2000; Markine-Goriaynoff and Coutelier 2002).

The glycosylation state of the Fc receptor also plays an important role in antibody function. Advances in glycoengineering have led to the development of transgenic plants with silenced fucosyl- and xylosyl-transferase genes capable of producing recombinant proteins with authentic human N-glycosylation (Strasser et al. 2008). Antibodies produced in this manner have more homogenous glycoforms, resulting in improved interaction with Fc gamma and complement receptors compared to the otherwise identical antibodies produced in mammalian cell culture systems (Zeitlin et al. 2011; Hiatt et al. 2014; Strasser et al. 2014; Marusic et al. 2017). As the known mechanisms by which RIC vaccines increase immunogenicity of an antigen depend in part on Fc and complement receptor binding, HPV L2 RIC were produced in transgenic plants with silenced fucosyl- and xylosyl-transferase. Consistent with these data, we found that L2 RIC strongly enhanced the immunogenicity of L2 (FIG. 6). However, yield suffered from insolubility of the RIC (FIG. 4C). We found that the 11-128 segment of L2 expresses very poorly on its own in plants and may be a contributing factor to poor L2 RIC yield. Importantly, we have produced very high yields of RIC with different antigen fusions. Thus, in some aspects, antibody fusion with a shorter segment of L2 could substantially improve the yield of L2 RIC.

e. Neutralization of HPV Pseudovirions

Neutralization of papilloma pseudoviruses (HPV 16, 18, and 58) with sera from mice immunized IP with HBc-L2 VLP and L2(11-128) showed neutralization of HPV 16 at titers of 400-1600 and 200-800, respectively (Table 1). More mice IP-immunized with HBc-L2 VLP had antisera that cross-neutralized HPV 18 and HPV 58 pseudoviruses, compared with mice immunized with L2(11-128). Anti-HBc-L2 VLP sera neutralized HPV 18 at titers of 400 and HPV 58 at titers ranging from 400-800 (Table 1), while anti-L2(11-128) sera neutralized HPV 18 at a titer of 200 and HPV 58 at a titer of 400 (Table 1). None of the sera from intranasal-immunized mice demonstrated neutralizing activity, consistent with lower anti-L2 titers for intranasal than for intraperitoneal immunized mice.

TABLE 1
L2-specific serum IgG and pseudovirus neutralization
titers from IP immunized mice
Neutralization of Pseudoviruses
ImmunogenSerum IgGHPV 16HPV 18HPV 58
HBc-L2>50,000 400
~70,0001600400400
>80,0001600400800
L2 (11-128)~8000 200
~12,000 400
~50,000 800200400

Full text: Click here
Patent 2024
3' Untranslated Regions 5' Untranslated Regions AA 149 Agrobacterium tumefaciens aluminum potassium sulfate aluminum sulfate Amino Acids Animals Animals, Transgenic Antibodies Antibody Formation Antigen-Presenting Cells Antigens B-Lymphocytes Bacteria Bromphenol Blue Buffers Cell Culture Techniques Cells Centrifugation Chromatography, Affinity Cloning Vectors Cold Temperature Combined Modality Therapy complement 1q receptor Complement Receptor Complex, Immune Complex Extracts Cytotoxicities, Antibody-Dependent Cell Cytotoxin Digestion DNA, A-Form DNA Sequence Edetic Acid Electron Microscopy Electroporation Enzyme-Linked Immunosorbent Assay Epitopes ethane sulfonate Fc Receptor Females Formvar Fucosyltransferase G-substrate Gamma Rays Genes Genes, vif Glycerin Goat Helix (Snails) Helper-Inducer T-Lymphocyte Homo sapiens Homozygote Horseradish Peroxidase Human papillomavirus 16 Human papillomavirus 18 Human Papilloma Virus Vaccine IGG-horseradish peroxidase IgG1 IgG2A Immune Sera Immunoglobulin Heavy Chains Immunoglobulins Immunologic Factors Institutional Animal Care and Use Committees Introns Inventors L2 protein, Human papillomavirus type 16 Light Macrophage Mammals Matrix Attachment Regions Mice, Inbred BALB C Microscopy Milk, Cow's Morpholinos Mus Necrosis Needles Nicotiana Oligonucleotide Primers Oligonucleotides Open Reading Frames Opsonophagocytosis Papilloma Pathogenicity Plant Development Plant Extracts Plant Leaves Plant Proteins Plants Plants, Transgenic polyacrylamide gels Polystyrenes polyvinylidene fluoride prisma Protein Glycosylation Proteins Punctures Rabbits Receptors, IgG Recombinant Proteins Replicon Reproduction Response, Immune Ribulose-Bisphosphate Carboxylase Large Subunit Satellite Viruses SDS-PAGE Serum Serum Albumin, Bovine Sodium Ascorbate Sodium Chloride sodium phosphate Specimen Collection Stars, Celestial Strains Sucrose Sulfate, Magnesium Syringes System, Immune Technique, Dilution Tissue, Membrane Tissues Transferase Transmission Electron Microscopy Triton X-100 Tromethamine Tween 20 Ultraviolet Rays uranyl acetate Vaccination Vaccines Vaccines, Recombinant Virion Viroids Virus Vision Western Blotting xylosyltransferase
Not available on PMC !

Example 6

Anti-Norovirus Activity

Norwalk virus replicon assays were performed as reported by Constantini et al. (Antivir Ther 2012, 17, 981-991). HG23 cells (derived from Huh-7 cells) containing NoV replicon RNA are seeded at a density of 3,000 cells/well in 96-well plates and incubated at 37° C. and 5% CO2 overnight. Compounds were tested at concentrations ranging from 0.1 to 100 μM. Compounds were added in triplicate to 80 to 90% confluent monolayers and incubated at 37° C. and 5% CO2. Untreated cells were included in each plate. Following five days incubation (37° C., 5% CO2), total cellular RNA was isolated with RNeasy96 extraction kit from Qiagen. Replicon RNA and an internal control (TaqMan rRNA control reagents, Applied Biosystems) were amplified in a single step.

The median effective concentrations (EC50) ranges of several of the compounds described herein against NoV are shown in Table 3:

TABLE 3
Anti-NoV activity (μM)
CompoundEC50EC90
110.72.4
190.070.27
230.070.33
290.080.46
674.33>20
830.330.91
84>10ND

Full text: Click here
Patent 2024
Biological Assay Cells Norovirus Norwalk virus Peptidomimetics Replicon Ribosomal RNA

Example 1

This example describes the generation of a marker-free B. subtilis strain expressing allulose epimerase. Briefly, in a first step, a B. subtilis strain was transformed with a cassette encoding the BMCGD1 epimerase and including an antibiotic resistance marker. This cassette recombined into the Bacillus chromosome and knocked out 8 kb of DNA, including a large sporulation gene cluster and the lysine biosynthesis gene lysA. In a second step, a second cassette was recombined into the B. subtilis chromosome, restoring the lysA gene and removing DNA encoding the antibiotic resistance. E. coli strain 39 A10 from the Keio collection was used to passage plasmid DNA prior to transformation of B. subtilis. The relevant phenotype is a deficiency in the DNA methylase HsdM in an otherwise wild-type K-12 strain of E. coli.

In detail, a cassette of 5120 bp (SEQ ID NO:1; synthetic DNA from IDT, Coralville, Iowa) was synthesized and cloned into a standard ampicillin resistant pIDT vector. The synthetic piece encoded 700 bp upstream of lysA on the B. subtilis chromosome, the antibiotic marker cat (651 bp), the DNA-binding protein lad (1083 bp), and the allulose epimerase (894 bp), and included 700 bp of homology in dacF. This vector was transformed into E. coli strain 39 A10 (Baba et al., 2006), and plasmid DNA was prepared and transformed into B. subtilis strains 1A751 and 1A976.

Transformants were selected on LB supplemented with chloramphenicol. The replicon for pIDT is functional in E. coli but does not work in Gram positive bacteria such as B. subtilis. The colonies that arose therefore represented an integration event into the chromosome. In strain 1A751, the colony morphology on the plates was used to distinguish between single and double recombination events. The double recombination event would knock out genes required for sporulation, whereas the single recombination would not. After three days on LB plates, colonies capable of sporulation were brown and opaque; sporulation-deficient colonies were more translucent.

B. subtilis strain 1A976 with the allulose epimerase cassette is auxotrophic for histidine and lysine and can achieve very high transformation efficiency upon xylose induction. A 1925 bp synthetic DNA (SEQ ID NO:2) was amplified by primers (SEQ ID NO:3, SEQ ID NO:4) and Taq polymerase (Promega). This PCR product encoded the lysA gene that was deleted by the dropping in the epimerase cassette and 500 bp of homology to lad. A successful double recombination event of this DNA should result in colonies that are prototrophic for lysine and sensitive to chloramphenicol; i.e., the entire cat gene should be lost.

Transformants were selected on Davis minimal media supplemented with histidine. Colonies that arose were characterized by PCR and streaking onto LB with and without chloramphenicol. Strains that amplified the introduced DNA and that were chloramphenicol sensitive were further characterized, and their chromosomal DNA was extracted.

Strain 1A751 containing the chloramphenicol resistant allulose was transformed with this chromosomal DNA and selected on Davis minimal media supplemented with histidine. Transformants were streaked onto LB with and without chloramphenicol and characterized enzymatically as described below.

Full text: Click here
Patent 2024
Ampicillin Anabolism Antibiotic Resistance, Microbial Antibiotics Bacillus Bacillus subtilis Chloramphenicol Chromosomes Cloning Vectors DNA, A-Form DNA-Binding Proteins Epimerases Escherichia coli Gene Clusters Gene Knockout Techniques Genes Gram-Positive Bacteria Histidine Lysine Methyltransferase Oligonucleotide Primers Phenotype Plasmids psicose Recombination, Genetic Replicon Strains Taq Polymerase Xylose
In silico multi-locus sequence typing was performed using MLST 2.0 [15 (link)], while the acquired antimicrobial resistance genes were identified using the ABRicate program (https://github.com/tseemann/abricate) to query the CARD database (http://genomicepidemiology.org/). Identification of serotypes was performed using ECTyper (v.1.0) [16 ] with default parameters (https://github.com/phac-nml/ecoli_serotyping). The plasmid replicons in the sequenced isolates were identified using PlasmidFinder 2.0 [17 (link)]. Single-nucleotide polymorphisms (SNPs) and small insertions (INS) were detected using Snippy v3.2 (https://github.com/tseemann/snippy) by mapping the Illumina sequence reads of the JNQH498 and JNQH462 to the complete chromosome sequence of isolate JNQH497. Blastn was used to examine sequences homologous to the sequenced plasmids in the NCBI database. Comparison between homologous plasmids was conducted using CGview server [18 (link)]. OriT Finder was used to determine the conjugation module [19 (link)]. In order to examine the plasmid replicon distribution of blaNDM-bearing plasmids, plasmid sequences were downloaded from NCBI (https://ftp.ncbi.nlm.nih.gov/refseq/release/plasmid) and compared. Plasmid distance trees were generated using Mashtree [20 ]. The amino acid sequences of blaNDM were retrieved from BLDB [4 (link)] and NCBI database, and were aligned using Clustal Omega [21 (link)]. Evolutionary analyses were conducted in MEGA X for inferring maximum-likelihood phylogenies [22 (link)].
Full text: Click here
Publication 2023
Amino Acid Sequence Biological Evolution Chromosomes Genes Insertion Mutation Microbicides Plasmids Replicon Single Nucleotide Polymorphism Trees
BHK-21 cells were transfected by electroporation using 4x106 cells in 400 ul PBS and 4 ug of in vitro transcribed capped or uncapped CHIKV replicon RNA per cuvette. After 2 pulses with an Eurogentec Easyjet Plus instrument set at 850 V and 25 μF, cells were taken up in pre-warmed medium, seeded at a density of 6 x 105 cells/10cm2 dish, incubated at 37°C, and harvested 6, 8, and 10 h p.i. for WB and in-gel hybridization analysis.
Full text: Click here
Publication 2023
Acid Hybridizations, Nucleic Cells Electroporation Hyperostosis, Diffuse Idiopathic Skeletal Pulses Replicon

Top products related to «Replicon»

Sourced in United States, China, Germany, United Kingdom, Canada, Japan, France, Italy, Switzerland, Australia, Spain, Belgium, Denmark, Singapore, India, Netherlands, Sweden, New Zealand, Portugal, Poland, Israel, Lithuania, Hong Kong, Argentina, Ireland, Austria, Czechia, Cameroon, Taiwan, Province of China, Morocco
Lipofectamine 2000 is a cationic lipid-based transfection reagent designed for efficient and reliable delivery of nucleic acids, such as plasmid DNA and small interfering RNA (siRNA), into a wide range of eukaryotic cell types. It facilitates the formation of complexes between the nucleic acid and the lipid components, which can then be introduced into cells to enable gene expression or gene silencing studies.
Sourced in United States, China, United Kingdom, Germany, Australia, Japan, Canada, Italy, France, Switzerland, New Zealand, Brazil, Belgium, India, Spain, Israel, Austria, Poland, Ireland, Sweden, Macao, Netherlands, Denmark, Cameroon, Singapore, Portugal, Argentina, Holy See (Vatican City State), Morocco, Uruguay, Mexico, Thailand, Sao Tome and Principe, Hungary, Panama, Hong Kong, Norway, United Arab Emirates, Czechia, Russian Federation, Chile, Moldova, Republic of, Gabon, Palestine, State of, Saudi Arabia, Senegal
Fetal Bovine Serum (FBS) is a cell culture supplement derived from the blood of bovine fetuses. FBS provides a source of proteins, growth factors, and other components that support the growth and maintenance of various cell types in in vitro cell culture applications.
Sourced in United States, China, United Kingdom, Germany, France, Australia, Canada, Japan, Italy, Switzerland, Belgium, Austria, Spain, Israel, New Zealand, Ireland, Denmark, India, Poland, Sweden, Argentina, Netherlands, Brazil, Macao, Singapore, Sao Tome and Principe, Cameroon, Hong Kong, Portugal, Morocco, Hungary, Finland, Puerto Rico, Holy See (Vatican City State), Gabon, Bulgaria, Norway, Jamaica
DMEM (Dulbecco's Modified Eagle's Medium) is a cell culture medium formulated to support the growth and maintenance of a variety of cell types, including mammalian cells. It provides essential nutrients, amino acids, vitamins, and other components necessary for cell proliferation and survival in an in vitro environment.
Sourced in United States, Germany, United Kingdom
The Renilla Luciferase Assay System is a laboratory equipment designed to measure the activity of the Renilla luciferase reporter gene. The system provides a sensitive and quantitative method for detecting and analyzing gene expression in various experimental settings.
Sourced in Germany, United States, United Kingdom, Netherlands, Spain, Japan, Canada, France, China, Australia, Italy, Switzerland, Sweden, Belgium, Denmark, India, Jamaica, Singapore, Poland, Lithuania, Brazil, New Zealand, Austria, Hong Kong, Portugal, Romania, Cameroon, Norway
The RNeasy Mini Kit is a laboratory equipment designed for the purification of total RNA from a variety of sample types, including animal cells, tissues, and other biological materials. The kit utilizes a silica-based membrane technology to selectively bind and isolate RNA molecules, allowing for efficient extraction and recovery of high-quality RNA.
Sourced in United States, Germany, United Kingdom, France, Japan, China, Switzerland, Italy, Canada
Passive lysis buffer is a solution used for the gentle lysis of cells to extract proteins or other biomolecules. It facilitates the release of cellular contents without denaturing the target analytes.
Sourced in United States, Germany, United Kingdom, Australia, Switzerland, Japan, China, France, Sweden, Italy, Spain, Austria, Finland
The Luciferase Assay System is a laboratory tool designed to measure the activity of the luciferase enzyme. Luciferase is an enzyme that catalyzes a bioluminescent reaction, producing light. The Luciferase Assay System provides the necessary reagents to quantify the level of luciferase activity in samples, enabling researchers to study biological processes and gene expression.
Sourced in United States, China, Germany, United Kingdom, Switzerland, Japan, France, Italy, Spain, Austria, Australia, Hong Kong, Finland
The Dual-Luciferase Reporter Assay System is a laboratory tool designed to measure and compare the activity of two different luciferase reporter genes simultaneously. The system provides a quantitative method for analyzing gene expression and regulation in transfected or transduced cells.
Sourced in United States, China, Japan, Germany, United Kingdom, Canada, France, Italy, Australia, Spain, Switzerland, Netherlands, Belgium, Lithuania, Denmark, Singapore, New Zealand, India, Brazil, Argentina, Sweden, Norway, Austria, Poland, Finland, Israel, Hong Kong, Cameroon, Sao Tome and Principe, Macao, Taiwan, Province of China, Thailand
TRIzol reagent is a monophasic solution of phenol, guanidine isothiocyanate, and other proprietary components designed for the isolation of total RNA, DNA, and proteins from a variety of biological samples. The reagent maintains the integrity of the RNA while disrupting cells and dissolving cell components.
Sourced in United States, China, Germany, Japan, United Kingdom, France, Canada, Italy, Australia, Switzerland, Denmark, Spain, Singapore, Belgium, Lithuania, Israel, Sweden, Austria, Moldova, Republic of, Greece, Azerbaijan, Finland
Lipofectamine 3000 is a transfection reagent used for the efficient delivery of nucleic acids, such as plasmid DNA, siRNA, and mRNA, into a variety of mammalian cell types. It facilitates the entry of these molecules into the cells, enabling their expression or silencing.

More about "Replicon"

Replicon is an innovative AI-driven platform developed by PubCompare.ai that revolutionizes the way researchers discover and compare research protocols.
This cutting-edge solution empowers users to seamlessly locate and compare research protocols across a vast repository of literature, pre-prints, and patents.
Leveraging advanced natural language processing and machine learning algorithms, Replicon's AI analysis engine helps identify the optimal protocols and products to meet your specific research needs.
Whether you're working with cell culture techniques like Lipofectamine 2000 and FBS in DMEM media, or utilizing reporter assays such as the Renilla Luciferase Assay System and Dual-Luciferase Reporter Assay System, Replicon can assist you in finding the most relevant and effective protocols.
The platform's intuitive interface and streamlined workflow allow you to effortlessly navigate the research landscape, saving you time and effort.
By integrating powerful tools like the RNeasy Mini Kit, Passive lysis buffer, and TRIzol reagent, Replicon helps you optimize your experimental processes and maximize the impact of your work.
Discover the transformative power of AI-driven research protocol management with Replicon from PubCompare.ai.
Elevate your research to new heights and stay ahead of the curve in your field.