Protocol full text hidden due to copyright restrictions
Open the protocol to access the free full text link
Example 2
A mixture obtained by mixing 100 parts by mass of granular coal pitch having a softening point of 280° C. as an organic material with 0.9 part by mass of tris(2,4-pentanedionato)iron(III) (metal species: Fe) was fed into a melt extruder, where it was melted and mixed at a melting temperature of 320° C., and spun at a discharge rate of 16 g/min to obtain a pitch fiber. The pitch fiber was subjected to an infusibilization treatment by heating for 54 minutes, to 354° C. from ambient temperature in the air at a rate of 1 to 30° C./minute, to obtain an infusibilized pitch fiber as an activated carbon precursor. The iron (Fe) content in the activated carbon precursor was 0.11% by mass.
The activated carbon precursor was activated by conducting a heat treatment at an atmospheric temperature of 950° C. for 40 minutes, while continuously introducing a gas having a CO2 concentration of 100% by volume into an activation furnace, to obtain an activated carbon of Example 2. In the activated carbon, the pore volume A of pores with a size of 1.0 nm or less was 0.396 cc/g, the pore volume B of pores with a size of 3.0 nm or more and 3.5 nm or less was 0.016 cc/g, the iron content was 0.251% by mass, and the average fiber diameter was 13.6 μm.
Granular coal pitch having a softening point of 280° C. as an organic material was fed into a melt extruder, where it was melted and mixed at a melting temperature of 320° C., and spun at a discharge rate of 20 g/min, to obtain a pitch fiber. The pitch fiber was subjected to an infusibilization treatment by heating for 54 minutes, to 354° C. from ambient temperature in the air at a rate of 1 to 30° C./minute, to obtain an infusibilized pitch fiber as an activated carbon precursor. The iron content in the activated carbon precursor was 0% by mass.
The activated carbon precursor was activated by conducting a heat treatment at an atmospheric temperature of 875° C. for 40 minutes, while continuously introducing a gas having an H2O concentration of 100% by volume into an activation furnace, to obtain an activated carbon of Comparative Example 2. In the activated carbon, the pore volume A of pores with a size of 1.0 nm or less was 0.401 cc/g, the pore volume B of pores with a size of 3.0 nm or more and 3.5 nm or less was 0.000 cc/g, the iron content was 0% by mass, and the average fiber diameter was 16.7 μm.
Example 6
A mixture obtained by mixing 100 parts by mass of granular coal pitch having a softening point of 280° C. as an organic material with 0.3 part by mass of tris(acetylacetonato)yttrium was fed into a melt extruder, where it was melted and mixed at a melting temperature of 320° C., and spun at a discharge rate of 20 g/min to obtain a pitch fiber. The pitch fiber was subjected to an infusibilization treatment by heating for 54 minutes, to 354° C. from ambient temperature in the air at a rate of 1 to 30° C./minute, to obtain an infusibilized pitch fiber as an activated carbon precursor. The yttrium content in the activated carbon precursor was 0.06% by mass.
The activated carbon precursor was activated by conducting a heat treatment at an atmospheric temperature of 950° C. for 60 minutes, while continuously introducing a gas having a CO2 concentration of 100% by volume into an activation furnace, to obtain an activated carbon of Comparative Example 6. In the activated carbon, the pore volume A of pores with a size of 1.0 nm or less was 0.429 cc/g, the pore volume B of pores with a size of 3.0 nm or more and 3.5 nm or less was 0.000 cc/g, the yttrium content was 0.15% by mass, and the fiber diameter was 18.2 μm.
Example 1
30 parts of (A) an amino-modified silicone (Si-1), 5 parts of (B) the nonionic surfactant (N-4), and 65 parts of ion-exchanged water were stirred well, and then emulsified using a homogenizer, to prepare an aqueous liquid of a carbon fiber precursor treatment agent having a solid concentration of 35% in Example 1.
Example 1
The respective ingredients shown in Table 1 were used and added to a beaker such that blending ratios are 29.97% of a sulfur-containing ester compound (A-1a), 0.03% of a sulfur-containing ester compound (A-1b), 45% of a modified silicone (C-1), and 25% of a surfactant (L-1). These were mixed well by stirring. While continuing to stir, ion exchanged water was added gradually to achieve a solids concentration of 25% and thereby prepare a 25% aqueous liquid of a carbon fiber precursor treatment agent of Example 1.
Example 22
A method for preparing a gas diffusion layer for proton exchange membrane fuel cell, includes steps as follows:
The prepared gas diffusion layer for proton exchange membrane fuel cell has hydrophilic channels composed of the ceramic fiber, and the pore gradient (that is, the pore size increases or decreases along the thickness direction), and the layer with the smallest pore size is the intrinsic microporous layer; wherein the gas diffusion layer for proton exchange membrane fuel cell has a thickness of 100 μm, a porosity of 70%, a contact angle with water of 145°, a tensile strength of 30 Ma, a normal resistivity of 70 mΩ·cm, an in-plane resistivity of 7 mΩ·cm, and a permeability of 2060 (mL·mm)/(cm2·h·mmAq).