Protocol full text hidden due to copyright restrictions
Open the protocol to access the free full text link
Example 1
Preparation of AgNPs@CMC, FeNPs@CMC and AgNPs@Fe@CMC Nanocomposites
The AgNPs@CMC, FeNPs@CMC and AgNPs@Fe@CMC were separately prepared via the reduction co-precipitation method. In this method, 100 mL of an aqueous solution of metal salt (0.05M) was prepared and 2 g of CMC extract was added. The system was kept under stirring (500 rpm) at room temperature for 30 min. Thereafter, 0.5M of sodium borohydride was added to the solution containing the metal ion-loaded CMC under continuous stirring for 1 hour. The metal oxide loaded CMC was isolated, washed with distilled water, and dried in an oven at 60° C. for 24 hour. The silver nanoparticle-loaded CMC was labeled as AgNPs@CMC and iron nanoparticle CMC was labeled as FeNPs@CMC.
Example 5
An example of the composition of a liquid photoresponsive material optimized for volumetric additive manufacturing to produce soft hydrogel structure 15s is given below:
Example 6
RF resins have been used previously to form graphene based carbon aerogels. These systems are not UV curable in the time scales necessary for PuSL (<1 min, preferably faster). Therefore a hydrogel formulation based on acrylate photocurable hydrogel was repurposed giving the fast curing ability of acrylates, with the robust aerogel integrated bridging structure afforded by RF. A unique photocured and thermally post-cured double network hydrogel was shown to exhibit highly desirable mechanical properties.
Similar to BisF/PEGDA system, it was the main concern to have the strongest gel with the least amount of polymer. The solubility of resorcinol and formaldehyde (RF) is limited in PEGDA solution and it was found increasing amounts of RF were needed in order to make a homogenous solution. For PEGDA 700, a minimum of 3 wt % RF was needed, while for PEGDA 575, 2 wt % could be used.
A faster RF curing method was also tested, whereby the 4 wt % RF with PEGDA 700 was soaked in 3.0 M NaOH for 5 minutes. Concentrated base or acid causes a rapid gelation of RF, allowing us to skip the 80° C. post cure in iso-octane. The results of this experiment are shown in
Protocol full text hidden due to copyright restrictions
Open the protocol to access the free full text link
Protocol full text hidden due to copyright restrictions
Open the protocol to access the free full text link